
Chapter 8
Linear Molecular and Genomic Eigen
Selection Index Methods

Abstract The three main linear phenotypic eigen selection index methods are the
eigen selection index method (ESIM), the restricted ESIM (RESIM) and the
predetermined proportional gain ESIM (PPG-ESIM). The ESIM is an unrestricted
index, but the RESIM and PPG-ESIM allow null and predetermined restrictions
respectively to be imposed on the expected genetic gains of some traits, whereas the
rest remain without any restrictions. These indices are based on the canonical
correlation, on the singular value decomposition, and on the linear phenotypic
selection indices theory. We extended the ESIM theory to the molecular-assisted
and genomic selection context to develop a molecular ESIM (MESIM), a genomic
ESIM (GESIM), and a genome-wide ESIM (GW-ESIM). Also, we extend the
RESIM and PPG-ESIM theory to the restricted genomic ESIM (RGESIM), and to
the predetermined proportional gain genomic ESIM (PPG-GESIM) respectively.
The latter five indices use marker and phenotypic information jointly to predict the
net genetic merit of the candidates for selection, but although MESIM uses only
statistically significant markers linked to quantitative trait loci, the GW-ESIM uses
all genome markers and phenotypic information and the GESIM, RGESIM, and
PPG-GESIM use the genomic estimated breeding values and the phenotypic values
to predict the net genetic merit. Using real and simulated data, we validated the
theoretical results of all five indices.

8.1 The Molecular Eigen Selection Index Method

The molecular eigen selection index method (MESIM) is very similar to the linear
molecular selection index (LMSI) described in Chap. 4; thus, it uses the same set of
information to predict the net genetic merit of individual candidates for selection,
and therefore needs the same set of conditions as those of the LMSI. The only
difference between the two indices is how the vector of coefficients is obtained and
the assumption associated with the vector of economic weights. Thus, although the
LMSI obtains the vector of coefficients according to the linear phenotypic selection
index (LPSI) described in Chap. 2 and assumes that the economic weights are known
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and fixed, the MESIM assumes that the economic weights are unknown and fixed
and obtains the vector of coefficients according to the ESIM theory.

8.1.1 The MESIM Parameters

In the MESIM context, the net genetic merit can be written as

H ¼ w0
1gþ w0

2s ¼ w0
1 w0

2

� � g
s

� �
¼ w0a, ð8:1Þ

where g0 ¼ g1 . . . gt½ � is the vector of true breeding values, t is the number of
traits, w0

1 ¼ w1 � � � wt½ � is a vector of unknown economic weights associated
with g, w0

2 ¼ 01 � � � 0t½ � is a null vector associated with the vector of marker
score values s0 ¼ s1 s2 . . . st½ �,w0 ¼ w0

1 w0
2½ � and a0 ¼ g0 s0½ � (Chap. 4 for

details). The MESIM index can be written as

I ¼ β0yyþ β0ss ¼ β0y β0s
� � y

s

� �
¼ β0t, ð8:2Þ

where y0 ¼ y1 � � � yt½ � is the vector of phenotypic values; s0 ¼ s1 s2 . . . st½ �
is the vector of marker scores; β0y and βs are vectors of phenotypic and marker score
weight values respectively, β0 ¼ β0y β0G

� �
and t0 ¼ y0 s0½ �. The objectives of the

MESIM are the same as those of the ESIM (see Chap. 7 for details).
Let Var Hð Þ ¼ w0ΨMw ¼ σ2H be the variance of H, Var Ið Þ ¼ β0TMβ ¼ σ2I the

variance of I, and Cov(H, I ) ¼ w0ΨMβ the covariance between H and I, where

ΨM ¼ Var
g
s

� �
¼ C SM

SM SM

� �
and TM ¼ Var

y
s

� �
¼ P SM

SM SM

� �
are block matri-

ces of size 2t� 2t (t is the number of traits) of covariance matrices where P, SM, and
C are covariance matrices t � t of phenotypic (y), marker score (s), and genetic

breeding (g) values respectively. Let ρHI ¼ w0ΨMβffiffiffiffiffiffiffiffiffiffiffi
w0ΨMw

p ffiffiffiffiffiffiffiffiffiffi
β0TMβ

p and h2I ¼
β0ΨMβ
β0TMβ

be the

correlation between H and I, and the heritability of I respectively; then, the MESIM
selection response can be written as

R ¼ kIσHρHI ð8:3Þ
and

R ¼ kIσIh
2
I , ð8:4Þ

where kI is the standardized selection differential (or selection intensity) associated
with MESIM; σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w0ΨMw
p

and σI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TMβ

p
are the standard deviations of the
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variance of H and I respectively. It is assumed that kI is fixed, and that matrices TM

and ΨM are known; therefore, we can maximize R by maximizing ρHI (Eq. 8.3)
with respect to vectors w and β, or by maximizing h2I (Eq. 8.4) only with respect to
vector β.

Maximizing h2I only with respect to β is simpler than maximizing ρHI with respect
to w and β; however, in the latter case the maximization process of ρHI gives more
information associated with MESIM parameters than when h2I is maximized only
with respect to β (see Chap. 7, Eq. 7.13, for details). In this subsection, we maximize
ρHI with respect to vectorsw and β similar to the ESIM in Chap. 7, Sect. 7.1.1. Thus,
we omit the steps and details of the maximization process of ρHI.

We maximize ρHI ¼ w0ΨMβffiffiffiffiffiffiffiffiffiffiffi
w0ΨMw

p ffiffiffiffiffiffiffiffiffiffi
β0TMβ

p with respect to vectors w and β under the

restrictions σ2H ¼ w0Ψw, σ2I ¼ β0Tβ, and 0 < σ2H , σ
2
I <1, where σ2H is the variance of

H ¼ w0a and σ2I is the variance of I ¼ β0t. Thus, it is necessary to maximize the
function

f β;w; μ;ϕð Þ ¼ w0Ψβ� 0:5μ β0Tβ� σ2I
� �� 0:5ϕ w0Ψw� σ2H

� � ð8:5Þ
with respect to β, w, μ, and ϕ, where μ and ϕ are Lagrange multipliers. The
derivatives of Eq. (8.5) with respect to β, w, μ, and ϕ are:

Ψw� μTβ ¼ 0, ð8:6Þ
Ψβ� ϕΨw ¼ 0, ð8:7Þ

β0Tβ ¼ σ2I and w0Ψw ¼ σ2H , ð8:8Þ
respectively, where Eq. (8.8) denotes the restrictions imposed for maximizing ρHI. It
can be shown (see Chap. 7) that vector w can be obtained as

wM ¼ Ψ�1
M TMβ ð8:9Þ

and the net genetic merit in the MESIM context can be written as HM ¼ w0
Ma; thus,

the correlation betweenHM ¼ w0
Maand I isρHMI ¼

ffiffiffiffiffiffiffi
β0Tβ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TΨ�1Tβ

p and the MESIM vector

of coefficients (β) that maximizes ρHMI can be obtained from equation

T�1Ψ� λ2MI2t
� �

βM ¼ 0, ð8:10Þ
where I2t is an identity matrix of size 2t� 2t (t is the number of traits), and λ2M and βM
are the eigenvalue and eigenvector of matrix T�1

M ΨM . The words eigenvalue and
eigenvector are derived from the German word eigen, which means owned by or
peculiar to. Eigenvalues and eigenvectors are sometimes called characteristic values
and characteristic vectors, proper values and proper vectors, or latent values and
latent vectors (Meyer 2000). The square root of λ2M (λM) is the canonical correlation
betweenHM ¼ w0

Ma and IM ¼ β0Mt, and the optimized MESIM index can be written
as IM ¼ β0Mt. Using a similar procedure to that described in Chap. 7 (Eq. 7.17), it can
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be show that vector βM can be transformed into βC ¼ FβM, where F is a diagonal
matrix with values equal to any real number, except zero values.

The maximized correlation between HM ¼ w0
Ma and IM ¼ β0Mt, or MESIM

accuracy, is

ρHMIM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0MTMβM

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0MTMΨ�1

M TMβM
q ¼ σIM

σHM

, ð8:11Þ

where σIM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0MTMβM

q
is the standard deviation of IM ¼ β0Mt, and σHM ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0MTMΨ�1
M TMβM

q
is the standard deviation of HM ¼ w0

Ma.

The maximized selection response and expected genetic gain per trait of MESIM
are

RM ¼ kI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0M1

TMβM1

q
ð8:12Þ

and

EM ¼ kI
ΨMβM1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0M1

TMβM1

q , ð8:13Þ

respectively, where βM1
is the first eigenvector of matrix T�1

M ΨM . If vector βM1
is

multiplied by matrix F, we obtain βC1
¼ FβM1

; in this case, we can replace βM1
with

βC1
¼ FβM1

in Eqs. (8.12) and (8.13), and the optimized MESIM index should be
written as IM ¼ β0C1

y.

