Chapter 8 )
Linear Molecular and Genomic Eigen s
Selection Index Methods

Abstract The three main linear phenotypic eigen selection index methods are the
eigen selection index method (ESIM), the restricted ESIM (RESIM) and the
predetermined proportional gain ESIM (PPG-ESIM). The ESIM is an unrestricted
index, but the RESIM and PPG-ESIM allow null and predetermined restrictions
respectively to be imposed on the expected genetic gains of some traits, whereas the
rest remain without any restrictions. These indices are based on the canonical
correlation, on the singular value decomposition, and on the linear phenotypic
selection indices theory. We extended the ESIM theory to the molecular-assisted
and genomic selection context to develop a molecular ESIM (MESIM), a genomic
ESIM (GESIM), and a genome-wide ESIM (GW-ESIM). Also, we extend the
RESIM and PPG-ESIM theory to the restricted genomic ESIM (RGESIM), and to
the predetermined proportional gain genomic ESIM (PPG-GESIM) respectively.
The latter five indices use marker and phenotypic information jointly to predict the
net genetic merit of the candidates for selection, but although MESIM uses only
statistically significant markers linked to quantitative trait loci, the GW-ESIM uses
all genome markers and phenotypic information and the GESIM, RGESIM, and
PPG-GESIM use the genomic estimated breeding values and the phenotypic values
to predict the net genetic merit. Using real and simulated data, we validated the
theoretical results of all five indices.

8.1 The Molecular Eigen Selection Index Method

The molecular eigen selection index method (MESIM) is very similar to the linear
molecular selection index (LMSI) described in Chap. 4; thus, it uses the same set of
information to predict the net genetic merit of individual candidates for selection,
and therefore needs the same set of conditions as those of the LMSI. The only
difference between the two indices is how the vector of coefficients is obtained and
the assumption associated with the vector of economic weights. Thus, although the
LMSI obtains the vector of coefficients according to the linear phenotypic selection
index (LPSI) described in Chap. 2 and assumes that the economic weights are known
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and fixed, the MESIM assumes that the economic weights are unknown and fixed
and obtains the vector of coefficients according to the ESIM theory.

8.1.1 The MESIM Parameters

In the MESIM context, the net genetic merit can be written as

8
H=wg+ws=[w w’z][s] = Wa, (8.1)
where g =[g, ... g] is the vector of true breeding values, ¢ is the number of
traits, w; = [w; -+ w,] is a vector of unknown economic weights associated
with g, w5, =[0; --- 0,] is a null vector associated with the vector of marker
score valuess' = [s; s2 ... s, W =[w, w)]anda’ =[g '] (Chap.4 for

details). The MESIM index can be written as

T=py =8 8] [3]=pe 82)

wherey’ = [y, --- Y,]is the vector of phenotypic values;s’ = [s; s2 ... 5]
is the vector of marker scores; B’y and f, are vectors of phenotypic and marker score
weight values respectively, B’ = [B, B ] andt = [y’ s']. The objectives of the
MESIM are the same as those of the ESIM (see Chap. 7 for details).

Let Var(H) = WWyw = o3, be the variance of H, Var(I) = p'Typ = o the
variance of I, and Cov(H,I) = wW¥,f the covariance between H and I, where
Wy = Var[ﬂ = [S(;,; gg] and T, = Var{ﬂ = {SI;,, SZ] are block matri-
ces of size 2t x 2t (¢ is the number of traits) of covariance matrices where P, S,,, and
C are covariance matrices ¢ X t of phenotypic (y), marker score (s), and genetic

/
% \I‘
breeding (g) values respectively. Let py; = %m and h% = [[;’TM[[: be the
VW EyW M M

correlation between H and 7, and the heritability of I respectively; then, the MESIM
selection response can be written as

R = kIUHﬂHI (83)
and
R = kjoih, (8.4)

where k; is the standardized selection differential (or selection intensity) associated
with MESIM; 6 = WW¥y,w and 6; = /P’ TP are the standard deviations of the
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variance of H and I respectively. It is assumed that k; is fixed, and that matrices T,
and ¥, are known; therefore, we can maximize R by maximizing pg; (Eq. 8.3)
with respect to vectors w and f, or by maximizing h? (Eq. 8.4) only with respect to
vector f.

Maximizing h? only with respect to f is simpler than maximizing py; with respect
to w and f; however, in the latter case the maximization process of py; gives more
information associated with MESIM parameters than when h% is maximized only
with respect to p (see Chap. 7, Eq. 7.13, for details). In this subsection, we maximize
pur with respect to vectors w and P similar to the ESIM in Chap. 7, Sect. 7.1.1. Thus,
we omit the steps and details of the maximization process of pg;.

#M\/ﬁm with respect to vectors w and p under the
restrictions o7, = W¥w, o7 = p'TP, and 0 <67, 67 < 00, where o7 is the variance of
H = w'a and a% is the variance of I = f't. Thus, it is necessary to maximize the
function

We maximize py; =

F(B,w, 1, ) = W¥B —0.5u(B'TB — 57) — 0.5¢(W'Pw — o7;) (8.5)

with respect to , w, u, and ¢, where u and ¢ are Lagrange multipliers. The
derivatives of Eq. (8.5) with respect to , w, u, and ¢ are:

Ww — uTP = 0, (8.6)
WB — p¥w = 0, (8.7)
BTP =0, and WW¥w =7, (8.8)

respectively, where Eq. (8.8) denotes the restrictions imposed for maximizing pg;. It
can be shown (see Chap. 7) that vector w can be obtained as

wy =¥, Typ (8.9)

and the net genetic merit in the MESIM context can be written as Hy = w),a; thus,

. . VTP
the correlation between Hy, = wy,aand lispy, ; = and the MESIM vector
VB TY TP

of coefficients () that maximizes py, ; can be obtained from equation
(T™'W — 23,15)By, = 0, (8.10)

where I, is an identity matrix of size 2¢ x 2¢ (¢ is the number of traits), and /1,2\4 and B,/
are the eigenvalue and eigenvector of matrix T;II‘I‘M. The words eigenvalue and
eigenvector are derived from the German word eigen, which means owned by or
peculiar to. Eigenvalues and eigenvectors are sometimes called characteristic values
and characteristic vectors, proper values and proper vectors, or latent values and
latent vectors (Meyer 2000). The square root of ﬂjzu (Aag) 1s the canonical correlation
between Hy = wj,aand I = B),t, and the optimized MESIM index can be written
as Iy = B),t. Using a similar procedure to that described in Chap. 7 (Eq. 7.17), it can
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be show that vector B,, can be transformed into p- = Ff,,, where F is a diagonal
matrix with values equal to any real number, except zero values.

The maximized correlation between Hy = wya and Iy = Bj,t, or MESIM
accuracy, is

By Tub o1y
Pty e (8.11)
\/ Br Ty TuBy Hw

where o, = 1/}, TuBy is the standard deviation of I = B),t, and oy, =

\/[SSWTM‘I‘A}ITMBM is the standard deviation of Hy = w),a.

The maximized selection response and expected genetic gain per trait of MESIM

are
Ry = ki /By, TuBy, (8.12)

and

Wy,
\/Br, T,

respectively, where B, is the first eigenvector of matrix T;ll Wy If vector B, is
multiplied by matrix F, we obtain ﬁc, =Fpy ,; in this case, we can replace B , with
Bc, = FBy, in Egs. (8.12) and (8.13), and the optimized MESIM index should be
written as Iy = P, y.

Ey =k (8.13)

8.1.2 Estimating MESIM Parameters

We estimate the MESIM parameters using the same procedure described in Chap. 7
(Sect. 7.1.4) to estimate the ESIM parameters. Let C P and S m be the estimates of
the genotyplc phenotypic, and marker scores covariance matrices,

Ty = AP SM and ¥, = AC SM the estimated block matrices (Chap. 4)
Su Su Su Su

and W = T "W ,; then, to find the estimators [3 u, and 2 w, of the first eigenvector
(Bys,) and the first eigenvalue (/1Ml) respectively, we need to solve the equation

(WW' — i I)B,, =0, (8.14)

where ﬁj = ﬁ/,j,j: 1,2, ..., 2t. For additional details, see Egs. (7.22) and (7.23),
and Sect. 7.1.5 of Chap. 7. The result of Equation (8.14) allow the MESIM index
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Iy = ﬁ;ult) to be estimated as TM =p u,t, whereas the estimator of the maxi-
mized ESIM selection response and its expected genetic gain per trait can be

denoted by
A — . ¥,B
Ru = ki\/B 3, TuBy, and By = k,AMifMIA, (8.15)
VB o, TuBys,
respectively.

