Chapter 6 )
Constrained Linear Genomic Selection Check or
Indices

Abstract The constrained linear genomic selection indices are null restricted and
predetermined proportional gain linear genomic selection indices (RLGSI and
PPG-LGSI respectively), which are a linear combination of genomic estimated
breeding values (GEBVs) to predict the net genetic merit. They are the results of a
direct application of the restricted and the predetermined proportional gain linear
phenotypic selection index theory to the genomic selection context. The RLGSI can
be extended to a combined RLGSI (CRLGSI) and the PPG-LGSI can be extended to
a combined PPG-LGSI (CPPG-LGSI); the latter indices use phenotypic and GEBV
information jointly in the prediction of net genetic merit. The main difference
between the RLGSI and PPG-LGSI with respect to the CRLGSI and the CPPG-
LGSI is that although the RLGSI and PPG-LGSI are useful in a testing population
where there is only marker information, the CRLGSI and CPPG-LGSI can be used
only in training populations when there are joint phenotypic and marker information.
The RLGSI and CRLGSI allow restrictions equal to zero to be imposed on the
expected genetic advance of some traits, whereas the PPG-LGSI and CPPG-LGSI
allow predetermined proportional restriction values to be imposed on the expected
trait genetic gains to make some traits change their mean values based on a
predetermined level. We describe the foregoing four indices and we validated their
theoretical results using real and simulated data.

6.1 The Restricted Linear Genomic Selection Index

Let H = w'g be the net genetic merit and I = B’y the linear genomic selection index
(LGSI, see Chap. 5 for details), where g, v, w, and f are vectors ¢ X 1 (= number of
traits) of breeding values, genomic breeding values, economic weights, and LGSI
coefficients respectively. It can be shown that Cov(Ig,g) = I'§ is the covariance
between g and I = By, and that Var(y) = I is the genomic covariance matrix of
size t x t (see Chap. 5 for details). The objective of the restricted linear genomic
selection index (RLGSI) is to improve only (¢ — r) of t (r < ?) traits (leaving r of them
fixed) in a testing population using only genomic estimated breeding values
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(GEBVs). The RLGSI minimizes the mean squared difference between Ig and H,
E[(H — I5)*], with respect to B under the restriction Cov(lg, U'g) = UTB = 0, where
U’ is a matrix (f — 1) x ¢ of 1s and Os, in a similar manner to the restricted linear
phenotypic selection index (RLPSI) described in Chap. 3 in the phenotypic selection
context.

6.1.1 The Maximized RLGSI Parameters

Let Var(Ig) = p'Tp be the variance of I = By, w'Cw the variance of H = w'g, and
Cov(Ilg,H) = wW'T'p the covariance between H = w'g and I = p’y. The mean
squared difference between H and I can be written as E[(H — IG)Z], which should be
minimized under the restriction U'TB = 0 assuming that ', C, U’, and w are known,
i.e., it is necessary to minimize the function

fr(B,v) = WCw + BT — 2w I + 2vUTH (6.1)
with respect to vectors pand v/ = [v; v, --- v, _ ], where v is a vector of Lagrange
multipliers. In matrix notation, the derivative results of Eq. (6.1) are

-1
p| | I TIU I'w
[v —|ur o 0| (6.2)

Following the procedure described in Chap. 3 (Eqgs. 3.2 to 3.5), it can be shown
that the RLGSI vector of coefficients that minimizes E[(H — IG)Z] under the
restriction UT = 0 is

Brc = Kow, (6.3)

where K¢ = [I, — Qgl, Qg = U(UTU) 'UT, w is a vector of economic weights,
and I, is an identity matrix ¢ X t. When no restrictions are imposed on any of the
traits, U’ is a null matrix and pr; = w, the optimized LGSI vector of coefficients (see
Chap. 5 for details).

By Egq. (6.3), the RLGSI, and the maximized RLGSI selection response and
expected genetic gain per trait can be written as

IrG = PrYs (6.4)

k;
Rpg = Lo \/ BrcTBre (6.5)

and
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Lg vV ﬁ;eGrﬁRG

respectively, where k; is the standardized selection differential (or selection inten-
sity) associated with the RLGSI, and L is the interval between selection cycles or
the time required to complete a selection cycle using the RLGSI. Equations (6.4) to
(6.6) depend only on GEBYV information; thus, they are useful in testing populations.