8.1.2 Estimating MESIM Parameters

We estimate the MESIM parameters using the same procedure described in Chap. 7
(Sect. 7.1.4) to estimate the ESIM parameters. Let bC, bP, and bSM be the estimates of
the genotypic, phenotypic, and marker scores covariance matrices,bTM ¼ bP bSMbSM

bSM

� �
and bΨM ¼ bC bSMbSM

bSM

� �
the estimated block matrices (Chap. 4)

and cW ¼ bT�1
M

bΨM; then, to find the estimators bβM1
and bλ2M1

of the first eigenvector
(βM1

) and the first eigenvalue (λ2M1
) respectively, we need to solve the equation�cWcW0 � bμjI

�bβM j
¼ 0, ð8:14Þ

where bμj ¼ bλ4M j
, j¼ 1, 2, . . ., 2t. For additional details, see Eqs. (7.22) and (7.23),

and Sect. 7.1.5 of Chap. 7. The result of Equation (8.14) allow the MESIM index
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(IM ¼ β0M1
t) to be estimated as bIM ¼ bβ0M1

t, whereas the estimator of the maxi-
mized ESIM selection response and its expected genetic gain per trait can be
denoted by

bRM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0M1
bTM

bβM1

q
and bEM ¼ kI

bΨM
bβM1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0M1
bTM

bβM1

q , ð8:15Þ

respectively.

8.1.3 Numerical Examples

To validate the MESIM theoretical results, we use a real maize (Zea mays) F2
population with 247 genotypes (each with two repetitions), 195 molecular markers,
and two traits—plant height (PHT, cm) and ear height (EHT, cm)—evaluated in one
environment. We coded the marker homozygous loci for the allele from the first
parental line by 1, whereas the marker homozygous loci for the allele from the
second parental line was coded by �1 and the marker heterozygous loci by 0. The
estimated phenotypic, genetic, and marker scores covariance matrices werebP ¼ 191:81 106:89

106:89 167:93

� �
, bC ¼ 83:00 57:44

57:44 59:80

� �
, and bSM ¼ 15:750 0:983

0:983 28:083

� �
respectively, and the vector of economic weights was a0 ¼ w0 00½ �, where w0 ¼
�1 �1½ � and 00 ¼ 0 0½ �. Details of how to estimate the marker scores and their
variance were given in Chap. 4.

We compare LMSI versus MESIM efficiency. The estimated LMSI vector of
coefficients was bβ0 ¼ a0 bΨM

bT�1
M ¼ �0:59 �0:18 �0:41 �0:82½ �. Using a

10% selection intensity (kI ¼ 1.755), the estimated LMSI selection response and

the expected genetic gain per trait were bR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0 bTM
bβq
¼ 20:41 and

bE0 ¼ kI
bβ0 bΨMffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0 bTM

bβq ¼ �10:09 �10:31 �2:53 �4:39½ � respectively, whereas the esti-

mated LMSI accuracy was bρ
HbI ¼ bσ IbσH

¼ 0:72.

Vector bβ0
M1

¼ 0:089 �0:061 �0:536 0:837½ � was the original estimated

MESIM vector of coefficients. Using matrix F ¼
�0:1 0 0 0
0 �0:1 0 0
0 0 0:75 0
0 0 0 �0:75

2664
3775,

vector bβ0
M1

was transformed as bβ0
C1

¼ bβ0
M1
F ¼ �0:009 0:006 �0:402 0:628½ �

and then the estimated MESIM index was bIM ¼ �0:009PHTþ 0:006EHT�
0:402SPHT þ 0:628SEHT, where SPHT and SEHT denote the marker scores
associated with PHT and EHT respectively. The estimated MESIM expected
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genetic gain, selection response, and accuracy were bE0
M ¼ kI

bβ0 C1bΨMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0C1bTM
bβC1

q ¼

�3:438 �8:516 �3:319 �8:372½ �, bRM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0C1
bTM

bβC1

q
¼ 6:573 and

bρ
HMbIM ¼ bσ IMbσHM

¼ 0:99 respectively.

The inner product of the estimated LMSI and MESIM vector of coefficients were
1.221 and 0.556 respectively, whence the estimated LMSI selection response (20.41)
divided by 1.221 was 16.716, and the estimated MESIM selection response (6.573)
divided by 0.556 was 11.821. That is, the estimated LMSI selection response was
higher than the estimated MESIM selection response for this data set. Similar results
were found when we compared the estimated LMSI expected genetic gain per trait
with the estimated MESIM expected genetic gain per trait. Finally, Fig. 8.1 presents
the frequency distribution of the 247 estimated MESIM values for the real data set
described earlier, which approaches normal distribution, as we would expect.

Now with a selection intensity of 10% (kI ¼ 1.755), we compare the LMSI and
MESIM efficiency using the simulated data set described in Sect. 2.8.1 of Chap. 2 for
four phenotypic selection cycles, each with four traits (T1, T2, T3 and T4), 500 geno-
types, and four replicates of each genotype. The economic weights for T1, T2, T3, and
T4 were 1, �1, 1, and 1 respectively. For this data set, we did not use the linear
transformation bβC1

¼ FbβM1
.

The estimated selection responses of the linear marker, combined genomic and
genome-wide selection indices (LMSI, CLGSI, and GW-LMSI respectively; see

Fig. 8.1 Frequency distribution of 247 estimated molecular eigen selection index method
(MESIM) values for one selection cycle in an environment for a real maize (Zea mays) F2
population with 195 molecular markers and two traits, plant height (PHT, cm) and ear height
(EHT, cm), and their associated marker scores SPHT and SEHT respectively
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Chaps. 4 and 5 for details) for four simulated selection cycles when their vectors of
coefficients were normalized, are presented in Table 8.1. Also, in this table the
selection responses of the estimated linear molecular, genomic, and genome-wide
eigen selection index methods (MESIM, GESIM, and GW-ESIM respectively;
details in Sect. 8.2) are shown for four simulated selection cycles. The average of
the estimated LMSI selection response was 2.22, whereas the average of the
estimated MESIM selection response was 1.69. The estimated LMSI selection
response was higher than that of the MESIM.

Table 8.2 presents the estimated LMSI and MESIM expected genetic gains for
four traits (T1, T2, T3, and T4) and their associated marker scores (S1, S2, S3, and
S4) for four simulated selection cycles. The averages of the estimated LMSI

Table 8.1 Estimated linear molecular, combined genomic, and genome-wide selection index
(LMSI, CLGSI and GW-LMSI respectively) selection responses when their vectors of coefficients
are normalized for four simulated selection cycles

Cycle

Estimated selection response

LMSI CLGSI GW-LMSI MESIM GESIM GW-ESIM

1 0.02 1.24 0.93 0.50 3.95 0.73

2 4.94 0.80 0.80 1.21 3.07 1.06

3 3.69 0.34 0.93 3.91 2.05 0.77

4 0.23 0.35 0.83 1.15 1.90 1.14

Average 2.22 0.68 0.87 1.69 2.74 0.93

Estimated linear molecular, genomic, and genome-wide eigen selection index method (MESIM,
GESIM, and GW-ESIM respectively) selection responses for four simulated selection cycles. The
selection intensity was 10% (kI ¼ 1.755)

Table 8.2 Estimated linear molecular selection index (LMSI) and estimated linear molecular eigen
selection index method (MESIM) expected genetic gains for four traits (T1, T2, T3, and T4) and
their associated marker scores (S1, S2, S3, and S4) for four simulated selection cycles. The selection
intensity was 10% (kI ¼ 1.755)

Cycle

Estimated LMSI expected genetic gain

Traits Marker scores

T1 T2 T3 T4 S1 S2 S3 S4

1 24.48 �0.01 0.74 �0.87 4.18 �1.14 0.72 0.79

2 7.14 �3.39 2.62 1.55 3.78 �2.30 1.02 1.37

3 9.17 �3.04 1.87 1.21 6.22 �1.51 1.02 0.26

4 10.16 �1.95 1.17 1.88 8.63 �3.83 0.09 0.13

Average 12.74 �2.10 1.60 0.94 5.70 �2.19 0.71 0.64

Cycle

Estimated MESIM expected genetic gain

Traits Marker scores

T1 T2 T3 T4 S1 S2 S3 S4

1 27.48 2.60 �1.03 �2.64 3.85 0.00 �0.04 �0.43

2 8.82 �4.75 0.37 2.11 14.06 4.09 0.38 �2.76

3 9.83 1.74 0.72 0.37 8.03 1.76 0.31 0.34

4 11.47 �1.13 �1.64 1.53 8.66 �3.96 �1.47 0.04

Average 14.40 �0.38 �0.39 0.34 8.65 0.47 �0.21 �0.70
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expected genetic gains for the four traits and their associated marker scores were
12.74, �2.10, 1.60, 0.94, 5.70, �2.19, 0.71, and 0.64 respectively, whereas the
averages of the estimated MESIM expected genetic gains for the four traits and their
associated marker scores were 14.40, �0.38, �0.39, 0.34, 8.65, 0.47, �0.21, and
�0.70 respectively. Except for trait T1 and its associated molecular scores, the
estimated LMSI expected genetic gains per trait were higher than the estimated
MESIM expected genetic gains. Thus, for this data set, LMSI efficiency was greater
than MESIM efficiency.