8.1.3 Numerical Examples

To validate the MESIM theoretical results, we use a real maize (Zea mays) F,
population with 247 genotypes (each with two repetitions), 195 molecular markers,
and two traits—plant height (PHT, cm) and ear height (EHT, cm)—evaluated in one
environment. We coded the marker homozygous loci for the allele from the first
parental line by 1, whereas the marker homozygous loci for the allele from the
second parental line was coded by —1 and the marker heterozygous loci by 0. The
estimated phenotypic, genetic, and marker scores covariance matrices were
S [191.81 106.89] ~ [83.00 57.44] s [15.750 0.983 }
P= s = ,and Sy =
106.89 167.93 57.44 59.80 0.983 28.083

respectively, and the vector of economic weights was a’ = [w' 0], where w' =
[-1 —1]and 0’ =[0 O0]. Details of how to estimate the marker scores and their
variance were given in Chap. 4.

We compare LMSI versus MESIM efficiency. The estimated LMSI vector of
coefficients was B’ =a'¥,T,' =[-059 —0.18 —041 —0.82]. Using a
10% selection intensity (k; = 1.755), the estimated LMSI selection response and

the expected genetic gain per trait were R= kiy/ [? TME =2041 and

.
~ ¥
E' = kIﬁAiM: [—10.09 —10.31 —2.53 —4.39] respectively, whereas the esti-
B'Tp
mated LMSI accuracy was p ~= f—l =0.72.
HI oy

Vector B\;w, =[0.089 —0.061 —0.536 0.837] was the original estimated
—0.1 0 0 0

0 -01 O 0

0 0 075 0 ’

0 0 0 -0.75
vector B;vz, was transformed as EIC, = ﬁjwlF =[-0.009 0.006 —0.402 0.628]
and then the estimated MESIM index was TM = —0.009PHT + 0.006 EHT —
0.402 Spyt + 0.628 Sgyt, where Spyr and Sgyr denote the marker scores
associated with PHT and EHT respectively. The estimated MESIM expected

MESIM vector of coefficients. Using matrix F =
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o
B e, ¥u

genetic gain, selection response, and accuracy were Ej, = kj———=
\/ e, Tube,

[—3438 —8516 —3319 —8372], Ry =k/p ¢, TuPe, =6573 and

p o~ = fl = 0.99 respectively.
Hyly oMy,

The inner product of the estimated LMSI and MESIM vector of coefficients were
1.221 and 0.556 respectively, whence the estimated LMSI selection response (20.41)
divided by 1.221 was 16.716, and the estimated MESIM selection response (6.573)
divided by 0.556 was 11.821. That is, the estimated LMSI selection response was
higher than the estimated MESIM selection response for this data set. Similar results
were found when we compared the estimated LMSI expected genetic gain per trait
with the estimated MESIM expected genetic gain per trait. Finally, Fig. 8.1 presents
the frequency distribution of the 247 estimated MESIM values for the real data set
described earlier, which approaches normal distribution, as we would expect.

Now with a selection intensity of 10% (k; = 1.755), we compare the LMSI and
MESIM efficiency using the simulated data set described in Sect. 2.8.1 of Chap. 2 for
four phenotypic selection cycles, each with four traits (7', 75, T5 and T}), 500 geno-
types, and four replicates of each genotype. The economic weights for T, 75, T3, and
T, were 1, —1, 1, and 1 respectively. For this data set, we did not use the linear
transformation ﬁcl = FﬁM].

The estimated selection responses of the linear marker, combined genomic and
genome-wide selection indices (LMSI, CLGSI, and GW-LMSI respectively; see

MESIM frequency distribution values

Fig. 8.1 Frequency distribution of 247 estimated molecular eigen selection index method
(MESIM) values for one selection cycle in an environment for a real maize (Zea mays) F,
population with 195 molecular markers and two traits, plant height (PHT, cm) and ear height
(EHT, cm), and their associated marker scores Spyt and Sgyt respectively
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Chaps. 4 and 5 for details) for four simulated selection cycles when their vectors of
coefficients were normalized, are presented in Table 8.1. Also, in this table the
selection responses of the estimated linear molecular, genomic, and genome-wide
eigen selection index methods (MESIM, GESIM, and GW-ESIM respectively;
details in Sect. 8.2) are shown for four simulated selection cycles. The average of
the estimated LMSI selection response was 2.22, whereas the average of the
estimated MESIM selection response was 1.69. The estimated LMSI selection
response was higher than that of the MESIM.

Table 8.2 presents the estimated LMSI and MESIM expected genetic gains for
four traits (T1, T2, T3, and T4) and their associated marker scores (S1, S2, S3, and
S4) for four simulated selection cycles. The averages of the estimated LMSI

Table 8.1 Estimated linear molecular, combined genomic, and genome-wide selection index
(LMSI, CLGSI and GW-LMSI respectively) selection responses when their vectors of coefficients
are normalized for four simulated selection cycles

Estimated selection response
Cycle LMSI CLGSI GW-LMSI MESIM GESIM GW-ESIM
1 0.02 1.24 0.93 0.50 3.95 0.73
2 4.94 0.80 0.80 1.21 3.07 1.06
3 3.69 0.34 0.93 391 2.05 0.77
4 0.23 0.35 0.83 1.15 1.90 1.14
Average 222 0.68 0.87 1.69 2.74 0.93

Estimated linear molecular, genomic, and genome-wide eigen selection index method (MESIM,
GESIM, and GW-ESIM respectively) selection responses for four simulated selection cycles. The
selection intensity was 10% (k; = 1.755)

Table 8.2 Estimated linear molecular selection index (LMSI) and estimated linear molecular eigen
selection index method (MESIM) expected genetic gains for four traits (T1, T2, T3, and T4) and
their associated marker scores (S1, S2, S3, and S4) for four simulated selection cycles. The selection
intensity was 10% (k; = 1.755)

Estimated LMSI expected genetic gain

Traits Marker scores
Cycle T1 T2 T3 T4 S1 S2 S3 S4
1 24.48 —0.01 0.74 —0.87 4.18 —1.14 0.72 0.79
2 7.14 -3.39 2.62 1.55 3.78 —2.30 1.02 1.37
3 9.17 —3.04 1.87 1.21 6.22 —1.51 1.02 0.26
4 10.16 —1.95 1.17 1.88 8.63 —3.83 0.09 0.13
Average 12.74 -2.10 1.60 0.94 5.70 -2.19 0.71 0.64

Estimated MESIM expected genetic gain

Traits Marker scores
Cycle T1 T2 T3 T4 S1 S2 S3 S4
1 27.48 2.60 —1.03 —2.64 3.85 0.00 —0.04 —0.43
2 8.82 —4.75 0.37 2.11 14.06 4.09 0.38 —2.76
3 9.83 1.74 0.72 0.37 8.03 1.76 0.31 0.34
4 11.47 —1.13 —1.64 1.53 8.66 —3.96 —1.47 0.04
Average 14.40 —0.38 —0.39 0.34 8.65 0.47 —0.21 —0.70
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expected genetic gains for the four traits and their associated marker scores were
12.74, —2.10, 1.60, 0.94, 5.70, —2.19, 0.71, and 0.64 respectively, whereas the
averages of the estimated MESIM expected genetic gains for the four traits and their
associated marker scores were 14.40, —0.38, —0.39, 0.34, 8.65, 0.47, —0.21, and
—0.70 respectively. Except for trait T1 and its associated molecular scores, the
estimated LMSI expected genetic gains per trait were higher than the estimated
MESIM expected genetic gains. Thus, for this data set, LMSI efficiency was greater
than MESIM efficiency.