(6.6)

6.1.2 Statistical Properties of RLGSI

Assuming that H = w'g and Irg = Py have bivariate joint normal distribution,
Brc = Kgw, and I, C, and w are known, it can be shown that the RLGSI has the
following properties:

1. Matrices Ks and Qg are idempotent (K¢g = KZG and Qg = QZG) and orthogonal
KsQs = QK = 0), that is, they are projectors. Matrix Qg projects vector
B = w into a space generated by the columns of matrix U'T due to the restriction
U'T'H = 0 used when fz(B, v) (Eq. 6.1) is minimized with respect to vectors p and
v, whereas matrix Kg projects w into a space perpendicular to that generated by
the U'T matrix columns.

2. Because of the restriction UT = 0, matrix K projects vector w into a space
smaller than the original space of w. The space reduction into which matrix Kg
projects w is equal to the number of zeros that appears in Eq. (6.6).

3. Vector frg = Ksw minimizes the mean square error under the restriction
uTp =0.

4. The variance of Iz = PrsY (G%RG = BrcI'Bre) is equal to the covariance between
IRG = ﬁ;?GY and H = W/g (GH’RG = erﬁRG)'

5. The maximized correlation between H and Irc is equal to py;, . = 0;—’:", where

61,6 = \/ BrgIBrg and 6 = /W Cw are the standard deviations of Irg = BrsY
and H = w'g respectively.

6. The variance of the predicted error, Var(H — Igg) = (1 - P%HRG> oy, is minimal.

Note that Var(H —Igg) = O'%RG + 6% — 2011,,, and when Brg = Kgw,

2 _ 2 2 2 2 i
07, = OHls» Whence Var(H — Igg) = o7, — Ol = (1 — pHIRG>5H is minimal.

The statistical RLGSI properties are equal to the statistical RLPSI properties.
Thus the RLGSI is an application of the RLPSI to the genomic selection context.

6.1.3 Numerical Examples

To estimate the parameters associated with the RLGSI, we use the real data set
described in Chap. 5, Sect. 5.1.8, where we found that, in the testing population, the
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0.21 295 5.00
estimate of matrix TwasT = | 2.95 42.41 71.11 |.We use this matrix and the
5.00 71.11 121.53
GEBVs associated with the traits grain yield (GY, ton hafl), ear height (EHT, cm),
and plant height (PHT, cm) to illustrate the RLGSI theoretical results.
Suppose that on the RLGSI expected genetic gain per trait we impose one
1 00
0 1 O}
(see Chap. 3, Sect. 3.1.3, for details about matrix U’). We need to estimate the
RLGSI vector of coefficients (Brc = Kgw) as ﬁRG = Ksw, where K¢ = I - (A)G}
and Qg = u(U fU)flU’f are estimates of matrices Kg = [I; — Qg] and Qg = U
(UTU)"'UT respectively, and I is an identity matrix 3 x 3. The estimated Qg

and two null restrictions using matrices Uy =[1 0 0] and U, = {

matrices for restrictions Uj=[1 0 0] and U,= {(1) (1) 8} were QGI =V, (U'lfU1)71
10 1405 23817 ., [oo1Ls
UT=[0 0 0 |andQa=U,(U,FU,) U,T=| 0 1.0 0.90 | respec-
0 0 0 00 O

tively, whereas the estimated K matrices for both restrictions were ﬁGl = [13 — QGI]

0 —14.05 —23.81 R R 00—-11.18
=10 1.0 0 | and Kg,=[I3—Qg,]=[00 —0.90
0 0 1.0 00 1.0
Letw =[5 —0.1 —0.1] be the vector of economic weights; then the estimated

RLGSI vector of coefficients for one and two null restrictions were f RG, = W'K’G1 =
[3.78 —0.1 —0.1] and ﬁRGZ = wK’G2 =[1.12 0.09 —0.1] respectively, and
the estimated RLGSI for both restrictions can be written as iRG. = 3.78GEBV; — 0.1
GEBV; — 0.1GEBV; and /I\RGZ = 1.12GEBV, + 0.09GEBV, — 0.1GEBV3, where
GEBV,, GEBV,, and GEB V3 are the genomic estimated breeding values associated with
traits GY, EHT, and PHT respectively in the testing population.

Table 6.1 presents 20 genotypes selected from a population of 380 genotypes and
the GEBVs in the testing population ranked according to the estimated RLGSI
values for one restriction, where U} =[1 0 O0]. The estimated RLGSI
values for genotypes 5 and 306 can be obtained as follows:fRG5 = 3.78(—-0.6) — 0.1
(—8.67) — 0.1(15.97) = 0.196 andTRGm =3.78(0.13) — 0.1(1.31) — 0.1(1.66) =
0.194 respectively. This procedure is valid for any number of genotypes and GEBVs
in the testing population.