Chapter 11 presents RIndSel, a user-friendly graphical unit interface in JAVA
that is useful for estimating the LMSI and ESIM parameters and selecting parents for
the next selection cycle.

8.2 The Linear Genomic Eigen Selection Index Method

The linear genomic eigen selection index method (GESIM) is based on the standard
CLGSI described in Chap. 5, and uses genomic estimated breeding values (GEBVs)
and phenotypic values jointly to predict the net genetic merit. Thus, conditions for
constructing a valid GESIM are the same as those for constructing the CLGSI. Also,
the MESIM theory described in Sect. 8.1 is directly applied to the GESIM and only
minor changes are necessary in GESIM theory. For example, instead of marker
scores, the GESIM uses GEBVs to predict the net genetic merit; thus, the details of
the estimation process are the same as for the MESIM.

8.2.1 The GESIM Parameters

In the GESIM context, the net genetic merit can be written as

H ¼ w0
1gþ w0

2γ ¼ w0
1 w0

2½ � g
γ

� �
¼ w0α, ð8:16Þ

where g0 ¼ g1 . . . gt½ � is the vector of true breeding values, t is the number of
traits, w0

1 ¼ w1 � � � wt½ � is a vector of unknown economic weights associated
with g, w0

2 ¼ 01 � � � 0t½ � is a null vector associated with the vector of genomic
breeding values γ0 ¼ γ1 γ2 . . . γt½ �, w0 ¼ w0

1 w0
2½ �, and α0 ¼ g0 γ0½ �. The

estimator of γ is the GEBV (see Chap. 5 for additional details). The GESIM index
can be written as

I ¼ β0yyþ β0γγ ¼ β0y β0γ
� � y

γ

� �
¼ β0f , ð8:17Þ
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where y0 ¼ y1 � � � yt½ � is the vector of phenotypic values;β0y and βγ are vectors of
weights of phenotypic and genomic breeding values weights respectively;
β0 ¼ β0y β0γ

� �
and f 0 ¼ y0 γ0½ �.

Let Var Hð Þ ¼ w0Aw ¼ σ2H be the variance of H ¼ w0α, Var Ið Þ ¼ β0Φβ ¼ σ2I the
variance of I ¼ β0f, and Cov(H, I ) ¼ w0Aβ ¼ σHI the covariance between H and I,

where A ¼ Var
g
γ

� �
¼ C Γ

Γ Γ

� �
and Φ ¼ Var

y
γ

� �
¼ P Γ

Γ Γ

� �
are block matrices

2t � 2t (t is the number of traits) of covariance matrices and P, Γ, and C are
covariance matrices of phenotypic (y), genomic (γ), and genetic (g) values respec-
tively. Then, ρHI ¼ w0Aβffiffiffiffiffiffiffiffiffi

w0Aw
p ffiffiffiffiffiffiffiffi

β0Φβ
p is the correlation between H ¼ w0α and I ¼ β0f and

the GESIM selection response can be written as

R ¼ kIσHρHI , ð8:18Þ
where kI is the standardized selection differential (or selection intensity) associated
with the GESIM and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Aw
p

is the standard deviation of the variance of H. It
is assumed that kI is fixed, and that matrices Φ and A are known; then, we can
maximize R by maximizing ρHI with respect to vectorsw and β under the restrictions
σ2H ¼ w0Aw, σ2I ¼ β0Φβ, and 0 < σ2H , σ

2
I < 1; similar to the MESIM.

It can be shown that the vector w in the GESIM context is

wG ¼ A�1Φβ ð8:19Þ
and that the net genetic merit can be written asHG ¼ w0

Gα. The correlation between
HG ¼ w0

Gα and I ¼ β0f is ρHGI ¼
ffiffiffiffiffiffiffiffi
β0Φβ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0ΦA�1Φβ

p and the GESIM index vector of

coefficients that maximizes ρHGI can be obtained from the equation

Φ�1A� λ2GI2t
� �

βG ¼ 0, ð8:20Þ
where I2t is an identity matrix of size 2t� 2t (t is the number of traits); the optimized
GESIM index can be written as IG ¼ β0Gf . By Eqs. (8.19) and (8.20), GESIM
accuracy can be written as

ρHGIG ¼ σIG
σHG

, ð8:21Þ

where σIG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0GΦβG

q
is the standard deviation of IG ¼ β0Gf , and σHG ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0GΦA�1ΦβG
q

is the standard deviation of HG ¼ w0
Gα. In Eq. (8.20), λ2G ¼

ρ2HGIG
is the square of the canonical correlation between HG and IG, and βG is the

canonical vector associated with λ2G ¼ ρ2HGIG
.
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The maximized GESIM selection response and expected genetic gain per trait are

RG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0GΦβG

q
ð8:22Þ

and

EG ¼ kI
AβGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0GΦβG

p , ð8:23Þ

respectively, where βG is the first eigenvector of matrix Φ�1A. Vector βG can be
transformed as βCG ¼ FβG, where F is a diagonal matrix defined earlier.

8.2.2 Numerical Examples

To compare the CLGSI versus GESIM theoretical results, we use a real maize
(Zea mays) F2 population with 244 genotypes (each with two repetitions), 233
molecular markers, and three traits—grain yield (GY, ton ha�1), ear height (EHT,
cm), and plant height (PHT, cm). We estimated matrices P and C using Eqs. (2.22)
to (2.24) described in Chap. 2, whence the estimated matrices were

bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

24 35 and bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35. In a similar

manner, we estimated matrix Γ by applying Eqs. (5.21) to (5.23) described in
Chap. 5 using phenotypic and marker information jointly; the estimated matrix

was bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

24 35. The selection intensity for making a selection

cycle was 10% (kI ¼ 1.755) and the vector of economic weights was
w0 ¼ 5 �0:1 �0:1 0 0 0½ �. To obtain the estimated vector of coefficient
of CLGSI (bβ ¼ bΦ�1bAw) and GESIM (Eq. 8.20), it is necessary to construct matricesbA ¼ bC bΓbΓ bΓ

� �
and bΦ ¼ bP bΓbΓ bΓ

� �
.

The estimated CLGSI vector of coefficients for the traits GY, EHT, and
PHT and their associated GEBVs (GEBVGY, GEBVEHT, and GEBVPHT respec-
tively) was bβ0 ¼ 0:08 �0:02 �0:01 4:92 �0:08 �0:09½ �, whereas the
estimated CLGSI selection response, accuracy, and expected genetic gain per

trait were bR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffibβ0 bΦbβq
¼ 1:54, bρHI ¼ bσ IbσH

¼ 0:814, and bE0 ¼ kI
bβ0bAffiffiffiffiffiffiffiffiffiffiffiffibβ0 bΦbβq ¼

0:36 1:04 1:70 0:36 1:53 2:38½ � respectively. Finally,bI ¼ 0:08GY� 0:02
EHT� 0:01PHTþ 4:92GEBVGY � 0:08GEBVEHT �0:09GEBVPHT was the esti-
mated CLGSI.
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The estimated GESIM vector of coefficients, selection response, accuracy,
and expected genetic gain per trait were bβ0

G1
¼

�0:207 0:029 0:041 0:820 0:337 0:411½ �, bRG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
G1

bΦbβG1

q
¼ 6:288,

bρbHGbI G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
G1

bΦbβG1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
G1

bΦbA�1 bΦbβG1

q ¼ 0:9056, and bE0
G ¼ k1

bβ0
G1
bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0

G1
bΦbβG1

q ¼

0:369 5:528 9:186 0:370 5:250 8:702½ � respectively.
Fig. 8.2 presents the frequency distribution of the 244 estimated GESIM index

values for one (Fig. 8.2a) and three traits (Fig. 8.2b) using the real data set described
earlier. The frequency distribution of the estimated GESIM index values approaches
the normal distribution for both indices.