Chapter 11 presents RIndSel, a user-friendly graphical unit interface in JAVA
that is useful for estimating the LMSI and ESIM parameters and selecting parents for
the next selection cycle.

8.2 The Linear Genomic Eigen Selection Index Method

The linear genomic eigen selection index method (GESIM) is based on the standard
CLGSI described in Chap. 5, and uses genomic estimated breeding values (GEBVs)
and phenotypic values jointly to predict the net genetic merit. Thus, conditions for
constructing a valid GESIM are the same as those for constructing the CLGSI. Also,
the MESIM theory described in Sect. 8.1 is directly applied to the GESIM and only
minor changes are necessary in GESIM theory. For example, instead of marker
scores, the GESIM uses GEBVs to predict the net genetic merit; thus, the details of
the estimation process are the same as for the MESIM.

8.2.1 The GESIM Parameters

In the GESIM context, the net genetic merit can be written as

H=wg+wyy=[W, w’z][ﬂ =wa, (8.16)
where g =[g, ... g ] is the vector of true breeding values, ¢ is the number of
traits, w; = [w; --- w;] is a vector of unknown economic weights associated
with g, w, = [0; --- 0,] is a null vector associated with the vector of genomic
breeding values ¥ = [y, 7, ... 7], W =[w, wh],and o =[g 7] The

estimator of y is the GEBV (see Chap. 5 for additional details). The GESIM index
can be written as

1=by b= (8 8)]3] = 8.17)
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wherey = [y; --- y,]is the vector of phenotypic values; B, and B, are vectors of
weights of phenotypic and genomic breeding values weights respectively;
p=[B, B Jandf' =]y 7]

Let Var(H) = W Aw = 67, be the variance of H = wa, Var(I) = p'®p = o7 the
variance of I = p'f, and Cov(H,I) = W A = oy the covariance between H and 1,

B g| |C T _ y| (P T .
WhereA—Var{Y}—{r F} and(D—Var[y}—{F r are block matrices

2t x 2t (t is the number of traits) of covariance matrices and P, I', and C are
covariance matrices of phenotypic (y), genomic (y), and genetic (g) values respec-

tively. Then, py; = \/TI:;— is the correlation between H = w'at and 7 = p'f and
w/

the GESIM selection response can be written as
R = kIUHpHIa (818)

where k; is the standardized selection differential (or selection intensity) associated
with the GESIM and 6y = v W' Aw is the standard deviation of the variance of H. It
is assumed that k; is fixed, and that matrices ® and A are known; then, we can

maximize R by maximizing py; with respect to vectors w and § under the restrictions

o2, = WAW, o7 = p'®P, and 0 < 6%, 67 < o0; similar to the MESIM.

It can be shown that the vector w in the GESIM context is

we =A"'Dp (8.19)

and that the net genetic merit can be written as Hg = wa. The correlation between

R _ Qlf YA L :
Hg=wsa and [ = B'fis py ;= Jhen ap and the GESIM index vector of

coefficients that maximizes py , can be obtained from the equation

(@ 'A — 251y )B; = 0, (8.20)

where I, is an identity matrix of size 2¢ x 2¢ (¢ is the number of traits); the optimized
GESIM index can be written as I = ﬁgf. By Egs. (8.19) and (8.20), GESIM
accuracy can be written as

o]
PHglg = j’ (8-21)
G

where o7, = \/P;®P; is the standard deviation of Ig = Psf, and oy, =
\/[S’GCI)A”(I)[SG is the standard deviation of Hg = wga. In Eq. (8.20), 22 =

p%,a 1, 1s the square of the canonical correlation between Hg and /g, and B¢ is the
canonical vector associated with AZG = /)121, I
GIG
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The maximized GESIM selection response and expected genetic gain per trait are

R = ki\/ B ®Pg (8.22)

and

ABg
VB PBg
respectively, where B¢ is the first eigenvector of matrix @ 'A. Vector g can be
transformed as g = FPg, where F is a diagonal matrix defined earlier.

Ec =k (8.23)

8.2.2 Numerical Examples

To compare the CLGSI versus GESIM theoretical results, we use a real maize
(Zea mays) F, population with 244 genotypes (each with two repetitions), 233
molecular markers, and three traits—grain yield (GY, ton ha™'), ear height (EHT,
cm), and plant height (PHT, cm). We estimated matrices P and C using Eqgs. (2.22)
to (2.24) described in Chap. 2, whence the estimated matrices were

R 045 133 2.33 R 0.07 0.61 1.06
P=|133 6507 8371| and C= [0.61 1793 22.75|. In a similar
2.33 83.71 165.99 1.06 2275 44.53

manner, we estimated matrix I' by applying Egs. (5.21) to (5.23) described in

Chap. 5 using phenotypic and marker information jointly; the estimated matrix
R 0.07 065 1.05

was I' = | 0.65 10.62 14.25|. The selection intensity for making a selection
1.05 14.25 26.37

cycle was 10% (k; = 1.755) and the vector of economic weights was

w =[5 —-0.1 —-0.1 0 0 O0]. To obtain the estimated vector of coefficient

of CLG§I (ﬁ = (f)‘lgw) anii GIESIM (Eq. 8.20), it is necessary to construct matrices

A=|C Tlgad=|P L}
r r r r
The estimated CLGSI vector of coefficients for the traits GY, EHT, and
PHT and their associated GEBVs (GEBVgy, GEBVgyr, and GEBVpyr respec-

tively) was P’ =[0.08 —0.02 —0.01 492 —0.08 —0.09], whereas the
estimated CLGSI selection response, accuracy, and expected genetic gain per

) ~ PPN R o1 =, p'A
trait were R = k;\/p'®P =1.54, py; ==—=0.814, and E' =k =
n pop

[0.36 1.04 1.70 0.36 1.53 2.38]respectively. Finallyj = 0.08GY — 0.02
EHT — 0.01PHT + 4.92GEBVgy — 0.08GEBVgyr —0.09GEBVpyt was the esti-
mated CLGSI.
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The estimated GESIM vector of coefficients, selection response, accuracy,
[—0.207 0.029 0.041 0.820 0.337 0.411], Rg = km/ﬁ’cltﬁﬁ(;l = 6.288,
A/ B/ &)EG —~ B A
o = o __ —0.9056, E/G:klﬁc—l_
Gle T —-1Rn
\V/ BG, PAT @B,

Fig. 8.2 presents the frequency distribution of the 244 estimated GESIM index
values for one (Fig. 8.2a) and three traits (Fig. 8.2b) using the real data set described
the normal distribution for both indices.

Now, we compare the estimated CLGSI and GESIM selection response and
of Chap. 2 for four phenotypic selection cycles, each with four traits (7, T,, T5 and
T4), 500 genotypes, and four replicates per genotype. The economic weights of T,

and expected genetic gain per trait were [S’Gl =
~~ = and —
\/ /G| (I)ﬁGl
[0.369 5.528 9.186 0.370 5.250 8.702] respectively.
earlier. The frequency distribution of the estimated GESIM index values approaches
expected genetic gain per trait using the simulated data set described in Sect. 2.8.1
T,, T5, and T, were 1, —1, 1, and 1 respectively and the selection intensity for both

o
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Fig. 8.2 Frequency distribution of the 244 estimated genomic eigen selection index method
(GESIM) values for the one-trait case (a) and for the three-trait case (b) for one selection cycle in
an environment for a real maize (Zea mays) F, population with 233 molecular markers. Note that
the frequency distribution of the estimated GESIM index values approaches normal distribution for
both indices


https://doi.org/10.1007/978-3-319-91223-3_2
https://doi.org/10.1007/978-3-319-91223-3_2

188 8 Linear Molecular and Genomic Eigen Selection Index Methods

Table 8.3 Estimated combined linear genomic selection index (CLGSI) and estimated GESIM
expected genetic gains for four traits (T1, T2, T3, and T4) and their associated genomic estimated
breeding values (GEBV1, GEBV2, GEBV3, and GEBV4) for four simulated selection cycles. The
selection intensity was 10% (k; = 1.755)

