Chapter 9 )
Multistage Linear Selection Indices e

Abstract Multistage linear selection indices select individual traits available at
different times or stages and are applied mainly in animals and tree breeding, where
the traits under consideration become evident at different ages. The main indices are:
the unrestricted, the restricted, and the predetermined proportional gain selection
index. The restricted and predetermined proportional gain indices allow null and
predetermined restrictions to be imposed on the trait expected genetic gain (or multi-
trait selection response) values, whereas the rest of the traits remain changed without
any restriction. The three indices can use phenotypic, genomic, or both sets of
information to predict the unobservable net genetic merit values of the candidates
for selection and all of them maximize the selection response, the expected genetic
gain for each trait, have maximum accuracy, are the best predictor of the net genetic
merit, and provide the breeder with an objective rule for evaluating and selecting
several traits simultaneously. The theory of the foregoing indices is based on the
independent culling method and on the linear phenotypic selection index, and is
described in this chapter in the phenotypic and genomic selection context. Their
theoretical results are validated in a two-stage breeding selection scheme using
real and simulated data.

9.1 Multistage Linear Phenotypic Selection Index

In a similar manner to the linear phenotypic selection index (LPSI, Chap. 2), the
objectives of the multistage linear phenotypic selection index (MLPSI) are:

1. To predict the net genetic merit H = w'g, where g’ = [g; g» ... g/]is the vector
of true breeding values of an individual for ¢ traits and W' = [w;  wy ... wy]
is the vector of economic weights.

2. To select individuals with the highest H values at each stage as parents of the next
generation.

3. To maximize the MLPSI selection response and its expected genetic gain per
trait.
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4. To provide the breeder with an objective rule for evaluating and selecting several
traits simultaneously.

When selection is based on all the individual traits of interest jointly, the LPSI

vector of coefficients that maximizes the selection response R = kv'b'Pb and the

expected genetic gain per trait E = & \/g,bﬁ; is b = P~'Cw, where C and P are the

covariance matrices of the true breeding values (g) and trait phenotypic values (y)
respectively, and k is the selection intensity. In MLPSI terminology, the LPSI is
called a one-stage selection index. The MLPSI is an extension of the LPSI theory to
the multistage selection context and, as we shall see, the MLPSI theoretical results
are very similar to the LPSI theoretical results described in Chap. 2.

9.1.1 The MLPSI Parameters for Two Stages

Lety = [y, y, --- ]beavectorwith?traits of interest and suppose that we can
select only n; of them (n; < t) at stage i (i= 1, 2, - - -, N), such that after N stages (N < ?),

N
> n; = t. Thus, for each stage we should have a selection index with a different
i=1
ni
number of traits. For example, at stage i the index would be I; = } by, and at
=1
. ny ny ny N
stage N the index would be Iy = ‘21 bijyi;+ Zl byjypj+ -+ 21 byjynj = ‘21 I;,
J= J= Jj= i=
where the double subscript of y;; indicates that the jth trait is measured at stage i, so
that at each sub-index I;, all the n; traits are measured at the same age.

Suppose that there are four traits of interest and thaty’ = [y, ¥, ¥3 y4]isthe

vector of observable phenotypic values and g’ = [g, g, &3 &4] is the vector of
unobservable breeding values. If at the first and second stages we select two traits,
then n; = n, = 2 and y’ can be partitioned as y' = [X| X} ], where x| = [y, »,]

andx, = [y; y,]are the vectors of traits that become evident at the first and second
stages respectively. At the first stage, the phenotypic covariance matrix of x; (P;)
and the covariance matrix of x; with the vector of true breeding values g (G) can be
Ve C

ar(yl) Ov(ylayZ) — P] and

written as Var(x;) = [Cov(yz v Var(s)

_ | Cov(y1,81) Cov(yi &) Cov(y,g3) Cov(y,gs)
Cov(xy,g) =

Cov(yy,81) Cov(yy,8,) Cov(yy,83) Cov(ya,84)
respectively. For the second stage, in addition to matrix Py, we need the phenotypic
covariance matrix between x; and x, (P,) and the phenotypic covariance matrix of
X, (P,); thus, the covariance matrix of phenotypic values at stage 2 is
P, Pp

P =
Py P
need the covariance between x, and g (G,); that is, at stage 2 the covariance matrix

}. In a similar manner, in addition to matrix G, at stage 2 we


https://doi.org/10.1007/978-3-319-91223-3_2

9.1 Multistage Linear Phenotypic Selection Index 209

between phenotypic and breeding values can be written as G = {gl } . Matrices G
2

o8]

and C are not exactly the same, because although C = Var(g),G = {

[gl } and this latter matrix changes at each stage.
2

Letw = [w; wp w3 wy]be the vector of economic weights; then, at the first
and second stages the MLPSI vectors of coefficients are b) = wG/'{P;! =
[b1y bia]andby, = WGP = [by by by bay] respectively. The selection

indices at stages 1 and 2 can be written as I| = b1y, + b2y, :b’lxl and
Iy = b1y, + by, + bozy; + bosy, = b’zy, which could be correlated and then
numerical integration would be required to find optimal truncation points and
selection intensities (Xu and Muir 1992; Hicks et al. 1998) before obtaining the
maximized MLPSI selection response and expected genetic gain per trait.

The accuracy of the MLPSI at stages 1 and 2 can be written as

b'P,b,; b,P*b,
PHI, = m and  ppy, = V:’C*w’ (9.1)

respectively. Let k; and k, be the selection intensities for stages 1 and 2; then, the
maximized MLPSI expected genetic gains per trait can be written as

b, b, C*
" /bPb, NCASS

and the total expected genetic gain per trait for the two stages isequal to E; + E;. Ina
similar manner, the maximized selection responses for both stages are

R1 = kl\/b/ll)lbl and Rz = kz\ / blzp*bz, (93)

and the total selection response for the two stages is R + R,. In Egs. (9.1) to (9.3),
matrices P* and C* are matrices P and C respectively, adjusted for previous
selection on I; = b)x,. That is, the MLPSI accuracy, expected genetic gain per
trait, and selection response at stage 2 are affected by previous selection on I;
(Saxton 1983) and it is necessary to adjust P and C.

One method for adjusting matrices P and C has been provided by Cochran (1951)
and Cunningham (1975). Suppose that X, Y, and W are three jointly normally
distributed random variables and that the covariance among them is known, then
the covariance between X and Y adjusted for the effects of selection on W can be
obtained as

E1 =k and E2 = kg (92)

Cov(X,W)Cov(Y,W)
Var(W) ’

Cov(X,Y)* = Cov(X,Y) —u (9.4)
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where u = k|(k; — 7), k; is the selection intensity at stage 1 and 7 is the truncation
point when I; = b}x; is applied. For example, if the selection intensity at the first
stage is 5%, k; = 2.063, © = 1.645, and u = 0.862 (Falconer and Mackay 1996,
Table A).