Now, we compare the estimated CLGSI and GESIM selection response and
expected genetic gain per trait using the simulated data set described in Sect. 2.8.1
of Chap. 2 for four phenotypic selection cycles, each with four traits (T1, T2, T3 and
T4), 500 genotypes, and four replicates per genotype. The economic weights of T1,
T2, T3, and T4 were 1, �1, 1, and 1 respectively and the selection intensity for both

Fig. 8.2 Frequency distribution of the 244 estimated genomic eigen selection index method
(GESIM) values for the one-trait case (a) and for the three-trait case (b) for one selection cycle in
an environment for a real maize (Zea mays) F2 population with 233 molecular markers. Note that
the frequency distribution of the estimated GESIM index values approaches normal distribution for
both indices
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indices was 10% (kI ¼ 1.755). For this data set, matrix F was an identity matrix of
size 8 � 8 in all four selection cycles.

For this data set, the averages of the estimated CLGSI and GESIM selection
responses were 0.68 and 2.74 (Table 8.1) respectively. The estimated CLGSI
selection response was lower than the estimated GESIM selection response.
Table 8.3 presents the estimated CLGSI and GESIM expected genetic gain for
four traits (T1, T2, T3, and T4) and their associated genomic estimated breeding
values (GEBV1, GEBV2, GEBV3, and GEBV4) for four simulated selection cycles.
The averages of the estimated CLGSI expected genetic gains for the four traits and
their associated GEBVs were 7.45, �3.35, 2.68, 1.09, 7.13, �3.68, 3.13, and 2.69
respectively, whereas the averages of the estimated GESIM expected genetic gains
for the four traits and their associated GEBVs were 8.18, �3.08, 2.27, 0.71, 7.46,
�3.53, 2.86, and 2.39 respectively. The estimated CLGSI and GESIM expected
genetic gains per trait were very similar.

8.3 The Genome-Wide Linear Eigen Selection Index
Method

The MESIM requires regressing phenotypic values on marker coded values to
predict the marker score values for each individual candidate for selection, and
then combining the marker scores with phenotypic information using the MESIM

Table 8.3 Estimated combined linear genomic selection index (CLGSI) and estimated GESIM
expected genetic gains for four traits (T1, T2, T3, and T4) and their associated genomic estimated
breeding values (GEBV1, GEBV2, GEBV3, and GEBV4) for four simulated selection cycles. The
selection intensity was 10% (kI ¼ 1.755)

Cycle

Estimated CLGSI expected genetic gain

Traits Genomic estimated breeding value

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 7.46 �3.69 3.26 1.60 7.28 �4.38 3.72 3.29

2 7.08 �3.45 2.91 1.17 7.08 �3.63 3.66 2.67

3 7.81 �3.51 2.06 0.76 7.30 �3.92 2.35 2.40

4 7.46 �2.76 2.48 0.81 6.84 �2.79 2.79 2.40

Average 7.45 �3.35 2.68 1.09 7.13 �3.68 3.13 2.69

Cycle

Estimated GESIM expected genetic gain

Traits Genomic estimated breeding value

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 8.28 �3.51 2.93 0.92 7.77 �4.27 3.52 2.64

2 7.89 �3.09 2.42 0.82 7.40 �3.41 3.29 2.38

3 8.47 �3.26 1.69 0.46 7.55 �3.78 2.11 2.16

4 8.08 �2.46 2.04 0.66 7.15 �2.67 2.53 2.39

Average 8.18 �3.08 2.27 0.71 7.46 �3.53 2.86 2.39
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to obtain a final prediction of the net genetic merit. In addition, the GESIM requires
fitting of a statistical model to estimate all available marker effects in the training
population; these estimates are then used to obtain GEBVs, which are predictors of
breeding values. Crossa and Cerón-Rojas (2011) extended the ESIM theory to a
genome-wide linear molecular ESIM (GW-ESIM) similar to the GW-LMSI
described in Chap. 4. The GW-LMSI and GW-ESIM are very similar and only
minor changes are necessary in GW-ESIM; for example, instead of estimating the
GW-LMSI vector of coefficients according to the LPSI method (Chap. 2), the
GW-ESIM vector of coefficients is estimated according to the singular value decom-
position (SVD) described in Chap. 7.

8.3.1 The GW-ESIM Parameters

In the GW-ESIM context, the net genetic merit can be written as

H ¼ w0
1gþ w0

2m ¼ w0
1 w0

2½ � g
m

� �
¼ w0x, ð8:24Þ

where g0 ¼ g1 . . . gt½ � is the vector of true breeding values, t is the number of
traits, w0

1 ¼ w1 � � � wt½ � is the vector of unknown economic weights associated
with the breeding values; w0

2 ¼ 01 � � � 0N½ � is a null vector associated with the
vector of marker code values m0 ¼ m1 � � � mN½ �, where mj ( j ¼ 1, 2, . . .,
N ¼ number of markers) is the jth marker in the training population;
w0 ¼ w0

1 w0
2½ � and x ¼ g0 m0½ �. The GW-ESIM (I ) index combines the pheno-

typic value and all the marker information of individuals to predict Eq. (8.24) values
in each selection cycle and can be written as

I ¼ β0yyþ β0mm ¼ β0y β0m
� � y

m

� �
¼ β0q, ð8:25Þ

where β0y and βm are vectors of phenotypic and marker weights respectively;
y0 ¼ y1 � � � yt½ � is the vector of phenotypic values; m was defined in
Eq. (8.24); β0 ¼ β0y β0m

� �
and q0 ¼ y0 m0½ �.

Let σ2I ¼ β0Qβ and σ2H ¼ w0Zw be the variance of I ¼ β0q and H ¼ w0z respec-

tively, and σHI ¼ w0Zβ the covariance between I and H, where Q ¼ Var
y
m

� �
¼

P G0
M

GM M

� �
and X ¼ Var

g
m

� �
¼ C G0

M
GM M

� �
are block matrices of size

(t + N) � (t + N) (t is the number of traits and N is the number of markers) where
P ¼ Var(y), M ¼ Var(m), C ¼ Var(g), and GM ¼ cov (y,m) ¼ cov (g,m) are
covariance matrices of phenotypic (y), coded marker (m), and genetic (g) values
respectively, whereas GM is the covariance matrix between y and m, and between
g andm (for details see Chap. 4); w and β were defined earlier. Note that although the
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size of matrices P andC are t� t, the sizes of matricesM andGM are N� N and N� t
respectively. Thus, if the number of markers is very high, the size of matrices M and
GM could also be very high.

In Chap. 4 we described matrix M as

M ¼
1 1� 2θ11ð Þ . . . 1� 2θ1Nð Þ

1� 2θ21ð Þ 1 . . . 1� 2θ2Nð Þ
⋮ ⋮ ⋱ ⋮

1� 2θN1ð Þ 1� 2θN2ð Þ . . . 1

2664
3775, ð8:26Þ

where (1 � 2θij) and θij (i, j¼ 1, 2, . . ., N¼ number of markers) are the covariance
(or correlation) and the recombination frequency between the ith and jth marker
respectively, whereas matrix GM can be written as

GM ¼
1� 2r11ð Þα11 1� 2r11ð Þα12 . . . 1� 2r1Nð Þα1NQ

1� 2r21ð Þα21 1� 2r22ð Þα22 . . . 1� 2r2Nð Þα2NQ

⋮ ⋮ ⋱ ⋮
1� 2rt1ð Þαt1 1� 2rN2ð Þαt2 . . . 1� 2rNNð ÞαtNQ

2664
3775, ð8:27Þ

where (1 � 2rik)αqk (i¼ 1, 2, . . ., N, k¼ 1, 2, . . ., NQ ¼ number of quantitative trait
loci (QTL), q¼ 1, 2, . . ., t) is the covariance between the qth trait and the ith marker;
rik is the recombination frequency between the ith and kth QTL, and αqk is the effect
of the kth QTL over the qth trait.

Let ρHI ¼ w0Xβffiffiffiffiffiffiffiffiffi
w0Xw

p ffiffiffiffiffiffiffiffi
β0Qβ

p be the correlation between I ¼ β0q and H ¼ w0x; then, the

GW-ESIM selection response can be written as

R ¼ kIσHρHI , ð8:28Þ
where kI is the standardized selection differential (or selection intensity) associated
with GW-ESIM and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Xw
p

is the standard deviation of the variance of H.
Assuming that kI is fixed, and that matricesQ andX are known, we can maximize

R (Eq. 8.28) by maximizing ρHI with respect to vectors w0 and β under the
restrictions σ2H ¼ w0Xw, σ2I ¼ β0Qβ, and 0 < σ2H ,σ

2
I < 1, similar to the MESIM

and GESIM. It can be shown that vector w can be written as

wW ¼ X�1Qβ ð8:29Þ
and that HW ¼ w0

Wx is the net genetic merit in the GW-ESIM context. The

correlation between HW ¼ w0
Wx and I ¼ β0q is ρHWI ¼

ffiffiffiffiffiffiffiffi
β0Qβ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0QX�1Qβ

p and the

GW-ESIM vector of coefficients (β) that maximizes ρHWI can be obtained from
equation

Q�1Z� λ2WI tþNð Þ
� �

βW ¼ 0, ð8:30Þ
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where I(t + N ) is an identity matrix of size (t + N ) � (t + N ) and IW ¼ β0Wq is the
optimized GW-ESIM. The accuracy of the GW-ESIM can be written as

ρHWIW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQβW

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQX�1QβW

q ¼ σIW
σHW

, ð8:31Þ

where σIW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQβW

q
is the standard deviation of IW ¼ β0Wq, and σHW ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0WQX�1QβW
q

is the standard deviation of HW ¼ w0
Wx. In Eq. (8.30) λ2W ¼

ρ2HWIW
is the square of the canonical correlation between HW and IW.