Assume a selection intensity of 10% (k;, =1.755); then the estimated
RLGSI selection response and expected genetic gain per trait not 1nclud1ng the

ﬁRGl

interval length were RRGl = ki 1/ ﬁRG FﬁRGl = 0.40 and E}\,G =k —F—
\ ﬁRGlrﬁRGl
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Table 6.1 Number of genotypes selected from 380 genotypes of a real testing population; genomic
estimated breeding values (GEBVs) associated with three traits: grain yield (GY, ton ha '), ear
height (EHT, cm), and plant height (PHT, cm) in the testing population, and estimated and ranked
restricted linear genomic selection index (RLGSI) values obtained in the testing population for one
null restriction

Estimated GEBVs in the testing population

Number of genotypes GEBV-GY GEBV-EHT GEBV-PHT Estimated RLGSI
5 —0.6 —8.67 —15.97 0.196
306 0.13 1.31 1.66 0.194
6 0.06 1.83 —1.13 0.157
349 0.37 4.34 8.12 0.153
142 —0.26 —5.47 —5.85 0.149
69 —0.11 —3.43 —2.16 0.143
24 0.03 —0.43 0.19 0.137
192 —0.8 —13.91 —-17.7 0.137
33 —0.18 —1.44 —6.71 0.135
18 —0.43 —5.48 —12.08 0.131
21 —1.00 —16.11 —22.96 0.127
41 0.17 1.09 4.08 0.126
351 0.16 2.64 2.15 0.126
323 0.04 -0.79 1.04 0.126
158 —0.49 —8.95 —10.83 0.126
25 —0.24 —3.46 —6.86 0.125
338 0.37 3.88 8.89 0.122
316 —0.01 —0.51 —1.09 0.122
32 —0.19 —3.97 —4.43 0.122
204 —0.46 —7.41 —11.19 0.121

010
the estimated RLGSI selection response and expected genetic gains not including

the interval length  were ﬁRG2 = ki \/ ﬁ}erfﬁRGz =0.23 and
n/ ﬁ;{Gzr .
Epg, =ki——=——=—==[0 0 —2.29] respectively. When the number of

=[0 —142 —2.58]respectively. For two restrictions, with U}, = [1 0 0],

restrictions increases, the estimated RLGSI selection response value decreases,
whereas the number of zeros increases in the estimated RLGSI expected genetic
gain per trait. The number of zeros in the estimated RLGSI expected genetic gain
per trait is equal to the number of restrictions imposed on RLGSI by matrix U,
where each restriction appears as 1.

Figure 6.1 presents the frequency distribution of the estimated RLGSI values for
one (Fig. 6.1a) and two null restrictions (Fig. 6.1b). For both restrictions the
frequency distribution of the estimated RLGSI values approaches the normal
distribution.
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Fig. 6.1 Distribution of 380 estimated restricted linear genomic selection index (RLGSI) values
with one (a) and two (b) null restrictions respectively obtained in a real testing population for one
selection cycle in one environment

Now we use the simulated data set described in Chap. 2, Sect. 2.8.1, to compare
RLPSI (restricted linear phenotypic selection index, Chap. 3 for details) efficiency
versus RLGSI efficiency. Table 6.2 presents the estimated RLPSI and RLGSI
selection response for one, two, and three null restrictions imposed by matrices
1 00 / 1000 .

0 1 0} ,andU; = |0 1 O O for five simulated
0 010

selection cycles including and not including the interval between selection cycles. In

each selection cycle, the sample size was equal to 500 genotypes, each with four

repetitions and four traits, whereas the selection intensity was 10% (k; = 1.755); the

interval lengths for the RLPSI and RLGSI were 4 and 1.5 years (Beyene et al. 2015)

respectively.