According to Dekkers (2014), with the result of Eq. (9.4), it is possible to obtain
matrices P* and C* using the following two equations:

P* = Var(y)* =P—u Cov(y,x;)bb| Cov(x;,y)

b’ Var(x;)b,
P
{lel }blb’l[Pl P |
=P- 9.5
! b/ P;b, 5:3)
and

COV(g X])b]b/ COV(X] g) G/blb/ G]
C* =V, *=C- ’ ! B C—u——17 (96
ar(g) b, Var(x:)b; “TH P, (9:6)

With the Eq. (9.5) result, the correlation between I; = b|x; and I, = b}y is

b [P; Py by

N

where q/b’lPlbl and \/b'szz are the standard deviations of the variances of

Corr(11,I) = (9.7)

I} = bix; and I, = bly respectively.

9.1.2 The Selection Intensities

Selection intensity k is related to the height of the ordinate of the normal curve (z)
and the proportion selected (p) in the LPSI as k = z/p. In the multistage selection
context, it is usual to fix the total proportion to be selected (p) before selection is
carried out and then to determine the unknown proportion ¢g; (i=1, 2,- - -, N) for each
stage under the restriction

p= qu" (9.8)

where N is the number of stages. In the two-stage selection scheme, we would have
P = q19». Based on the fixed proportion p and the p;, value (Eq. 9.7), Young (1964)
used the bivariate truncated normal distribution theory to obtain the selection
intensity for two stages. A truncated distribution is a conditional distribution
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resulting when the domain of the parent distribution is restricted to a smaller region
(Hattaway 2010). In the multistage selection context, a truncation occurs when a
sample of individuals from the parent distribution are selected as parents for the next
selection cycle, thus creating a new population of individuals that follow a truncated
normal distribution.

Suppose that/; = b|x; and I, = b}y have joint normal distribution and let /; and

Ii—p L—pu . .
I, be transformed as v = p Land v, = p "2 with a mean of zero and a variance of
1 2

1, where y,, and y,, are the means, whereas o7, and oy, are the standard deviations of
the variances of I; and I, respectively. In this case, the method of selection is to retain
animals or plants with v; > ¢; at stage 1 and v + v, > ¢, at stage 2, where ¢, and ¢,
are truncation points for /; and I, respectively.

The selected population has bivariate left truncated normal distribution with a
probability  density  function given by h(vi,vo) = w, where

1

1
fvi,m) = exp [V 4+v3 —2ppviva] ¢ and pys is the
22\/1 = pis 2(1—pp) "

correlation between v; and v,. The fixed total proportion (p) before selection can

OO OO
be written asp = J J F(vi,v2)dvodvy, where ¢ and ¢, are truncation points for
C1

I, and I, respectively. Then, as p is fixed, Young (1964) integrated by parts (Thomas
2014)

C2—V]

ro JOO Fvi,vp)dvidvy (9.9)

Cl =V

and found the expectations of v; and v, in the selected population, writing the
selection intensity values for stages 1 (k;) and 2 (k,) as

k= z(c1)Q(a) +Z(C3)Q(b) (1+p1)/2 (9.10)

p p

and

by = P1Ele)0@) | 2(e3)0(b) V(T +p1) /2 (9.11)

p p

exp{—0.5¢ exp{—0.5¢2
p{ CI}andZ(C3) _ p{ C3}
\V2r V2r
of the ordinates of the standard normal distribution at the lowest value of ¢; and
= and p is the total proportion of the population of animal or plant

= Vo

lines selected; a =

respectively, where z(¢;) = are the heights

—c(1
w and b = 2”767 whereas Q(a) =1 - ¢(a)
1—ph, 201-pi)

and Q(b) = l — @®(b) are the complement of the standard normal distribution;

®(a) = J exp{—0.5w*}dw and @ exp{—0.5¢}dt are

o b) = J:\/_
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probabilities of the standard normal distribution, i.e., ®(a) = P(W < a) and
o) = PAT < b).

Young (1964) provided figures to obtain values of ¢ and ¢, when the p, values
are between —0.8 and 0.8, and the p values are between 0.05 and 0.8. For example,
suppose that p;, = 0.8 and p = 0.2 (or 20%), then, according to Young (1964,
Fig. 9), ¢; = 0.80 and ¢, = 1.6, and to find the selection intensities for the first (k;)
and second stages (k,) we need to solve Egs. (9.10) and (9.11). That is, as ¢; = 0.80,

¢ = 16, pi» = 08, and p = 02, then z(c)= w —0.290,

_exp{-05[(1.6°/2(1.8)]}  1.6-08(1.8) _ _ 2(08)-16
z(e3) = wor =028, a= o 027, b= o
®(a) = 0.6064, D(b) =0.5, Q(a) =1 — ®(a) =0.3936, and Q(b) =1 — D(b) =0.5.

Based on these results, the selection intensities for stages 1 and 2 are

)

~(0.29)(0.3936)  (0.28)(0.5)(0.9)
ki = s + 05 —=0.744 and

(0.8)(0.29)(0.3936)  (0.28)(0.5)(0.9)
ky = 02 + 02 =0.721
respectively. Note that the values of ®(a) = 0.6064 and ®(b) = 0.5 can be obtained
from any table with values showing the area under the curve of the standard normal
distribution (e.g., Rausand and H¢yland 2004, Table F.1).

One problem with Egs. (9.10) and (9.11) is that they tend to overestimate
the selection intensities values and also overestimate the selection response
when the total proportion retained p is lower than 10%. Cochran (1951) have
given two equations to obtain selection intensities in the two stages context but his
equations also overestimate the selection intensities values when p is lower than
10%. Up to now, there is not an accurate method to estimate selection intensities for
two or more stages in the MLPSI context. Mi et al. (2014) have developed an R
package called selectiongain that enables calculation of the OMLPSI selection
response for up to 20 selection stages. Selectiongain uses raw integration to obtain
the first moment of a lower truncated multivariate standard normal distribution and
then it estimates the OMLPSI selection response at each stage; however, this integral
requires complex numerical algorithms with no convergence criteria (Arismendi
2013) and could also overestimate the selection intensity at each stage.