The maximized GW-ESIM selection response and expected genetic gain per trait
are

RW ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQβW

q
ð8:32Þ

and

EW ¼ k1
XβWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WQβW

p , ð8:33Þ

respectively, where βW is the first eigenvector of Eq. (8.30).

8.3.2 Estimating GW-ESIM Parameters

In Chap. 2, Eqs. (2.22) to (2.24), we described the restricted maximum likelihood
methods to estimate matrices C and P, which can be denoted by bC and bP. In
Chap. 4, we described how to estimate matrices M and GM, which can be denoted
by bM and bGM . With these estimates, we constructed the block estimated matrices asbQ ¼ bP bG0

MbGM
bM

" #
and bX ¼ bC bG0

MbGM
bM

" #
, whence we obtained the equation

�bQ�bX � bλ2WjI
�bβWj ¼ 0, ð8:34Þ

j ¼ 1, 2, . . ., (t + N ), where (t + N ) is the number of traits and markers in
the GW-ESIM index. Similar to the MESIM, we obtained estimators bβW1

and bλ2W1

of the first eigenvector βW1
and the first eigenvalue bλ2W1

respectively, from equation�bEbE0 � bμjI
�bβW j

¼ 0, ð8:35Þ
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where bE ¼ bQ�bX and bμj ¼ bλ4W j
. These results allow the GW-ESIM index selection

response and its expected genetic gain per trait to be estimated as bIW ¼ bβ0W1
bq,

bRW ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0W1
bQβ0W1

q
and bEw ¼ kI

bX bβ0W1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0W1
bQβ0W1

q respectively, whereas the estimator

of GW-ESIM accuracy is bλW1 .

8.3.3 Numerical Examples

We compare the estimated GW-LMSI and GW-ESIM selection responses using the
simulated data set described in Sect. 2.8.1 of Chap. 2, with a selection intensity of
10% (kI ¼ 1.755). Table 8.1 presents the estimated GW-LMSI selection response for
four simulated selection cycles when their vectors of coefficients are normalized,
whence it can be seen that the average estimated GW-LMSI selection response was
0.87. Table 8.1 also presents the estimated GW-ESIM selection response for four
simulated selection cycles; the average of the estimated GW-ESIM selection
responses was 0.93. Thus, for this data set, the estimated GW-LMSI and selection
responses were very similar.

8.4 The Restricted Linear Genomic Eigen Selection Index
Method

The restricted linear genomic eigen selection index method (RGESIM) is based on
the restricted linear phenotypic ESIM (RESIM) theory described in Chap. 7. In the
RESIM, the breeder’s objective is to improve only (t � r) of t (r < t) traits, leaving
r of them fixed. The same is true for RGESIM, but in this case, we should impose 2r
restrictions, i.e., we need to fix r traits and their associated r GEBV to obtain results
similar to those obtained with the RESIM (see Chap. 7 for details). This is the main
difference between the RGESIM and the RESIM.

It can be shown that Cov(I,α)¼ Aβ is the covariance between the breeding value
vector (α0 ¼ [g0 γ0]) and the GESIM index (I ¼ β0f). In the RGESIM, we want
some covariances between the linear combinations of α (U0

Gα) and I¼ β0f to be zero,
i.e., Cov IG;U0

Gα
� � ¼ U0

GAβ ¼ 0, where U0
G is a matrix 2(t � 1) � 2t of 1s and 0s

(1 indicates that the trait and its associated GEBV are restricted, and 0 indicates that
the trait and its GEBV have no restrictions). We can solve this problem by maxi-
mizing β0Aβffiffiffiffiffiffiffiffi

β0Φβ
p with respect to vector β under the restriction U0

GAβ ¼ 0 and β0β ¼ 1

similar to the RESIM, or by maximizing the correlation between H ¼ w0α and
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I ¼ β0f, ρHI ¼ w0Aβffiffiffiffiffiffiffiffiffi
w0Aw

p ffiffiffiffiffiffiffiffi
β0Φβ

p , with respect to vectors w0 and β under the restrictions

U0
GAβ ¼ 0, σ2H ¼ w0Aw, σ2I ¼ β0Φβ and 0 < σ2H , σ

2
I < 1, as we did for the GESIM.

8.4.1 The RGESIM Parameters

To obtain the RGESIM vector of coefficients, we maximize the function

f β; v0ð Þ ¼ β0Aβffiffiffiffiffiffiffiffiffiffiffi
β0Φβ

p � v0U0
GAβ ð8:36Þ

with respect to β and v0, where v0 ¼ [v1 v2 � � � v2(r � 1)] is a vector of Lagrange
multipliers. The derivatives of function f(β, v0) with respect to β and v0 can be written
as

2 β0Φβð Þ1=2Aβ� β0Φβð Þ�1=2 β0Aβð ÞΦβ� AUGv ¼ 0, ð8:37Þ
U0

GAβ ¼ 0, ð8:38Þ
respectively, where Eq. (8.38) denotes the restriction imposed for maximizing
Eq. (8.36). Using algebraic methods on Eq. (8.37), we get

KRGΦ�1A� λ2RGI2t
� �

βRG ¼ 0, ð8:39Þ
where λ2RG ¼ h2IRG , h

2
IRG

is the RGESIM heritability obtained under the restriction U0
G

Aβ ¼ 0 ; KRG ¼ [I2t � QRG], I2t is an identity matrix of size 2t � 2t, and
QRG ¼ Φ�1AUG U0

GAΦ
�1AUG

� ��1
U0

GA. When U0
G is a null matrix, β0RG ¼ β0G

(the vector of the GESIM coefficients); thus, the RGESIM is more general than
the GESIM and includes the GESIM as a particular case. The RGESIM index IGR ¼
β0RGy and its selection response and expected genetic gain per trait use the first
eigenvector of matrix KGΦ�1A. It can be shown that the vector of coefficients of
H ¼ w0

RGα in the RGESIM can be written as

wRG ¼ A�1 ΦþQ0
RGA

� �
βRG, ð8:40Þ

where Q0
RG ¼ AUG U0

GAΦ
�1AUG

� ��1
U0

GAΦ
�1.

Note that the restriction U0
GAβ ¼ 0 can be written as β0AUG ¼ 0; this means that

β0Q0
RG ¼ 0 and that the covariance between HRG ¼ w0

RGα and IRG ¼ β0RGf (σHRGIRG)
can be written as

σHRGIRG ¼ w0
RGAβ

0
RG ¼ β0RGΦβRG þ β0RGQ

0
RGCβRG ¼ β0RGΦβRG: ð8:41Þ
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Equation (8.41) indicates that σHRGIRG is equal to the variance of IRG ¼ β0RGf
(σ2IRG ¼ β0RGΦβRG); therefore, the maximized correlation between IRG and HRG or
RGESIM accuracy can be written as

ρHRGIRG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΦβRG

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

RGAwRG

p , ð8:42Þ

wherew0
RGAwRG is the variance of HRG. Hereafter, to simplify the notation, we write

Eq. (8.42) as λRG.
The maximized selection response and the expected genetic gain per trait of the

RGESIM are

RRG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΦβRG

q
ð8:43Þ

and

ERG ¼ kI
AβRGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΦβRG

p , ð8:44Þ

respectively, where βRG is the first eigenvector of matrix KRGΦ�1A.

8.4.2 Estimating RGESIM Parameters

In Sect. 8.2, we indicated how to estimate matrices P, Γ, andC using phenotypic and

genomic information, whence we can estimate matrices A ¼ C Γ
Γ Γ

� �
and

Φ ¼ P Γ
Γ Γ

� �
. Those methods are also valid for the RGESIM. This means that the

SVD methods described for estimating MESIM parameters are also valid for esti-
mating RGESIM parameters.