Estimated CLGSI expected genetic gain

Traits Genomic estimated breeding value
Cycle T1 T2 T3 T4 GEBV1 GEBV2 | GEBV3 GEBV4
1 7.46 —3.69 3.26 1.60 |7.28 —4.38 3.72 3.29
2 7.08 —3.45 291 1.17 7.08 —3.63 3.66 2.67
3 7.81 —3.51 206 |0.76 |7.30 —3.92 2.35 2.40
4 7.46 —2.76 2.48 0.81 6.84 —2.79 2.79 2.40
Average | 7.45 —3.35 2.68 1.09 |7.13 —3.68 3.13 2.69
Estimated GESIM expected genetic gain
Traits Genomic estimated breeding value
Cycle T1 T2 T3 T4 GEBV1 GEBV2 | GEBV3 GEBV4
1 8.28 —3.51 2.93 092 |7.77 —4.27 3.52 2.64
2 7.89 —3.09 242 082 |7.40 —3.41 3.29 2.38
3 8.47 —3.26 1.69 046 |7.55 —3.78 2.11 2.16
4 8.08 —2.46 204 066 |7.15 —2.67 2.53 2.39
Average 8.18 —3.08 2.27 0.71 7.46 —3.53 2.86 2.39

indices was 10% (k; = 1.755). For this data set, matrix F was an identity matrix of
size 8 x 8 in all four selection cycles.

For this data set, the averages of the estimated CLGSI and GESIM selection
responses were 0.68 and 2.74 (Table 8.1) respectively. The estimated CLGSI
selection response was lower than the estimated GESIM selection response.
Table 8.3 presents the estimated CLGSI and GESIM expected genetic gain for
four traits (T1, T2, T3, and T4) and their associated genomic estimated breeding
values (GEBV1, GEBV2, GEBV3, and GEBV4) for four simulated selection cycles.
The averages of the estimated CLGSI expected genetic gains for the four traits and
their associated GEBVs were 7.45, —3.35, 2.68, 1.09, 7.13, —3.68, 3.13, and 2.69
respectively, whereas the averages of the estimated GESIM expected genetic gains
for the four traits and their associated GEBVs were 8.18, —3.08, 2.27, 0.71, 7.46,
—3.53, 2.86, and 2.39 respectively. The estimated CLGSI and GESIM expected
genetic gains per trait were very similar.

8.3 The Genome-Wide Linear Eigen Selection Index
Method

The MESIM requires regressing phenotypic values on marker coded values to
predict the marker score values for each individual candidate for selection, and
then combining the marker scores with phenotypic information using the MESIM
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to obtain a final prediction of the net genetic merit. In addition, the GESIM requires
fitting of a statistical model to estimate all available marker effects in the training
population; these estimates are then used to obtain GEBVs, which are predictors of
breeding values. Crossa and Cerén-Rojas (2011) extended the ESIM theory to a
genome-wide linear molecular ESIM (GW-ESIM) similar to the GW-LMSI
described in Chap. 4. The GW-LMSI and GW-ESIM are very similar and only
minor changes are necessary in GW-ESIM; for example, instead of estimating the
GW-LMSI vector of coefficients according to the LPSI method (Chap. 2), the
GW-ESIM vector of coefficients is estimated according to the singular value decom-
position (SVD) described in Chap. 7.

8.3.1 The GW-ESIM Parameters
In the GW-ESIM context, the net genetic merit can be written as
H=w\g+wm=[w, w’z}[rgn} =w'x, (8.24)

where g’ =[g, ... g is the vector of true breeding values, 7 is the number of
traits, w; = [wy -+ w,] is the vector of unknown economic weights associated
with the breeding values; w’2 =[0; --- Oy] is anull vector associated with the
vector of marker code values m' = [m; --- my], where m; (j = 1, 2, ...,
N = number of markers) is the jth marker in the training population;
w =[w, Ww,]andx=[g m']. The GW-ESIM (/) index combines the pheno-
typic value and all the marker information of individuals to predict Eq. (8.24) values
in each selection cycle and can be written as

y
I=Bly+p,m=[B B,] M =P, (8.25)
where ﬁ; and f,, are vectors of phenotypic and marker weights respectively;
y=[y - y] is the vector of phenotypic values; m was defined in

Eq. (824); p'=[B, B,] and q' =]y m'].
Let o7 = B'QP and 67, = w'Zw be the variance of [ = f'q and H = w'z respec-

tively, and oy; = W'Z the covariance between I and H, where Q = Var [fn] =

P G;W . g| | C Gg,, . .
|:GM M} and X = Var[m =lG, M are block matrices of size

(t+ N) X (t + N) (t is the number of traits and N is the number of markers) where
P = Var(y), M = Var(m), C = Var(g), and Gy, = cov (y,m) = cov (g, m) are
covariance matrices of phenotypic (y), coded marker (m), and genetic (g) values
respectively, whereas Gy, is the covariance matrix between y and m, and between
g and m (for details see Chap. 4); w and f were defined earlier. Note that although the
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size of matrices P and C are ¢ X ¢, the sizes of matrices M and G,are N x Nand N X ¢
respectively. Thus, if the number of markers is very high, the size of matrices M and
G, could also be very high.

In Chap. 4 we described matrix M as

1 (1 =201) ... (1—=201y)
Mo | ( —:2921) 1 (- :2921v) ’ (8.26)
(1=20y1) (1—20w) ... 1
where (1 — 26;) and 0;; (i, j= 1, 2, ..., N= number of markers) are the covariance

(or correlation) and the recombination frequency between the ith and jth marker
respectively, whereas matrix G,, can be written as

(1 =2r)ay (1 =2r)an ... (1 =2ry)aw,
Gy — (1— 2:;’21)0421 (1- 2:’22)0622 (1- 2r:2N)“2NQ ) (8.27)
(I=2r)an (1 =2rm)an ... (1—2rw)aw,

where (1 — 2riag (i=1,2,...,N, k=1, 2, ..., No = number of quantitative trait
loci (QTL), g =1, 2, .. ., t) is the covariance between the gth trait and the ith marker;
ri is the recombination frequency between the ith and kth QTL, and a,, is the effect
of the kth QTL over the gth trait.

—_ wWXp : Y — wix-
Let pyy Ny be the correlation between I = f'q and H = w'x; then, the

GW-ESIM selection response can be written as
R = k[GHp]_”, (8.28)

where k; is the standardized selection differential (or selection intensity) associated
with GW-ESIM and oy = vW Xw is the standard deviation of the variance of H.
Assuming that k; is fixed, and that matrices Q and X are known, we can maximize
R (Eq. 8.28) by maximizing py; with respect to vectors w and f under the
restrictions U%[ = wXw, a% =p'Qp, and 0 < a%,,a% < 00, similar to the MESIM

and GESIM. It can be shown that vector w can be written as

wy = X'Qp (8.29)

and that Hy = Wyx is the net genetic merit in the GW-ESIM context. The
correlation between Hy = wipx and I = f/q is = VPO 44 the

w W B'q PHylI BOX 'Qp
GW-ESIM vector of coefficients (B) that maximizes py, , can be obtained from
equation

(QilZ - A%VI(H»N))[;W =0, (8.30)
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where I, , n) is an identity matrix of size (t + N) X ( + N) and Iy = B'Wq is the
optimized GW-ESIM. The accuracy of the GW-ESIM can be written as

PHyly = on
\/ ﬁ/WQxilQﬁw Hw

where o7, = /B,y QPy is the standard deviation of Iy = Bj,q, and oy, =
q/ﬁ’WQX’lQﬁW is the standard deviation of Hy = wy,x. In Eq. (8.30) 2, =

pi,w 1, 18 the square of the canonical correlation between Hy and Iy.
The maximized GW-ESIM selection response and expected genetic gain per trait

are
Rw = ki\/BwQByw (8.32)

and

Xpy

VByQBy

respectively, where By is the first eigenvector of Eq. (8.30).

w = ki (8.33)

8.3.2 Estimating GW-ESIM Parameters

In Chap. 2, Eqgs. (2.22) to (2.24), we described the restricted maximum likelihood
methods to estimate matrices C and P, which can be denoted by C and P. In
Chap. 4, we described how to estimate matrices M and G,,, which can be denoted
by Mand G u. With these estimates, we constructed the block estimated matrices as