Table 6.2 was divided in two parts. The first part presents the estimated RLPSI
whereas the second part presents the estimated RLGSI selection responses. Columns
2,3, and 4 in Table 6.2 present the estimated RLPSI and RLGSI selection responses
not including the interval length, whereas columns 5, 6, and 7 present the estimated
RLPSI and RLGSI selection response, including the interval length. The averages of
the estimated RLPSI selection response not including the interval length for one,
two, and three restrictions were 7.04, 5.50, and 3.90, whereas when the interval
length was included, the averages were 1.76, 1.38, and 0.98 respectively. The
averages of the estimated RLGSI selection response not including the interval length

U =1 0 0],U’2:[
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Table 6.2 Estimated restricted linear phenotypic selection index (RLPSI) and RLGSI selection
responses for 1, 2, and 3 null restrictions for 5 simulated selection cycles including and not
including the interval between selection cycles. The interval lengths for the RLPSI and the
RLGSI were 4 and 1.5 years respectively

Estimated RLPSI selection response

Not including interval length Including interval length®
Cycle 1 2 3 1 2 3
1 6.87 5.54 4.13 1.72 1.39 1.03
2 8.45 5.94 4.27 2.11 1.49 1.07
3 7.17 5.79 4.16 1.79 1.45 1.04
4 6.68 5.06 3.72 1.67 1.27 0.93
5 6.02 5.16 3.24 1.51 1.29 0.81
Average 7.04 5.50 3.90 1.76 1.38 0.98

Estimated RLGSI selection response

Not including interval length Including interval length®
Cycle 1 2 3 1 2 3
1 6.41 5.58 4.71 4.28 3.72 3.14
2 5.04 3.47 247 3.36 2.32 1.65
3 4.76 3.36 222 3.17 2.24 1.48
4 4.51 3.07 2.28 3.01 2.05 1.52
5 4.46 3.10 2.26 2.97 2.07 1.51
Average 5.04 3.72 2.79 3.36 2.48 1.86

“The estimated RLPSI selection response was divided by 4
®The estimated RLGSI selection response was divided by 1.5

for one, two, and three restrictions were 5.04, 3.72, and 2.79, whereas when the
interval length was included the averages were 3.36, 2.48, and 1.86 respectively.
These results indicated that when the interval length was included in the estimation
of the RLPSI and RLGSI selection response, RLGSI efficiency was greater than
RLPSI efficiency, and vice versa, when the interval length was not included the
RLPSI efficiency was greater than RLGSI efficiency.

Table 6.3 presents the estimated RLPSI (first part) and RLGSI (second part)
expected genetic gain per trait not including the interval between selection cycles for
one, two, and three null restrictions in five simulated selection cycles. In this case,
RLPSI efficiency is greater than RLGSI efficiency because the averages of the
estimated RLPSI expected genetic gain per trait were —2.52, 2.26, and 2.26 for
one null restriction; 2.84 and 2.65 for two null restrictions; and 3.90 for three null
restrictions. For the same set of restrictions, the averages of the estimated RLGSI
expected genetic gain per trait were: —1.85, 1.13, and 2.06 for one null restriction;
1.52 and 2.19 for two null restrictions, and 2.79 for three null restrictions. However,
divided by the interval length (4 years in the RLPSI), the averages of the estimated
RLPSI expected genetic gain per trait were —0.63, 0.57, and 0.57 for one null
restriction; 0.71 and 0.66 for two null restrictions, and 0.98 for three null restrictions.
In a similar manner, dividing by the interval length (1.5 years in this case), the
averages of the estimated RLGSI expected genetic gain per trait were —1.23, 0.75,
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Table 6.3 Estimated RLPSI and RLGSI expected genetic gain per trait for 1, 2, and 3 null
restrictions for 5 simulated selection cycles (each with 4 traits) not including the interval length
between selection cycles

Estimated RLPSI expected genetic gain for one, two, and three null restrictions

1 2 3
Cycle T1 |T2 T3 T4 T1 |T2 |T3 T4 Tl |T2 |T3 |T4
1 0 —2.18 [2.03 |2.66 |0 0 2797 277 |0 0 0 4.13
2 0 —341 [233 |271 |0 0 287 [3.07 |0 0 0 4.27
3 0 —-2.30 |3.12 [1.74 |0 0 311 268 |0 0 0 4.16
4 0 —2.88 |142 |238 |0 0 235 270 |0 0 0 3.72
5 0 —1.83 [2.38 |1.81 |0 0 312 (204 |0 0 0 3.24
Average |0 —2.52 [226 [226 |0 0 284 [265 |0 0 0 3.90

Estimated RLGSI expected genetic gain for 1, 2, and 3 null restrictions

1 2 3
Cycle T1 |T2 T3 T4 T1 |T2 |T3 T4 Tl |T2 |T3 |T4

0 —141 129 |3.72 |0 0 1.89 [3.70 |0 0 0 4.71
2 0 —-2.16 |1.07 [1.81 |0 0 149 198 |0 0 0 247
3 0 —-1.94 124 [1.57 |0 0 1.58 |1.78 |0 0 0 222
4 0 —190 [1.02 |1.60 |0 0 134 |1.73 |0 0 0 2.28
5 0 —1.83 |1.02 |1.61 |0 0 133 |1.77 |0 0 0 2.26
Average |0 —-1.85 |1.13 |2.06 |0 0 1.52 [2.19 |0 0 0 2.79

and 1.37 for one restriction; 1.01 and 1.46 for two restrictions; and 1.86 for three
restrictions.