9.1.3 Numerical Example

To illustrate the two-stage selection theory, we use the poultry data of Xu and Muir
(1992). This data set contains four traits: age at sexual maturity, defined as the age
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(in days) at which the first trap-nested egg was laid (y;); rate of lay, defined as 100 times
(total eggs in the laying period)/(total days in the laying period) (y,); body weight
(in pounds) measured at 32 weeks of age (y3); and average egg weight (in ounces per
dozen) of all the eggs laid up to 32 weeks of age (y4). The estimated phenotypic and
137.178 —90.957 0.136 0.564
—90.957 201.558 1.103 —1.231
0.136 1.103 0202 0.104
0.564 —1.231 0.104 2.874

14.634 —18356 —0.109 1.233
d G | 18356 32029 003 —2574| L
| —0.109 0103 0089  0.023 p Y

1.233 —-2.574  0.023 1.225

genetic covariance matrices were P =

the vector of economic weights for the four traits was w =

[—3.555 19.536 —113.746 48.307].

Suppose that at the first and second stages we select two traits (n; = n, = 2); then,
y =[x; x], wherex| = [y, y,]andx)=[y; y,]. The estimated phenotypic
(Py) and genetic (G;) covariance matrices for the first stage were

137.178  —90.957 ~ 14.634 —18.356 —0.109 1.233
nd G] =

)

1= 1290957 1.103 —18.356 32.029 0.103 -—-2.574

respectively. For the first and second stages, the estimated MLPSI vector of
coefficients were b, =wG'|P, =[—0.918 2339] and b,=wCP '=
[—0.59 2.78 —49.45 3.75] respectively.

The estimated correlation value between the estimated indices 7] = lA)’lxl and

b1 P, le}b2

\/b P bm/b Pb,

were the estimated standard deviations of the variance of 7; and 1, respectively.
Assuming that p = 0.2 (or 20%), an approximate selection intensity for the first
stage was k; = 0.744, whence the estimated MLPSI selection response, expected

genetic gain per trait, and accuracy were ﬁl :km/ﬁ’lﬁlgl = 29.85, ]i/l\’l =

= by was pj, = = 0.88, where \/E’lﬁlf)l and \/i)\lzﬁi)\g

Gib b,P,b
ki (i‘lil/\ =[—-1.046 1.702 0.006 —0.133], and py;, = L —0.353
4/ b\Pib, wCw
respectively.
According to the k; = 0.744 value, the approached value of u

was u = 0.554, and by Egs. (9.5) and (9.6), the estimated and adjusted phen-
otypic (P*) and genetic (C ) covariance matrices for the second stage were
97.682 —26.241 0.422 0.168
Pt —26.241 95518 0.634 —0.582 and
0.422 0.634  0.200 0.107

0.168 —-0.582 0.107 2.870
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13.540 —-16.575 —0.102 1.094
—16.575 29.129  0.092 —2.348
—0.102 0.092 0.089  0.024
1.094 —-2.384 0.024  1.207
For the second stage, the approximated selection intensity was k, = 0.721,
whereas the estimated MLPSI selection response, expected genetic gain per trait

C* = , respectively.

. ——— - C*b
and accuracy, were Ry = ki, \/b,PFiby =24.84, E, =k, T{\ =
\/b5P5b,
. b,Pb
[~0.443 0.804 —0.087 —0.087], and pyy, = {/ 22— =0.314 respec-
wC*w

tively. Finally, the total estimated MLPSI selection response and expected
genetic gain per trait were Ri + Ry = 54.69 and E| +E, =
[—1.488 2506 —0.081 —0.219].

9.2 The Multistage Restricted Linear Phenotypic Selection
Index

The multistage restricted linear phenotypic selection index (MRLPSI) is an exten-
sion of the null restricted linear phenotypic selection index (RLPSI) described in
Chap. 3 to the multistage case; thus, the theoretical results of the MRLPSI are very
similar to those of the RLPSI. The MRLPSI allows restrictions equal to zero to be
imposed on the expected genetic gains of some traits, whereas other traits increase
(or decrease) their expected genetic gains without any restrictions being imposed.

9.2.1 The MRLPSI Parameters for Two Stages

In Chap. 3, we indicated that vector bz = Kb is a linear transformation of the LPSI
vector of coefficients (b) made by the projector matrix K, and that matrix K is
idempotent (K = K?) and projects b into a space smaller than the original space of b.
The reduction of the space into which matrix K projects b is equal to the number of
zeros that appears on the expected genetic gain per trait. Hence, the MRLPSI vector
of coefficients for stages 1 and 2 should be a linear transformation of the MLPSI
vector of coefficients at stages 1 (b; = Pflle) and 2 (b, = P~'Cw) described in
Sect. 9.1.1 of this chapter, and should be written as

br, = Kb, (9.12)
and

bz, = Ksbs, (9.13)
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respectively, where, at stage 1, K; = [I; — Q,], Q, = P;'¥, (‘P’lPl’l‘I’l)fl‘I"l,
¥, = UG, I, is an identity matrix of the same size as P}, and P, " is the inverse of
matrix Py. Atstage 2, Ky = [I, — Qu1,Q, = P/, (W,P'W,) W, W, = U'C, 1,
is an identity matrix of the same size as P, and P~ is the inverse of matrix P. By
Egs. (9.12) and (9.13), the MRLPSI for stages 1 and 2 can be written as I} = b;e]xl
and I = by y, where y' = [X|  x)]; X| and x; are the vectors of traits that become
evident at the first and second stages respectively.

Let k; and k, be the selection intensities for stages 1 and 2 (Egs. 9.10 and 9.11)
respectively, and let P* and C* be the covariance matrices adjusted in the MRLPSI
context according to Egs. (9.5) and (9.5) respectively. The maximized MRLPSI
selection response, expected genetic gain per trait, and accuracy at stages 1 and 2 can

be written as
RR| = kH/b;?]PIbRI and RR] = kzq / b;eZP*sz, (914)
G/b b/ C*
Ep, =k ——="—  and Eg, = ky —2 (9.15)

b}, Pibg, \/ P, P br,

b;% P]bR b;; P*bR
=\ Twew o=\ Cyiche (-16)

respectively, whereas the total MRLPSI selection response and expected genetic
gain per trait for both stages are equal to Rg, + Rg, and Eg, + Eg,.

and

9.2.2 Numerical Examples

To illustrate the MRLPSI theory for a two-stage selection breeding scheme, we
use the real data set of the White Leghorn chickens of Hicks et al. (1998). This data
set is conformed with six traits (y; to yg) that correspond to records consisting of the
number of eggs laid during different periods: from week 0 through 4 (y,), 4 through
8 (¥2), 8 through 28 (y3), 28 through 32 (y,), 32 through 36 (ys), and 36 through
52 (ye) respectively. The estimated phenotypic and genotypic covariance matrices
were

102 32 14 4 3 -1 44 11 -11 -3 -8 -3
32 80 80 16 17 7 11 26 24 7 7 3

P 14 80 298 78 112 62 and € — —11 24 62 23 37 20
4 16 78 66 80 51 -3 7 23 14 23 14|
3 17 112 80 135 49 -8 7 37 23 42 25

-1 7 62 51 49 098 -3 3 20 14 25 18
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respectively, and w' = [0.08 0.08 0.38 0.08 0.08 0.31] was the vector of
economic weights.