8.4.3 Numerical Examples

With a selection intensity of 10% (kI ¼ 1.755), we compare the CRLGSI (for details
see Chap. 6) versus the RGESIM theoretical results using a real maize (Zea mays)
F2 population with 244 genotypes (each with two repetitions), 233 molecular
markers, and three traits—GY (ton ha�1), EHT (cm), and PHT (cm)—described in

Sect. 8.2.2, where bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

24 35, bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35,
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and bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

24 35 were the estimated matrices of P, C, and Γ

respectively.
We have indicated that the main difference between the RLPSI and the CRLGSI

is the matrix U0
C, on which we now need to impose two restrictions: one for the trait

and another for its associated GEBV. Consider the data set described earlier and
suppose that we restrict the trait GY (ton ha�1) and its associated GEBVGY; then,

matrix U0
C should be constructed as U0

C1 ¼
1 0 0 0 0 0
0 0 0 1 0 0

� �
. If we restrict

traits GY and EHT (cm) and their associated GEBVGY and GEBVEHT, matrix U0
C

should be constructed as U0
C2 ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2664
3775, etc. The procedure for

obtaining matrices bKRG ¼ �
I2t � bQRG

�
and bQRG ¼ bΦ�1bAUG

�
U0

G
bA bΦ�1bAUG

��1
U0

GbA was described in Chap. 6, and is also valid for estimating RGESIM parameters.
The estimated CRLGSI vector of coefficients is bβCR ¼ bKRG

bβ, where bβ ¼ bΦ�1bA
w is the estimated CLGSI vector of coefficients (Chap. 6). Letw0 ¼ [5 � 0.1 � 0.1
0 0 0] be the vector of economic weights and suppose that we restrict trait

GY and its associated GEBVGY; in this case, U0
C1 ¼

1 0 0 0 0 0
0 0 0 1 0 0

� �
,

and according to matrices bP, bC, and bΓ described earlier, bβ0
CR ¼

0:076 �0:004 �0:018 2:353 �0:096 �0:082½ � was the estimated
CRLGSI vector of coefficients and the estimated CRLGSI was

bICR ¼ 0:076GY� 0:004EHT� 0:018PHTþ 2:353GEBVGY � 0:096GEBVEHT

� 0:082GEBVPHT

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with the traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions.

The estimated CRLGSI selection response and expected genetic gain per

trait were bRCR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CR

bΦbβCR

q
¼ 0:96 and bE0

CR ¼ kI ¼
bβ0
CR

bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CR

bΦbβCR

q
0 �3:53 �6:03 0 �2:93 �4:87½ � respectively, whereas the estimated

CRLGSI accuracy was bρHlCR ¼ bσ ICRbσH
¼ 0:51. Note that in bE0

CR, the trait GY and its

associated GEBVGY have null values, as we would expect.
The estimated RGESIM vector of coefficients was bβ0

CR ¼
0:015 �0:001 �0:004 0:998 �0:029 �0:045½ �, and the estimated
RGESIM index was bI RG ¼ 0:015GY� 0:001EHT� 0:004PHTþ 0:998GEBVGY

�0:029GEBVEHT � 0:045GEBVPHT where GEBVGY, GEBVEHT, and GEBVPHT
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are the GEBVs associated with traits GY, EHT, and PHT respectively. The same
procedure is valid for two or more restrictions.

The estimated RGESIM selection response and expected genetic gain per

trait were bRRG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG

bΦbβRG

q
¼ 0:37 and bE0

RG ¼ kI ¼
bβ0
RG

bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG

bΦbβRG

q
0 �3:28 �6:03 0 �2:93 �5:40½ � respectively, whereas the estimated

RGESIM accuracy was bρbHRGbI RG ¼
bσbI RGbσbHRG

¼ 0:86.

Fig. 8.3 presents the frequency distribution of the 244 estimated RGESIM index
values for two null restrictions on traits GY and EHT and their associated GEBVGY

and GEBVEHT, for one selection cycle in an environment for a real maize (Zea mays)
F2 population with 233 molecular markers. Note that the frequency distribution of
the estimated RGESIM index values approaches the normal distribution.

Now we compare the estimated CRLGSI and RGESIM selection responses and
expected genetic gains per trait using the simulated data set described in Sect. 2.8.1
of Chap. 2. We used that data set for four phenotypic selection cycles (C2, C3, C4,
and C5), each with four traits (T1, T2, T3, and T4), 500 genotypes, and four replicates
per genotype. The economic weights for T1, T2, T3, and T4 were 1, �1, 1, and

Fig. 8.3 Frequency distribution of the 244 estimated restricted genomic eigen selection index
method (RGESIM) values for two null restrictions on traits grain yield (GY) and EHT and their
associated genomic estimated breeding values (GEBVs), GEBVGY and GEBVEHT respectively, for
one selection cycle in an environment for a real maize (Zea mays) F2 population with 233 molecular
markers. Note that the frequency distribution of the estimated RGESIM index values approaches
normal distribution
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1 respectively. For this data set, matrix F was an identity matrix of size 8 � 8 for all
four selection cycles.

Columns 2, 3, and 4 (from left to right) of Table 8.4 present the estimated
CRLGSI selection responses when their vectors of coefficients are normalized and
the estimated RGESIM and selection responses for one, two, and three restrictions
for four simulated selection cycles. The averages of the estimated CRLGSI selection
responses of the traits and their associated GEBVs for each of the three null
restrictions were 3.24 for one restriction, 4.08 for two restrictions, and 5.06 for
three restrictions, whereas the averages of the estimated RGESIM selection
responses were 3.08 for one restriction, 2.79 for two restrictions, and 3.23 for
three restrictions. Note that although for one restriction the selection response was
similar for both indices, for two and three restrictions the CRLGSI selection
responses were greater than the RGESIM selection responses.

Table 8.5 presents the estimated CRLGSI and RGESIM expected genetic gains
per trait for four traits (T1, T2, T3, and T4) and their associated GEBVs (in this case
denoted by G1, G2, G3, and G4 to simplify the notation) in four simulated selection
cycles and for one, two, and three null restrictions in four simulated selection cycles.
Note that the null values of the traits and their restricted GEBVs are not shown in
Table 8.5 with the aim of simplifying the table. The averages of the estimated
CRLGSI expected genetic gains for the three traits and their associated GEBVs
were �2.60, 2.16, 2.84, �1.21, 0.67, and 1.02 for one restriction; 2.74, 3.23, 0.78,

Table 8.4 Estimated combined null restricted linear genomic selection index (CRLGSI) and
estimated combined predetermined proportional gain linear genomic selection index (CPPG-
LGSI) selection responses for one, two, and three restrictions when their vectors of coefficients
are normalized for four simulated selection cycles

Cycle

CRLGSI response for one, two and
three null restrictions

CPPG-LGSI response for one, two and three
predetermined restrictions

1 2 3 1 2 3

1 3.25 4.09 4.89 5.36 2.80 1.81

2 3.28 4.19 5.21 5.07 3.64 1.99

3 2.91 3.89 4.97 5.37 3.86 1.42

4 3.53 4.17 5.15 4.52 3.38 1.20

Average 3.24 4.08 5.06 5.08 3.42 1.60

Cycle

RGESIM response for one, two, and
three null restrictions

PPG-GESIM response for one, two, and
three predetermined restrictions

1 2 3 1 2 3

1 3.21 2.78 3.47 1.95 4.07 4.26

2 3.11 2.86 3.06 1.85 4.12 5.49

3 2.93 2.76 3.20 2.04 4.18 6.30

4 3.07 2.76 3.21 2.02 4.17 5.82

Average 3.08 2.79 3.23 1.96 4.14 5.47

Estimated null restricted genomic eigen selection index method (RGESIM) and predetermined
proportional gain genomic eigen selection index method (PPG-GESIM) selection responses for one,
two, and three restrictions for four simulated selection cycles. The selection intensity was 10%
(kI ¼ 1.755)
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and 0.99 for two restrictions; and 4.02 and 1.33 for three restrictions. On the other
hand, the averages of the estimated RGESIM expected genetic gains for the three
traits and their associated GEBVs were 3.27,�1.67,�1.33, 2.16,�0.92, and�0.84
for one restriction; 3.29, 1.02, 1.76, and 0.46 for two restrictions; and 3.53 and 2.07
for three restrictions. These results indicate that in terms of absolute values, the
estimated expected genetic gains for the traits and their associated GEBVs were
similar for both indices.