Table 6.4 presents the estimated RLPSI heritability (E%R) values, the estimated
restricted linear genomic selection index (RLGSI) accuracy (py;,,) values, the values

of W = pflm Lgp (Lgp = 4), and the values of p = 100 (ER — 1), where 1z = Pur./
Ig

Py, and Py, is the estimated RLPSI accuracy, for one, two, and three restrictions

for five simulated selection cycles. The RLGSI interval length was Lgg = 1.5

whereas the averages of the values of W = %LRP for each restriction were

Ig
1.22, 0.85, and 0.60; this means that the estimated Technow inequality (Technow
et al. 2013), Lgg < prRG Lgp (Chap. 5, Eq. 5.18), was not true. Thus, according to
Ig

the Technow inequality results, for this data set, RLGSI efficiency in terms of time

was not greater than RLPSI efficiency. The inequality Lgg < %LIR was not true
Ir

because the estimated RLGSI accuracy was very low, whereas RLPSI heritability was

high. Thus, note that the averages of the estimated RLGSI accuracy for one, two, and

three null restrictions were 0.25, 0.19, and 0.14 respectively, and the averages of the

estimated RLPSI heritability values were 0.70, 0.78 and 0.88, respectively. Thus,

according to these results, because the estimated RLGSI accuracy is very low and
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RLPSI heritability is high, RLGSI efficiency was lower than RLPSI efficiency in
terms of time.

The last three columns of Table 6.4, from left to right, present the estimated
p values, p = 100 @R — 1), for one, two, and three null restrictions in five simulated
selection cycles. The average of the p values indicates that for each of the three
restrictions the RLPSI efficiency was 65.05%, 78.73%, and 74.09%, greater than
RLGSI efficiency at predicting the net genetic merit. Thus, for this data set, the
RLPSI was a better predictor of the net genetic merit than the RLGSI in each cycle.

6.2 The Predetermined Proportional Gain Linear Genomic
Selection Index

6.2.1 Objective of the PPG-LGSI

Letd =[d; d» ... d,]beavector1 x r(ris the number of predetermined
proportional gains) of the predetermined proportional gains imposed by the breeder,
and assume that y, is the population mean of the gth trait before selection. The
objective of the predetermined proportional gain linear genomic selection index
(PPG-LGSI) is to change u, to u, + d, in the testing population, where d, is a
predetermined change in y,,. It is possible to solve this problem minimizing the mean
squared difference between I = B'y and H = w'g, E[(H — I5)*], under the
restriction UI'p = 0gd, where Og is a proportionality constant, or under the

d 0 ... 0 —d
restriction D'UTP = 0, where D' = 0: d:’ 0 _:dz is a matrix
o 0 ... d —d_
(r — 1) x r(see Chap. 3 for details), and d, (¢ = 1, 2. . ., r) is the qth element of vector
d=[d d ... d];Uisamatrix (r— 1) x tof Isand 0s, and ' = {ayw,} @
qd = 1,2, ..., t, t = number of traits) is a covariance matrix of additive genomic

breeding values, ¥ = [y y2. ..y

6.2.2 The Maximized PPG-LGSI Parameters

In this subsection, we minimize E[(H — IG)Z] under the restriction D'U'TP = 0 and
later under the restriction UI'b = 0gd. Under the restriction D'UTH = 0, it is
necessary to minimize the function

fp(B,v) = BTP + WCw — 2wTP + 2vD'UTP (6.7)
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with respect to § and v = [v; va ... v,_;], where V' is a vector of Lagrange
multipliers. From a mathematical point of view, Eq. (6.7) is equal to Eq. (6.1); thus,
the vector of coefficients p of the PPG-LGSI should be similar to the vector of
coefficients of the RLGSI (Eq. 6.3), i.e., the PPG-LGSI vector of coefficients is equal
to

Brg = Kpw, (6.8)

where now Kp = [I, — Qp], Qp = UD(D'UTUD) 'D'UT, w is a vector of
economic weights, and I, is an identity matrix 7 x t. When D' = U, Bpg = Brc
(the RLGSI vector of coefficients), and when U’ is a null matrix, pp; = w (the LGSI
vector of coefficients). This means that the PPG-LGSI includes the RLGSI and the
LGSI as particular cases.