R ) ~/ N -~ ~/
= J) GAM and X = AC GAM , whence we obtained the equation
GM GM M
(Q X —231)By; =0, (8.34)
j=1,2, .., (+ N), where (t + N) is the number of traits and markers in

the GW-ESIM index. Similar to the MESIM, we obtained estimators EWI and PWI
of the first eigenvector By, and the first eigenvalue PW, respectively, from equation

(EE' —a1)By, =0, (8.35)
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where E = QX and Hi= %V,» These results allow the GW-ESIM index selection

response and its expected genetic gain per trait to be estimated as Ty = B’Wlfi,
<R

~ =~ = ~ X
Rw =ki\/$'w,QBy, and E,, = k; AﬁiY‘ respectively, whereas the estimator
\/ B w, QBy,

of GW-ESIM accuracy is Zwl-

8.3.3 Numerical Examples

We compare the estimated GW-LMSI and GW-ESIM selection responses using the
simulated data set described in Sect. 2.8.1 of Chap. 2, with a selection intensity of
10% (k; = 1.755). Table 8.1 presents the estimated GW-LMSI selection response for
four simulated selection cycles when their vectors of coefficients are normalized,
whence it can be seen that the average estimated GW-LMSI selection response was
0.87. Table 8.1 also presents the estimated GW-ESIM selection response for four
simulated selection cycles; the average of the estimated GW-ESIM selection
responses was 0.93. Thus, for this data set, the estimated GW-LMSI and selection
responses were very similar.

8.4 The Restricted Linear Genomic Eigen Selection Index
Method

The restricted linear genomic eigen selection index method (RGESIM) is based on
the restricted linear phenotypic ESIM (RESIM) theory described in Chap. 7. In the
RESIM, the breeder’s objective is to improve only (¢ — r) of ¢ (r < ¢) traits, leaving
r of them fixed. The same is true for RGESIM, but in this case, we should impose 2r
restrictions, i.e., we need to fix r traits and their associated r GEBV to obtain results
similar to those obtained with the RESIM (see Chap. 7 for details). This is the main
difference between the RGESIM and the RESIM.

It can be shown that Cov(I, ) = AP is the covariance between the breeding value
vector (o' = [g' y']) and the GESIM index (I = f'f). In the RGESIM, we want
some covariances between the linear combinations of a (Ug o) and I = §'f to be zero,
i.e., Cov(Ig, Ugzar) = UgAB = 0, where Uy is a matrix 2(t — 1) x 2t of 1s and Os
(1 indicates that the trait and its associated GEBV are restricted, and O indicates that
the trait and its GEBV have no restrictions). We can solve this problem by maxi-
mizing BAB \ith respect to vector B under the restriction U;Ap = 0 and p/'p = 1

VB'®p

similar to the RESIM, or by maximizing the correlation between H = w'a and
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I1=0f py = \/"Xw—liA\;[?dTﬁ’ with respect to vectors w' and f under the restrictions
W AW
ULAB = 0,67, = WAW, 67 = B'®B and 0 < o7, 67 < 00, as we did for the GESIM.

8.4.1 The RGESIM Parameters

To obtain the RGESIM vector of coefficients, we maximize the function

p'Ap ey
f(B,V) = —vUGAP 8.36
B, V) To8 (8.36)
with respect to B and v/, where vV = [v; v, --- va, — 1] is a vector of Lagrange

multipliers. The derivatives of function i, v') with respect to § and v’ can be written
as

2(p0p)'°Ap — (B@B) "’ (BFAP)DP — AUgv = 0, (8.37)
UAB =0, (8.38)

respectively, where Eq. (8.38) denotes the restriction imposed for maximizing
Eq. (8.36). Using algebraic methods on Eq. (8.37), we get

(Krg® 'A — ApgL:) Brg = 0, (8.39)

where A3 = hj ., hj,_is the RGESIM heritability obtained under the restriction Uy,
AB=0; Krg = [I; — Qggl, I, is an identity matrix of size 2¢t x 2f, and
Qrg = D 'AUG (U AD 'AU;) U A. When Uy, is a null matrix, B, = Bl
(the vector of the GESIM coefficients); thus, the RGESIM is more general than
the GESIM and includes the GESIM as a particular case. The RGESIM index Igg =
Brcy and its selection response and expected genetic gain per trait use the first
eigenvector of matrix Ko® 'A. It can be shown that the vector of coefficients of
H = wpso in the RGESIM can be written as

Wrg = A7 [@ + QA Bro. (8.40)

where Qp; = AUg (U,A®D 'AU;) U AD .

Note that the restriction U;Ap = 0 can be written as f’AUg = 0; this means that
B'Q'rc = 0 and that the covariance between Hrg = Wy and Iz = Prof (GHpoine)
can be written as

OHgglrg = W;?GAB;?G = ﬁ;ec‘l)ﬁRG + ﬁ;?GQ;?GCBRG = ﬁ;?G(I)ﬁRG' (8.41)
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Equation (8.41) indicates that 6,1, is equal to the variance of Irg = Prsf
(G%RG = ﬁ;eG(I)BRG); therefore, the maximized correlation between Ir; and Hyg or
RGESIM accuracy can be written as

v/ BrePBrc
Pt = ~ARE2RG 8.42
Hralka = /WhAWRG ( )

where W;eGAWRG is the variance of Hyg. Hereafter, to simplify the notation, we write
Eq. (8.42) as Agg.
The maximized selection response and the expected genetic gain per trait of the

RGESIM are
Rrg = k“/[i;wdlﬁRG (8.43)

and

ABrc

VBro®Brc

respectively, where Brg is the first eigenvector of matrix Kzo® 'A.

Erc = ki (8.44)

8.4.2 Estimating RGESIM Parameters

In Sect. 8.2, we indicated how to estimate matrices P, I, and C using phenotypic and

.. . . . Cr
genomic information, whence we can estimate matrices A = r r and

D= [II: ;} . Those methods are also valid for the RGESIM. This means that the
SVD methods described for estimating MESIM parameters are also valid for esti-
mating RGESIM parameters.

8.4.3 Numerical Examples

With a selection intensity of 10% (k; = 1.755), we compare the CRLGSI (for details
see Chap. 6) versus the RGESIM theoretical results using a real maize (Zea mays)
F, population with 244 genotypes (each with two repetitions), 233 molecular
markers, and three traits—GY (ton hafl), EHT (cm), and PHT (cm)—described in
045 1.33 2.33 N 0.07 0.61 1.06
Sect. 8.2.2, where P = | 1.33 65.07 83.71 |, C= |0.61 17.93 22.75 ]|,
2.33 83.71 165.99 1.06 2275 44.53
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R 0.07 0.65 1.05
and I' = [ 0.65 10.62 14.25| were the estimated matrices of P, C, and T
1.05 14.25 26.37
respectively.
We have indicated that the main difference between the RLPSI and the CRLGSI
is the matrix U’C, on which we now need to impose two restrictions: one for the trait
and another for its associated GEBV. Consider the data set described earlier and

suppose that we restrict the trait GY (ton ha™!) and its associated GEBVgy; then,

- ;|1 0 0 0 0 O .
matrix U, should be constructed as Uy, = 00010 0 . If we restrict

traits GY and EHT (cm) and their associated GEBVgy and GEBVgyr, matrix U’C

1 000 0O
should be constructed as U, = (O) (1) 8 (1) 8 8 , etc. The procedure for
000 01O

obtaining matrices Kgg = Ly, — (A)RG} and Qg = ® 'AUg (Ug K(/I\)’IKUG)AU'

A was described in Chap. 6, and is also valid for estlmatmg RGESIM parameters.
The estimated CRLGSI vector of coefficients is [3 R = KRGﬁ where [5 @ 'A

wis the estimated CLGSI vector of coefficients (Chap. 6). Letw’ =[5 —0.1 —0.1

0 0 0] be the vector of economic weights and suppose that we restrict trait
1 0 00 0O
00 01 0 0
and according to matrices IA’, 6, and T  described earlier, B/CR =
[0.076 —0.004 —0.018 2.353 —-0.096 —0.082] was the estimated
CRLGSI vector of coefficients and the estimated CRLGSI was

GY and its associated GEBVgy; in this case, U’C1 =

Tcr = 0.076GY — 0.004EHT — 0.018PHT + 2.353GEBV gy — 0.096GEBVyr
— 0.082GEBVpur

where GEBV gy, GEBVgyr, and GEBVpyt are the GEB Vs associated with the traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions.