Lety' =[yi 2 y3 y ¥s Yelandg' =[g g & 8 & g]bethe
vectors of observed phenotypic and unobserved genotypic values respectively, and
suppose that at stage 1 we select four traits and at stage 2 we select two traits, then
X; =y, ¥» ¥3 ys]andx,=[ys Y| are the vector of observations at stages
1 and 2 respectively, whereas y' = [X| X, ] is the vector of total observations at
stage 2. We need to estimate vectorsby, = b} K| andb; = b,K, whereb| = w'G’,
P;! and by, = w'G'P~'. In Chap. 3, we described methods of estimating matrices
K =L - Ql Q=P ¥ (‘I"lPi‘I‘l)_l‘I"l, ¥, =UG", K, = [, — Qal,
Q, = P "W, (W,P'W,) ' W), and W, = U'C, which are used in this subsection.

At stage 1, the estimated phenotypic and genotypic covariance matrices were

102 32 14 4 4 11 -11 -3 -8 -3
P, = 32 80 80 16 and Gy = 11 26 24 7 7 3
14 80 298 78 —11 24 62 23 37 20
4 16 78 66 -3 7 23 14 22 14

respectively. At both stages, traits y; and y, are restricted. Matrix U can
1 000 0O
01 00 0O
44 11 —-11 -3
|:11 26 24 7
matrices of Q, :PI’I‘I’I (‘I"IPI’I‘I’])A‘I"1 and K; = [I, — Q] were
0923 —-0.013 —-0.511 -0.144
~ =18 S el e 0.164 1.026 1.093 0.317
Q=P Wi (¥R W) W= | s 0069 0001 —0001|
0.010 0.159 0.178 0.052
0.077 0.013 0.511 0.144
0.164 —-0.026 —1.093 —-0.317
0.145 0.069 1.001 0.001
—0.010 —-0.159 —-0.178 0.948
I, is an identity matrix of size 4 X 4.

The estimated vector bj =b/K; was b'g =b/K|=1[0.044 —0.095
0.0450.131], where b} =wG/P;' = [-0.067 0.125 0.045 0.167], and
TR] =b’ &, X1 was the estimated MRLPSI at stage 1. The estimated MRLPSI vector of
coefficients at stage 2 was b'g, = b,K}, = [0.045 —0.068 0.028 —0.057 0.099
0.106] and 7R2 = ﬁ'Rzy was the estimated MRLPSI at stage 2.

The estimated correlation value (pg, ) between Iz, = b’ r X and Tz, = b’ R,Y Was

—~ b/Rl [§1 ﬁZI ]sz

PR, = PSP PPN
\/b’RlPle1 \/b’RZPbR2

the estimated standard deviations of the variance of le = I;’Rlxl and 7R2 =b R,Y

respectively. According to Young (1964, Fig. 8), and Egs. (9.10) and (9.11),
the selection intensities for stages 1 and 2 were k; = 0.641 and k, = 0.593

be written as U = [ }, whence the estimated matrix of

restrictions was W) = UG/ = } therefore, the estimated

Ki=[L-Q]= respectively, where

= 0.564, where \/B/Rlﬁli)\m and \/B’RzlA’BRZ are
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respectively. The estimated selection responses and expected genetic gains per traits

for both stages were IA?Rl =k1y/ B’RIIA)IBR] =0.973 and

Rg, = ka\/b'g, P*bg, = 0.930,

L/ G/IBR] I/
E'r, =kj————==[0 0 1.271 0.870 1.482 0.974] and E'g, =
\/b’r,P1bg,
S0 [0 0 1.419 1.014 2.037 1.349], whereas Ry, + Rg, = 1.903
A/ b'r,P*bp,
and E'g +E'f, =[0 0 2.691 1.884 3.519 2.322] were the total estimated
MRLPSI selection response and expected genetic gain per trait respectively.

k>

~ b, Pib
Finally, the estimated MRLPSI accuracy at stage 1 was pgp, = R TR
wCw
. b 5, P*D , S
0.320 and at stage 2 it was pp, = —R TR — 0.334. In this case, pp, > pPg,- We
wC*w

can explain these results considering that although pr, was obtained with six traits,
pr, Was obtained only with four traits, two of them restricted.

9.3 The Multistage Predetermined Proportional Gain
Linear Phenotypic Selection Index

The main objectives of the multistage predetermined proportional gain linear phe-
notypic selection index (MPPG-LPSI) are the same as those of the predetermined
proportional gain linear phenotypic selection index (PPG-LPSI) described in
Chap. 3, i.e., to optimize, under some predetermined restrictions, the expected
genetic gains per trait, to predict the net genetic merit, and to select the individual
with the highest net genetic merit values as parents of the next generation under
some predetermined restrictions. The MPPG-LPSI allows restrictions different from
zero to be imposed on the expected genetic gains of some traits, whereas other traits
increase (or decrease) their expected genetic gains without any restrictions being
imposed.

9.3.1 The MPPG-LPSI Parameters

In a similar manner to the MRLPSI, the MPPG-LPSI vector of coefficients for stages
1 and 2 should be a linear transformation of the MLPSI vector of coefficients at
stages 1 (b; = Pflle) and 2 (b, = P~ 'Cw), and should be written as


https://doi.org/10.1007/978-3-319-91223-3_3

218 9 Multistage Linear Selection Indices

by, = Ky, by (9.17)
and
by, = Ky, b, (9.18)

respectively, where, at stage 1, Ky, = [I; — Qyy, |, Quy, =P;'M, (M’IPI’IM])%M’I,

M| =D'V, ¥, =U'G'}, I, is an identity matrix of the same size as P}, and P ' is

the inverse of matrix P;. At stage 2, Ky, = [I — Qu], Qu = P"'MM'P~'M)"'M/,

M’ =D'W, W = U'C, Lis an identity matrix of the same size as P, P~ is the inverse
d 0 --- 0 —d;

0 d - 0 —do

of matrix P, and D' = , whered, (g =1,2...,r)is the q"

0 0 - d —d—
elementof d'=[d| d, --- d,], the vector PPG (predetermined proportional gains)
imposed by the breeder (see Chap. 3 for details).