Under the restriction UTB = 0gd (see Chap. 3 for details) the vector of coeffi-
cients of the PPG-LGSI can be written as

BrG = Bre + 0cU(UTU) " 'd, (6.9)

where Brc = Kow (Eq. 6.3), Kg = [I — Qgl, Qg = UUTU) 'UT, and d' =
[di d, ... d,]isthe vector of the predetermined proportional gains imposed by
the breeder. It can be shown that O, the proportionality constant, can be written as

"(U'T —1 T
_dUTY)UTw 6.10)
d'(UTU) 'd

When 0 = 0, Bpc = Pre> and when U’ is a null matrix, fpg = w. Equations (6.8)
and (6.9) give the same results, that is, both equations express the same result in a
different mathematical way.

The maximized selection response and expected genetic gain per trait of the

PPG-LGSI can be written as
_ /
Rpc = =1/ BrclBrG (6.11)
G

and

ki TBpg

EPG - T >
L6 \/BreTBro

respectively, where L is the time required to complete a selection cycle using the
PPG-LGSI. Equations (6.11) and (6.12) depend only on GEBV information.

(6.12)
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6.2.3 Statistical Properties of the PPG-LGSI

Assuming that H = w'g and the PPG-LGSI (Ip¢ = B)Y) have bivariate joint normal
distribution, Bpg = Kpw; I, C, and w are known, it can be shown that PPG-LGSI
has the following statistical properties:

1. The vector fpc = Kpw minimizes the mean square error under the restriction
D'UTH = 0.

2. The variance of Ipg = Bpg ¥ (U%PG = BcIBpe) is equal to the covariance between
IpG = Bpgy and H = W'g (omr,, = WTBp).

3. The maximized correlation between H and Ip¢ (also called PPG-LGSI accuracy)

is equal to pg,. = i’f—”:, where 6/,, = \/BpgIBpg and oy = VW Cw are the
standard deviations of Ipg = Py and H = W'g respectively.

4. The variance of the predicted error, Var(H — Ipg) = (1 - p3ﬂm> ai,, is minimal.

The statistical PPG-LGSI properties are equal to the statistical PPG-LPSI prop-
erties, then, the PPG-LGSI is an application of the PPG-LPSI to the genomic
selection context.

6.2.4 Numerical Example

To illustrate the PPG-LGSI theory, we wuse the estimated matrix
R 021 295 5.00
I'=1]295 4241 71.11 and the GEBVs associated with the traits GY (ton
5.00 71.11 121.53

ha™ '), EHT (cm), and PHT (cm), described in Sect. 6.1.3.

It is necessary to estimate the PPG-LGSI vector of coefficients Bpg = Prg + 0,U
(UTU)'d (Egs. 6.9 and 6.10). In Sect. 6.1.3, we showed that the estimated
vectors of coefficients of Prc = Kgw for the null restrictions Uj =[1 0 0]

1 00 ~ = ~
andU’zz[O 1 0}wereﬂ;?G1:w’K’Gl=[3.78 —0.1 —0.1]andPrs =W

K,, =[1.12 0.09 —0.1] respectively, where W =[5 —0.1 —0.1]. This
means that to estimate Ppg = Prc + OcUUTU) " 'd, we need only to estimate
0U(U'TU)'d for both sets of restrictions.

Consider matrix U; =[1 0 0] and let d; = 7.0 be the predetermined
proportional gain restriction for trait 1. We can estimate 65 and U(U'TU)'d as

. 70(UTU) UTw e 33.333
01 = S — =0.036 and U (UTU;) 7.0= 0o |,
7.0(UT'U,) 7.0 0
whence the PPG-LGSI vector of coefficients was
5.0
Bro, = Bro, + 06, Ui (UTU;) 7.0 = | 0.1 |, and the estimated PPG-LGSI

—0.1
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was TPGI = 5.0GEBV, — 0.1GEBV, — 0.1GEBV3. In a similar manner, we can
estimate the PPG-LGSI vector of coefficients wunder restrictions

U, = [é (1) 8] and =17 -=3]. In this case,

R R R R 4 4.97

Brc, = Brg, + 06,U2 (U’ZI‘UZ) d, = | —0.18 | and the estimated PPG-LGSI
—0.10

was 1pg, = 4.97GEBV, — 0.18GEBV, — 0.1GEBV3.