The estimated CRLGSI selection response and expected genetic gainA per

/
=~ PP =~ A

trait were  Rep = ki\/Blg®Pog = 096 and  Blp =k = AﬁciRM

\/ Ber®PBcr
[0 —353 —6.03 0 —293 —4.87] respectively, whereas the estimated
CRLGSI accuracy was pp., = @ = 0.51. Note that in ITZ’CR, the trait GY and its

OH

associated GEBV gy have null values, as we would expect.

The estimated RGESIM vector of coefficients was Ber =
[0.015 —0.001 —0.004 0.998 —0.029 —0.045], and the estimated
RGESIM index was Igg = 0.015GY — 0.001EHT — 0.004PHT + 0.998GEBVgy
—0.029GEBVgur — 0.045GEBVpur where GEBVgy, GEBVgyt, and GEBVpyr
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are the GEBVs associated with traits GY, EHT, and PHT respectively. The same
procedure is valid for two or more restrictions.
The estimated RGESIM selection response and expected genetic gain per

/
N = = ~ A
trait were  Rgg = ki\/Brg®PBrg =037 and Ej; =k = AﬁRiGAA
\/ Brc®PPBrc
[0 —328 —6.03 0 —293 —540] respectively, whereas the estimated

~

U/\
RGESIM accuracy was p~ ~ = _Ira _ ).86.

Hglr o~
Hre

Fig. 8.3 presents the frequency distribution of the 244 estimated RGESIM index
values for two null restrictions on traits GY and EHT and their associated GEBVgy
and GEB Vgyr, for one selection cycle in an environment for a real maize (Zea mays)
F, population with 233 molecular markers. Note that the frequency distribution of
the estimated RGESIM index values approaches the normal distribution.

Now we compare the estimated CRLGSI and RGESIM selection responses and
expected genetic gains per trait using the simulated data set described in Sect. 2.8.1
of Chap. 2. We used that data set for four phenotypic selection cycles (C2, C3, C4,
and C5), each with four traits (7}, T,, T3, and T}), 500 genotypes, and four replicates
per genotype. The economic weights for 7, 75, T3, and T4 were 1, —1, 1, and

RGESIM frequency distribucion values

Fig. 8.3 Frequency distribution of the 244 estimated restricted genomic eigen selection index
method (RGESIM) values for two null restrictions on traits grain yield (GY) and EHT and their
associated genomic estimated breeding values (GEBVs), GEBV gy and GEBVgyr respectively, for
one selection cycle in an environment for a real maize (Zea mays) F, population with 233 molecular
markers. Note that the frequency distribution of the estimated RGESIM index values approaches
normal distribution
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1 respectively. For this data set, matrix F was an identity matrix of size 8 x 8 for all
four selection cycles.

Columns 2, 3, and 4 (from left to right) of Table 8.4 present the estimated
CRLGSI selection responses when their vectors of coefficients are normalized and
the estimated RGESIM and selection responses for one, two, and three restrictions
for four simulated selection cycles. The averages of the estimated CRLGSI selection
responses of the traits and their associated GEBVs for each of the three null
restrictions were 3.24 for one restriction, 4.08 for two restrictions, and 5.06 for
three restrictions, whereas the averages of the estimated RGESIM selection
responses were 3.08 for one restriction, 2.79 for two restrictions, and 3.23 for
three restrictions. Note that although for one restriction the selection response was
similar for both indices, for two and three restrictions the CRLGSI selection
responses were greater than the RGESIM selection responses.

Table 8.5 presents the estimated CRLGSI and RGESIM expected genetic gains
per trait for four traits (T1, T2, T3, and T4) and their associated GEB Vs (in this case
denoted by G1, G2, G3, and G4 to simplify the notation) in four simulated selection
cycles and for one, two, and three null restrictions in four simulated selection cycles.
Note that the null values of the traits and their restricted GEBVs are not shown in
Table 8.5 with the aim of simplifying the table. The averages of the estimated
CRLGSI expected genetic gains for the three traits and their associated GEBVs
were —2.60, 2.16, 2.84, —1.21, 0.67, and 1.02 for one restriction; 2.74, 3.23, 0.78,

Table 8.4 Estimated combined null restricted linear genomic selection index (CRLGSI) and
estimated combined predetermined proportional gain linear genomic selection index (CPPG-
LGSI) selection responses for one, two, and three restrictions when their vectors of coefficients
are normalized for four simulated selection cycles

CRLGSI response for one, two and CPPG-LGSI response for one, two and three
three null restrictions predetermined restrictions

Cycle 1 2 3 1 2 3

1 3.25 4.09 4.89 5.36 2.80 1.81

2 3.28 4.19 5.21 5.07 3.64 1.99

3 291 3.89 4.97 5.37 3.86 1.42

4 3.53 4.17 5.15 4.52 3.38 1.20

Average |3.24 4.08 5.06 5.08 3.42 1.60
RGESIM response for one, two, and | PPG-GESIM response for one, two, and
three null restrictions three predetermined restrictions

Cycle 1 2 3 1 2 3

1 3.21 2.78 3.47 1.95 4.07 4.26

2 3.11 2.86 3.06 1.85 4.12 5.49

3 2.93 2.76 3.20 2.04 4.18 6.30

4 3.07 2.76 3.21 2.02 4.17 5.82

Average |3.08 2.79 3.23 1.96 4.14 5.47

Estimated null restricted genomic eigen selection index method (RGESIM) and predetermined
proportional gain genomic eigen selection index method (PPG-GESIM) selection responses for one,
two, and three restrictions for four simulated selection cycles. The selection intensity was 10%
(ky = 1.755)
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Table 8.5 Estimated CRLGSI and estimated null RGESIM expected genetic gains per trait for four
traits (T1, T2, T3, and T4) and their associated genomic estimated breeding values (G1, G2, G3, and
G4) for four simulated selection cycles and for one, two, and three null restrictions for four
simulated selection cycles. The selection intensity was 10% (k; = 1.755)

CRLGSI expected genetic gains for one, two and three null restrictions

Three

One restriction® Two restrictions® restrictions®
Cycle |T2 T3 T4 G2 G3 G4 |T3 T4 G3 G4 |T4 G4
1 —2.32 |2.17 |2.87 |—148 |0.73 |1.24 |2.60 |3.38 |0.86 [1.15 [4.08 |1.50
2 —2.76 [2.14 |2.89 | —1.19 [0.76 |0.96 |2.81 |3.30 |0.87 |0.98 |3.95 |1.25
3 —2.22 227 (298 | —1.15 [0.62 097 |2.77 |3.14 |0.69 |0.90 |3.93 |1.33
4 —-3.09 [2.08 [2.64 |—1.05 |0.58 [0.92 |2.80 [3.08 |0.70 [0.93 [4.13 |1.24
Mean | —-2.60 |[2.16 [2.84 |—1.21 |0.67 |1.02 [2.74 [3.23 |0.78 [0.99 [4.02 |1.33

RGESIM expected genetic gains for one, two and three null restrictions

Three

One restriction® Two restrictions® restrictions®
Cycle |T2 T3 T4 G2 G3 G4 T3 T4 G3 G4 |T4 G4
1 327 | —1.52 | —1.24/2.48 | —-0.88| —1.00 |3.18 |0.93 |1.88 |0.43|3.66 |2.21
2 330 | —-1.79 | —1.41/2.10 | —1.09|—-0.82 [3.26 |1.34 |1.82 [0.66|3.41 |2.00
3 298 | —1.62 | —1.44/2.13 | -0.83|-0.75 [3.31 |0.86 |1.70 [0.21|3.45 |2.05
4 3.56 | —1.73 | —1.23/1.92 | -0.89|-0.78 [3.40 [0.96 |1.62 [0.53|3.58 |2.02
Mean |3.27 | —1.67 |—1.33|2.16 |—-092|—-0.84 |329 |1.02 |1.76 |0.46|3.53 |2.07

ZA11 T1 and G1 expected genetic gains were null
PAll T1, T2, G1, and G2 expected genetic gains were null
°All T1, T2, T3, G1, G2, and G3 expected genetic gains were null

and 0.99 for two restrictions; and 4.02 and 1.33 for three restrictions. On the other
hand, the averages of the estimated RGESIM expected genetic gains for the three
traits and their associated GEBVs were 3.27, —1.67, —1.33, 2.16, —0.92, and —0.84
for one restriction; 3.29, 1.02, 1.76, and 0.46 for two restrictions; and 3.53 and 2.07
for three restrictions. These results indicate that in terms of absolute values, the
estimated expected genetic gains for the traits and their associated GEBVs were
similar for both indices.