By Egs. (9.17) and (9.18), the MPPG-LPSI for stages 1 and 2 can be written as
Iy, = by, Xy and Iy, = by, y respectively, where, assuming that at stage 1 we select
four traits and at stage 2 we select two traits, X; = [y, Y, »3 4] and x5 =
[¥s ye] are the vectors of phenotypic observations at stages 1 and 2 respectively,
andy = [x| x,]is the vector of total phenotypic observations at stage 2.

Let k; and k, be the selection intensities for stages 1 and 2 (Eqgs. 9.10 and 9.11)
respectively and let P* and C* be the adjusted matrices according to Egs. (9.5) and
(9.6) in the MPPG-LPSI context. Then, the MPPG-LPSI selection response and
expected genetic gain per trait for both stages can be written as

RMl = kl\/b;l/[]Plel and RM2 = k2 b;VIZP*sz (919)

and

G'b b}, C*
— M and By, =k (9.20)
b}, Piby, b}, P*by,

Ey, =k

1

respectively, whereas the total MPPG-LPSI selection response and expected genetic
gain per trait for both stages are equal to Ry, + Ry, and Eyy, 4 Eyy,. In addition, the
MPPG-LPSI accuracy for both stages can be written as

b Piby,

bj, P by,
pM[ - = y

and py, = (9.21)

wCw wC*w
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9.3.2 Numerical Examples

We use the real data set described in Sect. 9.2.2 to illustrate the theoretical results of
the MPPG-LPSI in the same form as we did with those of the MRLPSI. We need to
estimate vectors bj, =b\K}, and bj, =b)K), . where b} =wG' P and
b, = w'G'P~!. In Chap. 3 we have given methods to estimates K, = [I — Q]
QM P 'MMP 'M)"'M', M’ = D'W, and ¥ = U'C, which will be used in this
subsection.

The estimated phenotypic and genotypic covariance matrices at stage 1 were

102 32 14 4 4 11 —-11 -3 -8 -3
P - 32 80 80 16 and Gy = 11 26 24 7 7 3
14 80 298 78 —11 24 62 23 37 20
4 16 78 66 -3 7 23 14 22 14
respectively, whereas w' = [0.08 0.08 0.38 0.08 0.08 0.31] was the vec-
tor of economic weights. The traits restricted at both stages are y,, y,, and y3. The
vector of PPG was d' =[2 3 5|, whence D' = F) 2 :g] and
1 000 00O
U=]0 1 0 0 0 0| were matrices D' and U. The estimated matrices
001 000

of M| and Ky, = [I — Qy, ] were M| = D'W'| = 28482 578 —16768 _gi] and
0.176  0.205 0.606 0.159
0.031 0.032 —-0.007 0.199
0.195 0.235 0.852 —0.098
0.130 0.130 —0.098 0.940
ét stages 1 and 2, the estimated MPPG-LPSI vector of coefficients were l:’ M,
=K'y, = [0.068 0.035 0.039 0.160] and b, =wG/P;! =
[ —0.067 0.125 0.045 0.167], whence the estimated MPPG-LGSI were
IM1 = b M, X1 and IM2 = b M,y The estlmated correlation value (pM ,) between IM1

by, [P, Py }sz

\/b w, Piby, \/b w,Pby,

\/ by, Pb M, and \/ b’ Msz M, were the estimated standard deviations of variance of

IMl =1 M, X1 and IM2 = b M,y respectively. According to Young (1964, Fig. 8), the
selection intensities for stages 1 and 2 were k; = 0.744 and k, = 0.721 (Egs. 9.10 and
9.11) respectively.

The estimated selection responses and expected genetic gains per traits for both

stages were IAQM1 = kn/l;’M,ﬁlBM] = 1.553 and IAQM2 = kQ\/l;’leA)*Bm = 1.401,

~ G'b
E'y, =k M

Ky, = respectively, where ¥/ = U'G/.

~

=b'y,x; and TMZ = l; LY Was py = = 0.870, where

=[0.877 1316 2.193 1.128 1.655 1.037], and
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.
C*by,

/b 1, P*byy,
IA?Ml —l—IA?M2 =2.954 and E'y;, + E'yy, =[1.755 2.662 4.797 2.561 4.161 2.639]
were the total estimated MPPGLPSI selection response and expected genetic gain
per trait respectively. Note that the vector of predetermined restriction was
d'=[2 3 5]. This means that the MPPG-LPSI efficiency at predicting the total
expected genetic gain per trait was high because the difference between each
predetermined value (2, 3, and 5) and the total of each predicted value (1.755,
2.662, and 4.797) were 0.245, 0.338, and 0.203 respectively.

. /b3, BB
Finally, the estimated MPPG-LPSI accuracy at stage 1 was p,, = %
wCw

’\, ~ o~
b, P*by,

wC*w

E/‘:’Mzzkz =1[0.878 1.346 2.604 1.433 2506 1.602], whereas

= 0.435, and at stage 2 it was fo\Mz = = 0.428; that is, both were very

similar.

9.4 The Multistage Linear Genomic Selection Index

We describe the multistage linear genomic selection indices (MLGSI) as an exten-
sion of the linear genomic selection index (LGSI, Chap. 5) theory to the multistage
genomic selection context; thus, the theoretical results of the MLGSI are very similar
to those of the LGSI. The MLGSI is a linear combination of genomic estimated
breeding values (GEBVs) and is useful for predicting individual net genetic merit
and for selecting individuals from a nonphenotyped testing population as parents of
the next selection cycle.

9.4.1 The MLGSI Parameters

The objective of the MLGSI is to predict the net genetic merit H = w'g, where g is a
vector of true breeding values and w’ is the vector of economic weights, using only
GEBVs. In Chap. 5, we indicated that the covariance between y; and g; is equal to the
variance of y;, i.e., Cov(g;, ;) = s7, and that the GEBV associated with the ith trait is
a predictor of the ith vector of genomic breeding values (y;). In the testing popula-
tion, the only observable information is w’ and the GEBV associated with the traits
of interest. For this reason, in practice, we construct a linear combination of GEB Vs,
which should be a good predictor of H = w'g.