Figure 6.2 presents the frequency distribution of the estimated PPG-LGSI
values for one (Fig. 6.2a) and two (Fig. 6.2b) predetermined restrictions, d = 7
and d' =[7 —3] respectively, obtained in a real testing population for one
selection cycle in one environment. For both restrictions, the frequency distribution
of the estimated PPG-LGSI values approaches the normal distribution.

Assume a selection intensity of 10% (k;, = 1.755); then, for one predetermined
restriction, where U} = [1 0 0] and d; = 7.0, the estimated PPG-LGSI selection
response and expected genetic gain per trait, not inclllding the interval length, were

/
_ P _ r
RpG, =kig\/ B, TBpg, =1.05 and E}GI:kIL:[O.M 9.92 16.54]

v/ B, TBrc,

&2
48
44 gl
40 a
36 {
a2 . \_ PPG-LGSI values for one
;f restriction
20
16
12
8
e s
65
= .
55 =
50
45
40 b
35 PPG-LGSI values for two
:” i \ restrictions
20 |
15 ‘i
10
5 { | |
0 . | P—

Fig. 6.2 Distribution of 380 estimated predetermined proportional gain linear genomic selection
index (PPG-LGSI) values with one (a) and two (b) predetermined restrictions, d = 7 and d’' =
[7 —3] respectively, obtained in a real testing population for one selection cycle in one
environment
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. - . 100
respectively. For two restrictions, with U: [

010
estimated RLGSI selection response and expected genetic gains, not including the
~ A
~ PN ~ r
interval length, were Rpg, =ki;1\/ By, T'Bg, =0.52 and Ej; :k,ﬁp#:

\/ ﬁ;)szﬁPGZ
[0.11 —0.05 0.14] respectively.

Now, we use the simulated data set described in Chap. 2, Sect. 2.8.1 to compare
PPG-LGSI efficiency versus predetermined proportional gain linear phenotypic

} and d'=[7 —3], the

selection index (PPG-LPSI) efficiency. Let Uy =[1 0 0], U, = [ (1) (1) g],
1 00O

and Uy= |0 1 0 O] be the matrices and d; =7, d;, =[7 —3], and d} =
00 10

[7 —3 5] the vectors for one, two, and three predetermined restrictions respec-
tively. Table 6.5 presents the estimated PPG-LPSI and PPG-LGSI selection response
for each predetermined restriction in five simulated selection cycles including
and not including the interval between selection cycles (4 years for the PPG-LPSI
and 1.5 years for the PPG-LGSI); estimated PPG-LPSI and PPG-LGSI accuracy;
and estimated variance of the predicted error (VPE). In each selection cycle, the
sample size was equal to 500 genotypes, each with four repetitions and four
traits. The selection intensity was 10% (k; = 1.755).

The averages of the estimated PPG-LPSI selection response not including the
interval length were 15.14, 14.87, and 13.30, whereas when the interval length was
included, the average selection responses were 3.79, 3.72, and 3.33, for one, two,
and three predetermined restrictions respectively (Table 6.5). The averages of the
estimated PPG-LGSI selection responses not including the interval length for one,
two, and three predetermined restrictions were 14.48, 13.47, and 11.26 respectively,
and when the interval length was included, the selection responses were 9.65, 8.98,
and 7.51 respectively (Table 6.5). These results indicate that when the interval length
was included in the estimation of the PPG-LPSI and PPG-LGSI selection responses,
PPG-LGSI efficiency was greater than PPG-LPSI efficiency, and vice versa, when
the interval length was not included in the PPG-LPSI and PPG-LGSI selection
responses, PPG-LPSI efficiency was higher than PPG-LGSI efficiency.

The averages of the estimated VPE values of the PPG-LPSI for one, two, and
three predetermined restrictions were 22.42, 30.56, and 41.17 respectively, whereas
the estimated VPE values of the PPG-LGSI (see Sect. 6.2.3 for details) were 59.80,
66.95, and 83.98, respectively, that is, in all selection cycles, the VPE of the
PPG-LPSI was lower than that of the PPG-LGSI. This means that for this data set,
the PPG-LPSI was a better predictor of the net genetic merit than the PPG-LGSIL
These results can be explained by observing that the averages of the estimated
PPG-LPSI accuracies were 0.88, 0.86, and 0.77, whereas the estimated PPG-LGSI
accuracies were 0.65, 0.68, and 0.57 for each predetermined restriction, that is, the
estimated PPG-LGSI accuracies were lower than the estimated PPG-LPSI accuracies
for this data set.