8.5 The Predetermined Proportional Gain Linear Genomic
Eigen Selection Index Method

The predetermined proportional gain linear genomic eigen selection index method
(PPG-GESIM) theory is based on the predetermined proportional gain linear phe-
notypic ESIM (PPG-ESIM) described in Chap. 7. In the PPG-ESIM, the vector of
PPG (predetermined proportional gain) imposed by the breeder was
d =[d d, --- d,]. However, because the PPG-GESIM uses phenotypic
and GEBYV information jointly to predict the net genetic merit, the vector of PPG
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imposed by the breeder (dps) should be twice the standard vector d’, that is,
ds=[di do -~ dr dwy1 dra -+ dy |, where we would expect that
if d is the PPG imposed on trait 1, then d, , | should be the PPG imposed on the
GEBYV associated with trait 1, etc. Thus, in the PPG-GESIM we have three possible
options for determining (for each trait and GEBV) the PPG: e.g., for trait 1, d; =d, , 1,
dy>d,, ord, <d,, . Thisis the main difference between the standard PPG-ESIM
described in Chap. 7 and the PPG-GESIM.

8.5.1 The PPG-GESIM Parameters

Using the same procedure described for RGESIM and PPG-ESIM, the PPG-GESIM
vector of coefficients (fps), which maximizes the PPG-GESIM selection response
and the expected genetic gain per trait, is the first eigenvector of the following
equation

(Tpg — Aplas)Bpg = 0. (8.45)

where Tps = KRG(IJ_IA + B, Kpg = [I; — Qrgl, I, is an identity matrix of
size 21 X 21, Qpg =D 'AUG(UL,A® 'AU;) 'ULA, B = 8¢, 8=
, o (U,A®'AUG) ' ULA®'A
&, (UL, A®'AUG) ™ dpo
When B is a null matrix, Tpg = KRG<I)71A (matrix of the RGESIM), and when
U’G is a null matrix, Tpg = o 'A (matrix of the GESIM); this means that the
PPG-GESIM includes the RGESIM and GESIM as particular cases. The opti-
mized PPG-GESIM index can be written as Ipg = Ppf.
The vector of coefficients of H = Wy in the PPG-GESIM can be written as

@ 'AUG(UL,AD 'AUG) 'dpg, and

wrg = A~ [® + QA ] Bpg, (8.46)
where Q) = AUgDg (DU, A® 'AUsD;) 'D,ULAD ", and
dr 0 0 —d
D’G — 0: d:2’ ' 0: jd2 . Similar to RGESIM, it can be shown that
0 0 - do —dy_y

the covariance between Hgg = Wyt and Ipg = Bpsf (0w, ) is equal to
the variance of Ipg = Ppf (o-%PG = BrcPPBpc ), that i, om,uie = WpeABpg =

/ _ 2
BrcPPrc = Olpg
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The maximized correlation between Ip; and Hpg, or PPG-GESIM accuracy, is

vV ﬁ;’Gq)ﬁPG
g == 8.47
PHpglpg w;, AWrg ( )

where wp;AWpg is the variance of Hpg. Hereafter, to simplify the notation, we write
Eq (847) as APG‘
The maximized selection response and the expected genetic gain per trait of the

PPG-GESIM are
RpG = ki\/ Bp®Brg (8.48)

and

ABprg

EPG = k[i,
VBrPBrc

respectively, where Bp¢ is the first eigenvector of Eq. (8.45).

(8.49)

8.5.2 Numerical Examples

The process for estimating PPG-ESIM parameters is similar to the method
described for estimating RGESIM parameters. With a selection intensity of
10% (k; = 1.755), we compare the combined predetermined proportional
gain linear genomic selection index (CPPG-LGSI) and PPG-GESIM results
using the real maize (Zea mays) F, population with 244 genotypes,
233 molecular markers, and three traits—GY (ton ha~'), EHT (cm), and PHT

N 045 1.33 233 0.07 0.61 1.06
(cm)—where P = | 1.33 65.07 83.71|, G= [0.61 1793 22.75| and
2.33 83.71 165.99 1.06 22.75 44.53

R 0.07 0.65 1.05
I'={0.65 10.62 14.25| are the estimated matrices of P, G, and I respec-
1.05 14.25 26.37

tively, whereas w' =[5 —0.1 —0.1 0 O 0] was the vector of economic
weights.
The estimated CPPG-LGSI vector of coefficients was Bep = Bog + 0cpd (see

Chap. 6 for additional details). Let A= [9 1:} and @ = [E E] be the
r r rr
estimated block matrices and dp; =[7 —3 3.5 —1.5] the vector of PPG
imposed by the breeder on the traits GY and EHT, and their associated genomic
estimated  breeding values (GEBVgy and GEBVgyr), and let
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U, = be the matrix of null restrictions on the CPPG-LGSI

(= e )

0
0
0
1

SO O =
(=N e o)
(=Rl )
(=Rl e)

and w =[5 —0.1 —0.1 00 0] the vector of economic weights. It can be
shown that 8cp = —0.00009 is the estimated value of the proportionality con-
stant, 8 =[—112.92 —72.16 61.35 231.79 64.75 —61.35], Plp=
[-0.01 0.01 —-0.01 0.59 0.09 —0.09] is the estimated CPPG-LGSI vec-
tor of coefficients, and the estimated CPPG-LGSI can be written as

Tcp = —0.01GY + 0.01EHT — 0.01PHT + 0.59GEBVgy + 0.09GEBVgpr
— 0.09GEB Vppr

where GEBVgy, GEBVgyr, and GEBVpyt are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for more than
two predetermined restrictions. The estimated CPPG-LGSI selection response

and expected genetic gain per trait were Rep = k,\/ﬁ’cpi)ﬁcp =0.443 and
BepA

\/ Bep®Bcr
_ 81CP

respectively, whereas the estimated CPPG-LGSI accuracy is py;., = == = 0.234.
OH

E'CP:kI =[-0.004 0.002 —4.639 —0.002 0.001 —4.326]

Because the estimated value of the proportionality constant was negative (@cp =
—0.00009), the expected genetic gains of the traits GY and EHT, and their associated
genomic estimated breeding values (GEBVgy and GEBVgyr), which appeared in
the IAE’CP values, were not in accordance with the values of the vector of PPG imposed
by the breeder,dp; =[7 —3 3.5 —1.5], as we would expect, and CPPG-LGSI
accuracy (0.234) was low. These results indicate that in the CPPG-LGS], it is very
important for the estimated values of §CP to be positive (see Chaps. 3 and 6 for
details).