Suppose that the breeder is interested in four traits, and that
Y=I[rn rn rs val, €=[g & & &l and W=[wi wr w3 wy]
are the vectors of genomic breeding values (y), true breeding values (g), and
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2
ST S12 S13 S14
S0 85 S; Sm
economic weights (w) respectively. Let I' = Var(y) = 2 5 and

$31 S32 §3 834
S41  S42 843 Sﬁ
o1 on 01 o
C=(g) = o1 07 0223 ©24 | be the covariance matrix of g and y. At a
031 032 O3 034
041 042 043 6421
two-stage selection breeding scheme, ¥y = [y, 7, 73 7] can be partitioned
into v\ =[y; 7,] and v, =[y; 74]; therefore, at stage 1, Ty = Var(y,) =

2

.:211 11%2 is the genomic covariance matrix of ¥, = [y, 7,] and Cov(y,,g8) =

5T S S13 Sia

S12 S5 S S
g =[g & & &) Matrix A; indicates that we are assuming that the
covariance between y; and g; (i, j = 1, 2, - - -, g; g= number of genotypes) is equal
to the covariance between 7y, and 7y;. This is because, in practice, in the testing
population, we can only estimate matrix I'.

At stage 2, I' = Var(y) is the covariance matrix of y and A =TI is the covariance
matrix of the vector of genomic breeding values y with the vector of breeding values
g. The MLGSI vector of coefficients at stages 1 and 2 are f) =
wWA'\T;' = (B, P] and B, =wWAL ' =w =[w; wy ws wy] respec-
tively, and the MLGSI for both stages can be written as I} = f,7, + 1272 = B}
Y1 and I = wyyy + wayz + Ways + Ways = WY.

Let k; and k, be the MLGSI selection intensities for stages 1 and 2. For both
stages, the MLGSI accuracies (py;, and py,,), expected genetic gains per trait (E; and

E,) and selection responses (R; and R,) can be written as

BB, wT*w
Pun =\ "Cw and  py;, = e (922)

] = A, is the covariance matrix of ¥, ={[y, y,] with

/ *
Ei =k % and B> = ky (9.23)
vV BiLiB vVwT*w

and

R =ki\/BT1B, and Ry, = ko VWTI*w. (9.24)

The total MLGSI expected genetic gain per trait and selection response at both
stages are equal to E; + E, and R; + R,. To simplify notation, in Egs. (9.23) and
(9.24), we have omitted the intervals between stages or selection cycles (Lg).
Matrices C* and I'* in Eqs. (9.22) to (9.23) are matrices I' and C adjusted for
previous selection on ;.

We adjust matrices I' and C for previous selection on I, as
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AlBiBIA

1
and
G b,b,G,
C*=C—-u——~1—, 9.26
“"biPb, (9:26)

respectively, where u = ky(k; — 7), k is the standardized selection differential, and =
is the truncation point when I; = By, is applied. All the terms in Eq. (9.26) were
defined in Eq. (9.6).

The correlation between I; = By, and I, = W'y can be written as

piaw

where /BB, and v/w'I'w are the standard deviations of the variances of I; = f]

v, and I, = w'y respectively. In Eq. (9.27), matrix T was not adjusted according to
Eq. (9.25).

Corr(Iy,1I>) = (9.27)

9.4.2 Estimating the Genomic Covariance Matrix

All the MLGSI parameters are associated with matrix I'; thus, the estimation of this
matrix in the testing population is very important. We estimate matrix I' according to
the estimation method described in Chap. 5 (Eq. 5.25), that is, as

I = {Ey} (9.28)

where s, , = é (¥ — lﬁyql)/Gfl (Vg1 — lﬁy,,/,) is the estimated covariance between
¥, = X, and,,; = X, at stage [ or selection cycle of the testing population; g is
the number of genotypes; ﬁm and ﬁm are the estimated arithmetic means of the
values of ¥, and ¥,,;; 1 is an g x 1 vector of Is and G; = ¢ 'X/X] is the additive

genomic relationship matrix at stage [ or selection cycle in the testing population (see
Chap. 5 for details).
9.4.3 Numerical Examples

We illustrate the MLGSI theoretical results using the data described in Chap. 2,
Sect. 2.8.1 simulated for eight phenotypic and seven genomic selection cycles,
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each with four traits (77, T, T3 and T,), 500 genotypes, four replicates for
each genotype, 2500 molecular markers, and 315 quantitative trait loci in one
environment. The economic weights of Ty, T,, T5, and T, were 1, —1, 1, and
1 respectively. In this subsection, and only for illustrative purposes, we use the
data set from cycle 1.

The genotypic and genomic estimated covariance matrices in cycle 1 were

36.21 —1293 835 274 1626 —6.51 5.60 2.29

C— —12.93 13.04 -34 -224 df= —6.51 579 -223 —1.62
T 835 —34 996 016 | "N T | 560 —223 3.75 094
274 =224 0.16 6.64 229 —-1.62 094 262

respectively, whereas w'=[1 —1 1 1] was the vector of economic weights.
Matrices P and C were obtained according to Eqgs. (2.22) to (2.24), whereas matrix
T’ was obtained according to Eq. (9.28).

Suppose that we select two traits at stages 1 and 2. Then, at stage 1,
T, = [16.26 —6.51] and A, = {16.26 —6.51 5.60 229 } are the
6.51 5.79 651 579 —-233 -1.62
estimated covariance matrices of Fl and A 1 respectively, and the estimated

MLGSI vector of coefficients was | = w’A’1F "'=1[1.39 —1.25]. Because at
stage 2 B, = w' WAT ' =w =[w; wy ws W4] the estimated MLGSI vector of
ﬁ 1A1W

coefficients is the vector of economic weights. Thus, p; ;, = —= =
\/ ﬁllrlﬁl V W’FW
0.97 was the estimated correlation between I = B’ 7, and I, = w'y, and assuming
that the fixed proportion was 0.2 (20%), k; = 0.744 and k, = 0.721 were
the approximated selection intensities for stages 1 and 2 respectively. The

adjusted matrices I'™ and C™* for previous selection on 1, = By, were

796 -2.11 271 0.88 2440 —5.65 547 1.39
I —2.11 346 -0.80 —0.87 and CF — —5.65 855 —1.63 —1.41
271 —-0.80 275 045 547 —-1.63 926 -0.17
0.88 —0.87 045 2.38 1.39 —141 —-0.17 6.49
The estimated MLGSI accuracy, selection response, and expected genetic
T~
gain for stage 1 in the testing population were py; = w:&ﬂ,

L wCw

—~ [~ ~ ~ ~ A
Ri=ki\/p B, =590, and E’I:kl%:[Z.SS —1.53 1.00 0.49]
\/ ﬁ]rlﬁl

respectively, whereas at stage 2, the estimated MLGSI accuracy, selection response,

T . —
and expected genetic gain were pp;, = \/ w/ég*w =0.64, R, =k, VWI'*w=4.10,
wC*w

I'*w

vV wT*w

MLGSI accuracy, selection response, and expected genetic gain at stage 2 were

and ]g’z:kz =[1.74 —0.92 0.85 0.58] respectively. The estimated
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lower than at stage 1. This means that the adjusted matrices I'* and C* negatively
affected the estimated MLPSI parameters at stage 2. The total estimated MLGSI
selection response and expected genetic gain for stages 1 and 2 were Ri+R,=9.99
and B/ + B, =[4.62 —2.45 1.85 1.07].