8.5 The Predetermined Proportional Gain Linear Genomic
Eigen Selection Index Method

The predetermined proportional gain linear genomic eigen selection index method
(PPG-GESIM) theory is based on the predetermined proportional gain linear phe-
notypic ESIM (PPG-ESIM) described in Chap. 7. In the PPG-ESIM, the vector of
PPG (predetermined proportional gain) imposed by the breeder was
d0 ¼ �

d1 d2 � � � dr
�
. However, because the PPG-GESIM uses phenotypic

and GEBV information jointly to predict the net genetic merit, the vector of PPG

Table 8.5 Estimated CRLGSI and estimated null RGESIM expected genetic gains per trait for four
traits (T1, T2, T3, and T4) and their associated genomic estimated breeding values (G1, G2, G3, and
G4) for four simulated selection cycles and for one, two, and three null restrictions for four
simulated selection cycles. The selection intensity was 10% (kI ¼ 1.755)

Cycle

CRLGSI expected genetic gains for one, two and three null restrictions

One restrictiona Two restrictionsb
Three
restrictionsc

T2 T3 T4 G2 G3 G4 T3 T4 G3 G4 T4 G4

1 �2.32 2.17 2.87 �1.48 0.73 1.24 2.60 3.38 0.86 1.15 4.08 1.50

2 �2.76 2.14 2.89 �1.19 0.76 0.96 2.81 3.30 0.87 0.98 3.95 1.25

3 �2.22 2.27 2.98 �1.15 0.62 0.97 2.77 3.14 0.69 0.90 3.93 1.33

4 �3.09 2.08 2.64 �1.05 0.58 0.92 2.80 3.08 0.70 0.93 4.13 1.24

Mean �2.60 2.16 2.84 �1.21 0.67 1.02 2.74 3.23 0.78 0.99 4.02 1.33

Cycle

RGESIM expected genetic gains for one, two and three null restrictions

One restrictiona Two restrictionsb
Three
restrictionsc

T2 T3 T4 G2 G3 G4 T3 T4 G3 G4 T4 G4

1 3.27 �1.52 �1.24 2.48 �0.88 �1.00 3.18 0.93 1.88 0.43 3.66 2.21

2 3.30 �1.79 �1.41 2.10 �1.09 �0.82 3.26 1.34 1.82 0.66 3.41 2.00

3 2.98 �1.62 �1.44 2.13 �0.83 �0.75 3.31 0.86 1.70 0.21 3.45 2.05

4 3.56 �1.73 �1.23 1.92 �0.89 �0.78 3.40 0.96 1.62 0.53 3.58 2.02

Mean 3.27 �1.67 �1.33 2.16 �0.92 �0.84 3.29 1.02 1.76 0.46 3.53 2.07
aAll T1 and G1 expected genetic gains were null
bAll T1, T2, G1, and G2 expected genetic gains were null
cAll T1, T2, T3, G1, G2, and G3 expected genetic gains were null

198 8 Linear Molecular and Genomic Eigen Selection Index Methods

https://doi.org/10.1007/978-3-319-91223-3_7


imposed by the breeder (dPG) should be twice the standard vector d0, that is,
d0PG ¼ �

d1 d2 � � � dr drþ1 drþ2 � � � d2r
�
, where we would expect that

if d1 is the PPG imposed on trait 1, then dr + 1 should be the PPG imposed on the
GEBV associated with trait 1, etc. Thus, in the PPG-GESIM we have three possible
options for determining (for each trait and GEBV) the PPG: e.g., for trait 1, d1¼ dr + 1,
d1 > dr + 1 or d1 < dr + 1. This is the main difference between the standard PPG-ESIM
described in Chap. 7 and the PPG-GESIM.

8.5.1 The PPG-GESIM Parameters

Using the same procedure described for RGESIM and PPG-ESIM, the PPG-GESIM
vector of coefficients (βPG), which maximizes the PPG-GESIM selection response
and the expected genetic gain per trait, is the first eigenvector of the following
equation

TPG � λ2PGI2t
� �

βPG ¼ 0, ð8:45Þ
where TPG ¼ KRGΦ�1A + B, KPG ¼ [I2t � QRG], I2t is an identity matrix of
size 2t � 2t, QRG ¼ Φ�1AUG U0

GAΦ
�1AUG

� ��1
U0

GA, B ¼ δφ0, δ ¼

Φ�1AUG U0
GAΦ

�1AUG

� ��1
dPG, and φ0 ¼ d0PG U0

GAΦ
�1AUG

� ��1
U0

GAΦ
�1A

d0PG U0
GAΦ

�1AUG

� ��1
dPG

.

When B is a null matrix, TPG ¼ KRGΦ�1A (matrix of the RGESIM), and when
U0

G is a null matrix, TPG ¼ Φ�1A (matrix of the GESIM); this means that the
PPG-GESIM includes the RGESIM and GESIM as particular cases. The opti-
mized PPG-GESIM index can be written as IPG ¼ β0PGf .

The vector of coefficients of H ¼ w0
PGα in the PPG-GESIM can be written as

wPG ¼ A�1 ΦþQ0
PGA

� �
βPG, ð8:46Þ

where Q0
PG ¼ AUGDG D0

GU
0
GAΦ

�1AUGDG

� ��1
D0

GU
0
GAΦ

�1, and

D0
G ¼

d2r 0 � � � 0 �d1
0 d2r � � � 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 � � � d2r �d2r�1

2664
3775. Similar to RGESIM, it can be shown that

the covariance between HRG ¼ w0
PGα and IPG ¼ β0PGf ( σHPGIPG ) is equal to

the variance of IPG ¼ β0PGf ( σ2IPG ¼ β0PGΦβPG ), that is, σHPGIPG ¼ w0
PGAβPG ¼

β0PGΦβPG ¼ σ2IPG .
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The maximized correlation between IPG and HPG, or PPG-GESIM accuracy, is

ρHPGIPG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΦβPG

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

PGAwPG

p ð8:47Þ

wherew0
PGAwPG is the variance of HPG. Hereafter, to simplify the notation, we write

Eq. (8.47) as λPG.
The maximized selection response and the expected genetic gain per trait of the

PPG-GESIM are

RPG ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΦβPG

q
ð8:48Þ

and

EPG ¼ kI
AβPGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΦβPG

p , ð8:49Þ

respectively, where βPG is the first eigenvector of Eq. (8.45).

8.5.2 Numerical Examples

The process for estimating PPG-ESIM parameters is similar to the method
described for estimating RGESIM parameters. With a selection intensity of
10% (kI ¼ 1.755), we compare the combined predetermined proportional
gain linear genomic selection index (CPPG-LGSI) and PPG-GESIM results
using the real maize (Zea mays) F2 population with 244 genotypes,
233 molecular markers, and three traits—GY (ton ha�1), EHT (cm), and PHT

(cm)—where bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

24 35, bG ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35 and

bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

24 35 are the estimated matrices of P, G, and Γ respec-

tively, whereas w0 ¼ 5 �0:1 �0:1 0 0 0½ � was the vector of economic
weights.

The estimated CPPG-LGSI vector of coefficients was bβCP ¼ bβCG þ bθCPbδ (see

Chap. 6 for additional details). Let bA ¼ bG bΓbΓ bΓ
� �

and bΦ ¼ bP bΓbΓ bΓ
� �

be the

estimated block matrices and d0PG ¼ 7 �3 3:5 �1:5½ � the vector of PPG
imposed by the breeder on the traits GY and EHT, and their associated genomic
estimated breeding values (GEBVGY and GEBVEHT), and let
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U0
C ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2664
3775 be the matrix of null restrictions on the CPPG-LGSI

and w0 ¼ 5 � 0:1 � 0:1 0 0 0½ � the vector of economic weights. It can be
shown that bθCP ¼ �0:00009 is the estimated value of the proportionality con-
stant, bδ0 ¼ �112:92 �72:16 61:35 231:79 64:75 �61:35½ �, bβ0

CP ¼
�0:01 0:01 �0:01 0:59 0:09 �0:09½ � is the estimated CPPG-LGSI vec-
tor of coefficients, and the estimated CPPG-LGSI can be written as

bICP ¼ �0:01GYþ 0:01EHT� 0:01PHTþ 0:59GEBVGY þ 0:09GEBVEHT

� 0:09GEBVPHT

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for more than
two predetermined restrictions. The estimated CPPG-LGSI selection response

and expected genetic gain per trait were bRCP ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CP

bΦbβCP

q
¼ 0:443 and

bE0
CP ¼ kI

bβ0
CP

bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CP

bΦbβCP

q ¼ �0:004 0:002 �4:639 �0:002 0:001 �4:326½ �

respectively, whereas the estimated CPPG-LGSI accuracy is bρHICP ¼ bσ ICPbσH
¼ 0:234.

Because the estimated value of the proportionality constant was negative (bθCP ¼
�0:00009), the expected genetic gains of the traits GY and EHT, and their associated
genomic estimated breeding values (GEBVGY and GEBVEHT), which appeared in
the bE0

CP values, were not in accordance with the values of the vector of PPG imposed
by the breeder, d0PG ¼ 7 �3 3:5 �1:5½ �, as we would expect, and CPPG-LGSI
accuracy (0.234) was low. These results indicate that in the CPPG-LGSI, it is very
important for the estimated values of bθCP to be positive (see Chaps. 3 and 6 for
details).