In the PPG-GESIM, we need to find the solutions to equation (TPG - ;1\12,6/12,)

Brg, = 0, for 3, and B, (see Eq. 8.45). The estimated PPG-GESIM vector of
coefficients was Bl; = [0.001 —0.050 0.029 0.975 0.154 —0.157], which

—-0.1 0 0 O 0 0
0 30 0 0 0
. . 0 0 2 O 0 0 .
was transformed using matrix F = 0 00 -1 0 'k that is, we
0 00 0 -1 0
0 0 0 O 0o -1

changed the direction of the original vector. With the B\;,G values, we can estimate the
PPG-GESIM index as
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Tpg = 0.001GY — 0.05EHT + 0.029PHT + 0.975GEBVgy + 0.154GEBVgyr
— 0.157GEBVpur

where GEBVgy, GEBVgyt, and GEBVpyt are the GEBVs associated with the
traits GY, EHT, and PHT respectively. The estimated PPG-GESIM selection
response, accuracy, and expected genetic gain per trait were Rpg =

o~ /
ki\/Bro®Brg = 0.696, p~ ~ =% —0843, and E,, P
Hpclpg o~ =
Hpg \/ BrcPPrc
[0.01 —1.00 —3.56 0 —0.46 —3.98] respectively.

Fig. 8.4 presents the frequency distribution of the 244 estimated PPG-GESIM
index values for two predetermined restrictions on the traits GY and EHT and their
associated GEBVs (GEBVgy and GEBVEgyr), for one selection cycle in an envi-
ronment for a real maize (Zea mays) F, population with 233 molecular markers. Note
that the frequency distribution of the estimated PPG-GESIM index values
approaches normal distribution.

Now, with a selection intensity of 10% (k; = 1.755) and a vector of predetermined
restrictions dp; =[7 -3 5 3.5 —1.5 2.5], we compare the estimated
CPPG-LGSI and PPG-GESIM selection responses and expected genetic gains per

PPG-GESIM frequency distribution values

0 = —

Fig. 8.4 Frequency distribution of the 244 estimated predetermined proportional gain genomic
eigen selection index method (PPG-GESIM) values for two predetermined restrictions on the traits
GY and EHT and their associated GEBVs, GEBV gy and GEBVgyr, for one selection cycle in an
environment for a real maize (Zea mays) F, population with 233 molecular markers
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trait using the simulated data set described in Sect. 2.8.1 of Chap. 2. Traits T1, T2,
and T3 and their associated GEBVs (GEBV1, GEBV2, and GEBV3 respectively)
were restricted, but trait T4 and its associated GEBV4 were not restricted. For
this data set, matrix F was an identity matrix of size 8 x 8 for all four selection
cycles.

Table 8.6 presents the estimated CPPG-LGSI selection responses when their
vectors of coefficients are normalized, and the estimated PPG-GESIM selection
responses for one, two, and three predetermined restrictions for four simulated
selection cycles. The averages of the estimated CPPG-LGSI selection responses
were 5.08 for one restriction, 3.42 for two restrictions, and 1.60 for three restrictions,
whereas the averages of the estimated PPG-GESIM selection responses were 1.96
for one restriction, 4.14 for two restrictions, and 5.46 for three restrictions. For this
data set, when the number of restrictions increases, the estimated CPPG-LGSI

Table 8.6 Estimated CPPG-LGSI expected genetic gains for one, two, and three restricted
predetermined traits (T1, T2, and T3) and for one, two, and three restricted predetermined
GEBVs (GEBV1, GEBV2, and GEBV3) for four simulated selection cycles

CPPG-LGSI expected genetic gain for one predetermined restriction
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 8.24 —-3.62 [3.32 |226 |4.12 —2.33 1.75 1.09
2 7.98 —4.06 [3.03 2.68 3.99 —2.24 1.79 1.04
3 8.61 —4.48 |3.24 1.96 |4.30 —2.32 1.70 0.98
4 8.30 —434 332 204 |4.15 —2.16 1.62 0.92
Average | 8.28 —-4.12 323 223 |4.14 —2.26 1.71 1.01
CPPG-LGSI expected genetic gain for two predetermined restrictions
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 8.06 —346 330 206 [4.03 —1.73 1.72 0.98
2 8.17 —3.50 |3.08 2.65 |4.09 —1.75 1.79 0.98
3 8.88 —3.81 3.31 1.83 |4.44 —1.90 1.72 0.90
4 8.61 —3.69 [343 1.99 |4.30 —1.84 1.65 0.87
Average | 8.43 -3.61 3.28 213 422 —1.81 1.72 0.93
CPPG-LGSI expected genetic gain for three predetermined restrictions
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 5.77 —2.47 412 228 |2.88 —1.24 2.06 0.98
2 5.68 —243 406 (276 284 —1.22 2.03 0.97
3 5.87 —2.52  |4.20 1.98 2.94 —1.26 2.10 0.79
4 591 —2.53 422 |2.00 |295 —1.27 2.11 0.83
Average | 5.81 —2.49 |4.15 226 290 —1.24 2.07 0.89

The selection intensity was 10% (k; = 1.755) and the vector of predetermined restrictions was
dpc=[7 -3 5 3.5 —1.5 2.5]. Trait T4 and its associated GEBV4 were not restricted
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selection response tends to decrease, whereas the estimated PPG-GESIM selection
response increases.

Tables 8.7 presents the estimated CPPG-LGSI and PPG-GESIM expected genetic
gains for one, two, and three predetermined restrictions respectively, for four
simulated selection cycles. The averages of the estimated CPPG-LGSI expected
genetic gains for the four traits and their four associated GEBVs were 8.28, —4.12,
3.23,2.23, 4.14, —2.26, 1.71, and 1.01 for one restriction; 8.43, —3.61, 3.28, 2.13,
422, —1.81, 1.72, and 0.93 for two restrictions; and 5.81, —2.49, 4.15, 2.26, 2.90,
—1.24, 2.07, and 0.89 for three restrictions. On the other hand, the averages of the
estimated PPG-GESIM expected genetic gains for the four traits and their four
associated GEBVs were 6.97, —1.31, 1.78, 0.52, 5.64, —1.74, 1.75, and 0.58 for
one restriction; 6.93, —2.73, 1.29, 0.85, 5.75, —2.55, 1.49, and 0.79 for two
restrictions, and 8.12, —3.27, 2.99, 1.13, 2.19, —1.15, 1.30, and 0.45 for three

Table 8.7 Estimated PPG-GESIM expected genetic gains for one, two, and three restricted traits
(T1, T2, and T3) and for one, two, and three restricted GEBVs (GEBV1, GEBV2, and GEBV3) for
four simulated selection cycles

PPG-GESIM expected genetic gain for one predetermined restriction
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 6.89 —1.44 194 063 |6.36 —1.89 2.04 0.62
2 6.71 —1.33 190 |0.65 |6.06 —2.00 1.97 0.75
3 7.09 —1.69 1.67 040 |5.40 —1.72 1.63 0.55
4 7.18 —0.78 1.58 039 |4.73 —1.34 1.35 0.39
Average |6.97 —1.31 1.78 052 |5.64 —1.74 1.75 0.58
PPG-GESIM expected genetic gain for two predetermined restrictions
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 6.61 —2.55 140 094 |6.49 —2.80 1.75 0.87
2 5.67 —2.48 124 087 |6.16 —2.84 1.70 0.91
3 7.35 —3.08 1.21 085 |5.54 —2.49 1.37 0.82
4 8.10 | —2.80 129 076 |4.80 —2.08 1.16 0.56
Average |6.93 —2.73 1.29 |0.85 5.75 —2.55 1.49 0.79
PPG-GESIM expected genetic gain for three predetermined restrictions
Traits Genomic estimated breeding values
Cycle T1 T2 T3 T4 GEBV1 GEBV2 |GEBV3 |GEBV4
1 7.21 —294 |2.64 1.02 1.69 —1.10 1.07 0.45
2 7.71 —297 |[241 146 |222 —1.15 1.21 0.45
3 8.72 —3.43 3.17 093 2.21 —1.06 1.34 0.42
4 8.85 —3.73 3.72 1.09 |2.63 —1.29 1.60 0.48
Average |8.12 -327 (299 1.13 2.19 —1.15 1.30 0.45

The selection intensity was 10% (k; = 1.755) and the vector of predetermined restrictions was
dpc=[7 -3 5 3.5 —1.5 2.5]. Trait T4 and its associated GEBV4 were not restricted
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restrictions. These results indicate that the estimated CPPG-LGSI expected genetic
gains for the four traits and their four associated GEBVs were generally higher than
the estimated PPG-GESIM expected genetic gains for the four traits and their four
associated GEBVs.
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