9.5 The Multistage Restricted Linear Genomic Selection
Index (MRLGSI)

The restricted linear genomic selection index (RLGSI) described in Chap. 3 is
extended to the multistage restricted linear genomic selection index (MRLGSI)
context in a two-stage breeding selection scheme.

9.5.1 The MRLGSI Parameters

In Sect. 9.4.1, we indicated that the MLGSI vector of coefficients at stage 1 can be
/ !/

written as P, = WA \[[' =[f,, P] and at stage 2 as P, =wAIl ' =
w =[w; wy w; wy]. It can be shown that the MRLGSI vector of coefficients
is a linear transformation of vectors ; and B, made by matrix K5, which is a
projector (see Chaps. 3 and 6 for details) that projects f; and , into a space smaller
than the original space of B, and B,. Thus, at stages 1 and 2, the MRLGSI vector of

coefficients is

Br, = Ka, B (9-29)

and
BRZ = KGZ ﬁZ = KG2w5 (930)

respectively, where K¢, = [I-Qg, |, Qs, =U, (UGF1U1)71U3F1 Kg, =[1-Qg,].
and Qg, =1, (U'QI‘UZ)_IUQF are matrix projectors. By Egs. (9.29) and (9.30), the
MRLGSI at stages 1 and 2 can be written as Iz, = ﬁ;e, Yiand Ig, = ﬁ}\,zy respectively,
where ¥\ = [y, v,]andy =[y, 7, 73 74] are vectors of genomic breeding values,
which can be estimated using GEBVs, as described in Chap. 5. In Chap. 6 we
described methods for constructing matrix U’ and estimating matrix Kg; those
methods are also valid in the MRLGSI context.

In a similar manner to the MLGSI context, MRLGSI accuracies, expected genetic
gains per trait, and selection responses for stages 1 and 2 in the testing population can
be written as
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B Lib Bl By

PHI, = Iilf’Cw - and PHI, = SVZ’C*WZ’ (9.31)
N r*

Ep = ki—Pr g By gt PR (9.32)

\/Br T8k, Br. T Br,

and

RR] = kl \/ ﬁ;]rlﬁRl and RR2 = k2 ﬁkzr*ﬁRz, (933)

respectively. The total MRLGSI expected genetic gain per trait and selection
response for both stages are equal to Eg, + Eg, and Rg, + Rg,. To simplify the
notation, in Egs. (9.32) and (9.33), we have omitted the intervals between stages or
selection cycles (Lg). Matrices I'* and C* in Egs. (9.31) to (9.33) are matrices I" and
C adjusted for previous selection.

In the MRLGSI context, matrices I'* and C* can be obtained as

A'Bg, By, A1

r=r— 9.34
"B Tibe 534)
and
G'bg b, G,
C*=C-u—r LR 9.35
b} Pibg, (9:35)

where B, was defined in Eq. (9.29) and vector bg, can be obtained according to the
RLPSI as described in Chap. 3. The term u = k(k — 7) was defined earlier.
The correlation between Ig, = B ¥, and Iz, = Py ¥ can be written as
 BrAibg
\/ﬁ;i’l I ﬁRl \/ﬁ;?zrﬁRz

(9.36)

P, Ir,

where \/ ﬁ}ell"l[ikl and \/ ﬁ;ezl’ﬁkz are the standard deviations of the variances of
Ig, = By, ¥, and I, = P, ¥y respectively. In Eq. (9.36), matrix I was not adjusted for

previous selection on Ig, = ﬁ;eﬂ 1-
9.5.2 Numerical Examples

To illustrate the MRLGSI theory in a two-stage breeding selection scheme, we use
the simulated data described in Sect. 9.4.3. In that subsection we indicated that the
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1626 —6.51
—-6.51 5.79

. and that B/, = WA L' =[1.39 —1.25]

estimated covariance matrices of I'y and A; were I’y = { } and

A= 16.26 —6.51 5.60 2.29

—6.51 579 -233 —-1.62
was the estimated MLGSI vector of coefficients at stage 1. At stage 2, the estimated
MLGSI vector of coefficients was w'=[1 —1 1 1], the vector of economic
weights.

Suppose that we restrict only trait 2; then at stages 1 and 2, matrix U} = [0 1]
and matrix Uy = [0 1 0 0] respectively. In addition, Qg, = U, (U,T,U,)  U,T,
Qq, =U,(U)TU,) 'UT, Kg =[1-Qg,], and Kg, =[I1-Qq,] are the
estimated matrices described in Eqgs. (9.29) and (9.30) for stages 1 and 2. It can be
shown that, at stages 1 and 2, B\;el —PB/K!  =1[1.39 1.558] and B;ez =wK'g, =
[1.0 1.81 1.01.0] are the MRLGSI vectors of coefficients respectively.

Suppose that the total proportion retained for the two stages was 20%, then at
stage 1, k; = 0.744 is an associated approximated selection intensity and the
estimated MRLGSI selection response, expected genetic gain per trait, and accuracy

were  Rg, = ki\/B' g T1Bp, =3.083, Eg =[2225 0 0742 0.117], and

~ [BrTiBr . :
Pur, = T— 0.370 respectively. The estimated MRLGSI expected
wCw

genetic gain, accuracy, and selection response at stage 2 were

N 8. T* ol T*p
Eg, =k fRZ =[1.156 0 0.793 0.536], pp, = M:osz,
ﬁ/ f*ﬁ wC*w
Rz Rz

and ﬁRz =ko\/ B sz*ﬁRz = 2.485 respectively, where k, = 0.721 was the approx-
imated selection intensity value for stage 2.

The estimated total MRLGSI selection response and expected genetic gain at
stages 1 and 2 were Rg, + Rg, = 5.568 and E; +E; =[3380 0 1.5350.653]
respectively. Note that, in effect, the expected genetic gain for trait 2 was 0, as
expected.