In the PPG-GESIM, we need to find the solutions to equation
�bTPG � bλ2PG j

I2t
�

bβPG j
¼ 0, for bλ2PG j

and bβPG j
(see Eq. 8.45). The estimated PPG-GESIM vector of

coefficients wasbβ0
PG ¼ 0:001 �0:050 0:029 0:975 0:154 �0:157½ �, which

was transformed using matrix F ¼

�0:1 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 �1 0 0
0 0 0 0 �1 0
0 0 0 0 0 �1

26666664

37777775, that is, we
changed the direction of the original vector. With the bβ0

PG values, we can estimate the
PPG-GESIM index as
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bIPG ¼ 0:001GY� 0:05EHTþ 0:029PHTþ 0:975GEBVGY þ 0:154GEBVEHT

� 0:157GEBVPHT

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with the
traits GY, EHT, and PHT respectively. The estimated PPG-GESIM selection
response, accuracy, and expected genetic gain per trait were bRPG ¼
kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG

bΦbβPG

q
¼ 0:696, bρbHPGbI PG ¼

bσbI PGbσbHPG

¼ 0:843, and bE 0
PG ¼ kI

bβ0
PG

bAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG

bΦbβPG

q ¼

0:01 �1:00 �3:56 0 �0:46 �3:98½ � respectively.
Fig. 8.4 presents the frequency distribution of the 244 estimated PPG-GESIM

index values for two predetermined restrictions on the traits GY and EHT and their
associated GEBVs (GEBVGY and GEBVEHT), for one selection cycle in an envi-
ronment for a real maize (Zea mays) F2 population with 233 molecular markers. Note
that the frequency distribution of the estimated PPG-GESIM index values
approaches normal distribution.

Now, with a selection intensity of 10% (kI¼ 1.755) and a vector of predetermined
restrictions d0PG ¼ 7 �3 5 3:5 �1:5 2:5½ �, we compare the estimated
CPPG-LGSI and PPG-GESIM selection responses and expected genetic gains per

Fig. 8.4 Frequency distribution of the 244 estimated predetermined proportional gain genomic
eigen selection index method (PPG-GESIM) values for two predetermined restrictions on the traits
GY and EHT and their associated GEBVs, GEBVGY and GEBVEHT, for one selection cycle in an
environment for a real maize (Zea mays) F2 population with 233 molecular markers
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trait using the simulated data set described in Sect. 2.8.1 of Chap. 2. Traits T1, T2,
and T3 and their associated GEBVs (GEBV1, GEBV2, and GEBV3 respectively)
were restricted, but trait T4 and its associated GEBV4 were not restricted. For
this data set, matrix F was an identity matrix of size 8 � 8 for all four selection
cycles.

Table 8.6 presents the estimated CPPG-LGSI selection responses when their
vectors of coefficients are normalized, and the estimated PPG-GESIM selection
responses for one, two, and three predetermined restrictions for four simulated
selection cycles. The averages of the estimated CPPG-LGSI selection responses
were 5.08 for one restriction, 3.42 for two restrictions, and 1.60 for three restrictions,
whereas the averages of the estimated PPG-GESIM selection responses were 1.96
for one restriction, 4.14 for two restrictions, and 5.46 for three restrictions. For this
data set, when the number of restrictions increases, the estimated CPPG-LGSI

Table 8.6 Estimated CPPG-LGSI expected genetic gains for one, two, and three restricted
predetermined traits (T1, T2, and T3) and for one, two, and three restricted predetermined
GEBVs (GEBV1, GEBV2, and GEBV3) for four simulated selection cycles

Cycle

CPPG-LGSI expected genetic gain for one predetermined restriction

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 8.24 �3.62 3.32 2.26 4.12 �2.33 1.75 1.09

2 7.98 �4.06 3.03 2.68 3.99 �2.24 1.79 1.04

3 8.61 �4.48 3.24 1.96 4.30 �2.32 1.70 0.98

4 8.30 �4.34 3.32 2.04 4.15 �2.16 1.62 0.92

Average 8.28 �4.12 3.23 2.23 4.14 �2.26 1.71 1.01

Cycle

CPPG-LGSI expected genetic gain for two predetermined restrictions

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 8.06 �3.46 3.30 2.06 4.03 �1.73 1.72 0.98

2 8.17 �3.50 3.08 2.65 4.09 �1.75 1.79 0.98

3 8.88 �3.81 3.31 1.83 4.44 �1.90 1.72 0.90

4 8.61 �3.69 3.43 1.99 4.30 �1.84 1.65 0.87

Average 8.43 �3.61 3.28 2.13 4.22 �1.81 1.72 0.93

Cycle

CPPG-LGSI expected genetic gain for three predetermined restrictions

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 5.77 �2.47 4.12 2.28 2.88 �1.24 2.06 0.98

2 5.68 �2.43 4.06 2.76 2.84 �1.22 2.03 0.97

3 5.87 �2.52 4.20 1.98 2.94 �1.26 2.10 0.79

4 5.91 �2.53 4.22 2.00 2.95 �1.27 2.11 0.83

Average 5.81 �2.49 4.15 2.26 2.90 �1.24 2.07 0.89

The selection intensity was 10% (kI ¼ 1.755) and the vector of predetermined restrictions was
d0PG ¼ 7 �3 5 3:5 �1:5 2:5½ �. Trait T4 and its associated GEBV4 were not restricted
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selection response tends to decrease, whereas the estimated PPG-GESIM selection
response increases.

Tables 8.7 presents the estimated CPPG-LGSI and PPG-GESIM expected genetic
gains for one, two, and three predetermined restrictions respectively, for four
simulated selection cycles. The averages of the estimated CPPG-LGSI expected
genetic gains for the four traits and their four associated GEBVs were 8.28, �4.12,
3.23, 2.23, 4.14, �2.26, 1.71, and 1.01 for one restriction; 8.43, �3.61, 3.28, 2.13,
4.22, �1.81, 1.72, and 0.93 for two restrictions; and 5.81, �2.49, 4.15, 2.26, 2.90,
�1.24, 2.07, and 0.89 for three restrictions. On the other hand, the averages of the
estimated PPG-GESIM expected genetic gains for the four traits and their four
associated GEBVs were 6.97, �1.31, 1.78, 0.52, 5.64, �1.74, 1.75, and 0.58 for
one restriction; 6.93, �2.73, 1.29, 0.85, 5.75, �2.55, 1.49, and 0.79 for two
restrictions, and 8.12, �3.27, 2.99, 1.13, 2.19, �1.15, 1.30, and 0.45 for three

Table 8.7 Estimated PPG-GESIM expected genetic gains for one, two, and three restricted traits
(T1, T2, and T3) and for one, two, and three restricted GEBVs (GEBV1, GEBV2, and GEBV3) for
four simulated selection cycles

Cycle

PPG-GESIM expected genetic gain for one predetermined restriction

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 6.89 �1.44 1.94 0.63 6.36 �1.89 2.04 0.62

2 6.71 �1.33 1.90 0.65 6.06 �2.00 1.97 0.75

3 7.09 �1.69 1.67 0.40 5.40 �1.72 1.63 0.55

4 7.18 �0.78 1.58 0.39 4.73 �1.34 1.35 0.39

Average 6.97 �1.31 1.78 0.52 5.64 �1.74 1.75 0.58

Cycle

PPG-GESIM expected genetic gain for two predetermined restrictions

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 6.61 �2.55 1.40 0.94 6.49 �2.80 1.75 0.87

2 5.67 �2.48 1.24 0.87 6.16 �2.84 1.70 0.91

3 7.35 �3.08 1.21 0.85 5.54 �2.49 1.37 0.82

4 8.10 �2.80 1.29 0.76 4.80 �2.08 1.16 0.56

Average 6.93 �2.73 1.29 0.85 5.75 �2.55 1.49 0.79

Cycle

PPG-GESIM expected genetic gain for three predetermined restrictions

Traits Genomic estimated breeding values

T1 T2 T3 T4 GEBV1 GEBV2 GEBV3 GEBV4

1 7.21 �2.94 2.64 1.02 1.69 �1.10 1.07 0.45

2 7.71 �2.97 2.41 1.46 2.22 �1.15 1.21 0.45

3 8.72 �3.43 3.17 0.93 2.21 �1.06 1.34 0.42

4 8.85 �3.73 3.72 1.09 2.63 �1.29 1.60 0.48

Average 8.12 �3.27 2.99 1.13 2.19 �1.15 1.30 0.45

The selection intensity was 10% (kI ¼ 1.755) and the vector of predetermined restrictions was
d0PG ¼ 7 �3 5 3:5 �1:5 2:5½ �. Trait T4 and its associated GEBV4 were not restricted
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restrictions. These results indicate that the estimated CPPG-LGSI expected genetic
gains for the four traits and their four associated GEBVs were generally higher than
the estimated PPG-GESIM expected genetic gains for the four traits and their four
associated GEBVs.
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