9.6 The Multistage Predetermined Proportional Gain
Linear Genomic Selection Index

The MPPG-LGSI is an adaptation of the predetermined proportional gain linear
genomic selection index (PPG-LGSI) described in Chap. 6; thus, the theoretical
results, properties, and objectives of both indices are similar. The MPPG-LGSI
objective is to change u, to u, + d,, where d, is a predetermined change in u,. We
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solve this problem by minimizing the mean squared difference between I = p'y and
H=wg (E[(H — I)Z]) under the restriction UTP = 0gd, where 0g is a proportion-
ality constant, d’ = [d; d,...d,] is the vector of predetermined restrictions, U’ is a
matrix (f — 1) x ¢ of 1s and Os, and I' is a covariance matrix of additive genomic
breeding values, ¥ = [y; y»...y:, where r is the number of predetermined restric-
tions and ¢ the number of traits.

9.6.1 The OMPPG-LGSI Parameters

According to the results in Chap. 6, at stages 1 and 2, the MPPG-LGSI vector of
coefficients can be written as

Bp, = B, +6,U; (UT,U,)"'d (9.37)

and

Bp, = Bg, + 60U (UlgrUz)_ld, (9.38)

respectively, where ﬁRl =Kg, B, ﬁRZ =K, B, =Kg,w, Kg = [I — QGI],
-1 -1

Qg = Ul(U’lrlUl) ur, Kg = [I— QGZ], and Qg, = Ug(U’ZFUz) u,r

were described in Egs. (9.29) and (9.30). Also, it can be shown that the proportion-

ality constants for stages 1 (6,) and 2 (6,) are

d(Uru,) U AW d 6 _d(UTU,) U
d(Uru,)'a T d(uru,) d

(9.39)

respectively. By Eqgs. (9.37) to (9.39), the MPPG-LGSI for stages 1 and 2 can be
written as Ip, = B}lyl and Ip, = B}zy respectively, where y; and y are vectors of
genomic breeding values, which can be estimated using GEBVs (see Chap. 5 for
details).

For stages 1 and 2, the MPPG-LGSI accuracies (py;, and py,,), expected genetic
gains per trait (Ep, and Ep,), and selection responses (Rp, and Rp,) can be written as

B, T1Bp BrT*Bp,
PHI, = 7&7’Cwl and py, = 7\&;’C*w s (9.40)
Al r*
Ep, = ki L and Ep, = ky Pr, (9.41)

\/Br T1Bp, Bp, T Bp,

and
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Rp, = ki\/BpT1Bp, and Rp, =ka\/Bp,T*Bp,. (9.42)

respectively. The total MPPG-LGSI expected genetic gain per trait and selection
response at both stages are equal to Ep, + Ep,and Rp, + Rp,. To simplify the
notation, in Egs. (9.41) and (9.42), we omitted the intervals between stages or
selection cycles (Lg). Matrices T'* and C* are matrices I' and C adjusted for
previous selection on Ip, according to Egs. (9.34) and (9.35) respectively in the
MPPG-LGSI context.

The correlation between Ip, = B, ¥, and Ip, = P, ¥ can be written as

ﬁlplAlﬁpz
P12 = :
\/ﬁélrlﬁl’l \/ﬁlgzrﬁpz

In Eq. (9.43), matrix I" was not adjusted for previous selection on /p, = ﬁ}ly,.

(9.43)

9.6.2 Numerical Examples

To illustrate the MPPG-LGSI theory, we use the simulated data described in
Sect. 9.4.3. Suppose that we select two traits at stages 1 and 2; then, at stage 1,

P 16.26 —6.51 and A — 16.26 —6.51 5.60 229
T -651 579 'T-651 579 -233 —1.62
estimated covariance matrices of I'y and A respectively. We restricted trait 2 with
d = — 2; then, at the stage 1 matrix U} =[0 1] and at the stage 2 matrix
~ ~ -1 ~ o~ ~ 1 ~
U,=[0 1 0 0]. In addition, Q;, =U, (UT';U;) U|Ty, Qg,=U,(UL'U,) UL,
ﬁgl = [I—QGI],and IA(G2 = [I—QGZ] are the estimates of matrix projectors associated
with stages 1 and 2 (Eqs. 9.37 and 9.38 for details).

In Sect. 9.4.3, we showed that the estimated MRLGSI vector of coefficients
for stage 1 was B = BKf; =[1.386 1.550]. Thus, by Eq. (9.37), to obtain
-~ -~ ~ EN - ~ =~ -1
Bp, = Bg, +6,U; (U T U) ld, we only need to obtain 8; and U, (U\T',U;) d,

~ —1 —~
d/(Ullr|U1) U’1A1W

d(UT,U,) d

d= { 0 ] and 0, = 8.125; therefore, ﬁ'pl =[1.39 —1.25] is the MPPG-LGSI

are the

whered = — 2 and/e\l =

. It can be shown that U; (U'lflUl)_]

—0.345
vector of coefficients at stage 1.
Suppose that the total proportion retained for the two stages was 20%; then,
ky = 0.744 is an approximate selection intensity associated with MPPG-LGSI and
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the estimated MPPG-LGSI accuracy, selection response, and expected genetic gain

g, T'1p ~ ==

Prlibr o, Rp, = ki\/p pT1Bp =5.90 and
wCw

=[2.88 —1.53 1.00 0.49] respectively.

at stage 1 were pp; =

Allﬁpl

\/Bp T1Bp,
~ —1 ~
It can be shown that at stage 2, d’ (U’lflUl) 1=[0 -0345 0 0],6, =
8.125 and §'p, =W =[1 —1 1 1]. Thus, the estimated MPPG-LGSI accu-
racy, selection response, and expected genetic gain at this stage were
R T R = ~ r*
o, =\~ — 0.64, Rp, = ks VWI*w = 4.10, and B p, = ky——r— =
wC*w vV wI*w
[1.74 —0.92 0.85 0.58] respectively, where k, = 0.721. The estimated total
MPPG-LGSI selection response and expected genetic gain for both stages were Rp,
+Rp, =9.99andE}, +Ej, =[4.62 —2.45 1.85 1.07]respectively. Note that
the total expected genetic gain for trait 2 was —2.45, which is similar tod = — 2, the
PPG imposed by the breeder. Finally, to simplify the notation, we omitted the
intervals between stages or selection cycles (Lg) in the estimated MPPG-LPSI
selection response and expected genetic gain for both stages.

E), =k
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credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
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