https://doi.org/10.1007/978-3-319-91223-3_2
https://doi.org/10.1007/978-3-319-91223-3_2
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Table 6.6 Estimated PPG-LPSI heritability (ﬁfw), values of Wp = pSIG Lp (Lp =4), and the ratio of

the estimated PPG-LPSI accuracy (py;,) to the estimated P[;’G-LGSI accuracy (Dpy,):
ap= Puiy /P, and values of p = 100 @, —1) for 1, 2 and 3 predetermined restrictions for
five simulated selection cycles

PPG-LPSI heritability Values of Wp Estimated ratio values (p)
Cycle 1 2 3 1 2 3 1 2 3
1 0.84 0.77 0.83 471 |4.13 |372 |—-18.62 |—6.71 |—10.20
2 0.80 0.78 0.83 322 317 |242 18.30 20.54 32.04
3 0.77 0.76 0.8 3.18 |3.09 |245 19.89 21.59 31.42
4

5

0.76 0.75 0.78 280 (271 |2.10 29.16 31.84 33.75
0.75 0.75 0.79 257 249 |1.97 35.26 36.55 42.35
Average |0.72 0.71 0.76 329 312 |2.53 16.80 20.76 25.87

Table 6.6 presents the estimated predetermined PPG-LPSI heritability (E%) values,

Wp = pg L Lp (Lp = 4) values, and ratio of the estimated PPG-LPSI accuracy (9 Hi,)

P
to the estimated PPG-LGSI accuracy (pyy,,, ). i.e., Ap = Dui,/Phi,,- and, finally,
values of p = 100@13 — 1) for one, two, and three null restrictions for five
simulated selection cycles.

The averages of the Wp values for one, two, and three null restrictions were 3.29,
3.12, and 2.53, respectively, whereas the PPG-LGSI interval leng/t\h was 1.5

(Lg = 1.5). This means that the estimated Technow inequality, Ls < pi?’c Lp (see

P
Chap. 5, Eq. 5.18) was true. Thus, PPG-LGSI efficiency in terms of time was greater

than PPG-LPSI efficiency for this data set. These results coincide with those
obtained earlier in this chapter, when we compared PPG-LGSI efficiency versus
PPG-LPSI efficiency in terms of interval length. However, the average values of
p= 100@1: — 1) (see Chap. 5, Eq. 5.15) were, in percentage terms, 16.80%,
20.76%, and 25.85% for each restriction. These latter results indicate that for this
data set, the PPG-LPSI was a better predictor of the net genetic merit than the
PPG-LGSI. This is because the estimated PPG-LPSI accuracies were higher than the
estimated PPG-LPSI accuracies for this data set. We found similar results when we
compared the PPG-LPSI VPE versus PPG-LGSI VPE (Table 6.5).

6.3 The Combined Restricted Linear Genomic Selection
Index

The combined restricted linear genomic selection index (CRLGSI) is based on the
RLPSI (Chap. 3) and combined linear genomic selection index (CLGSI, Chap. 5)
theory. In the RLPSI, the breeder’s objective is to improve only (¢ — r) of ¢ (r < )


https://doi.org/10.1007/978-3-319-91223-3_5
https://doi.org/10.1007/978-3-319-91223-3_5
https://doi.org/10.1007/978-3-319-91223-3_5
https://doi.org/10.1007/978-3-319-91223-3_5
https://doi.org/10.1007/978-3-319-91223-3_3
https://doi.org/10.1007/978-3-319-91223-3_5
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traits, leaving r of them fixed; the same is true for the CRLGSI, but in the latter case,
it is necessary to impose 2r restrictions, i.e., we need to fix r traits and their
associated »r GEBVs to obtain results similar to those obtained with the RLPSI.
This is the main difference between the CRLGSI and the RLPSI.

It can be shown that Cov(Ic, ac) = W is the covariance between the breeding
value vector (e = (g v']) and the CLGSL, I¢ = P tc (see Chap. 5 for details),
where t. =[y" 7']. In the CRLGSIL, we want some covariances between the
linear combinations of ac (U’Cac) and CLGSI to be zero, ie.,
Cov(Ic, Uzac) = U ¥cPe = 0, where Uy is a matrix 2( — 1) x 2t of 1s and Os
(1 indicates that the trait and its associated GEBV are restricted, and O that the trait

. .. C . . .
and its GEBV have no restrictions) and W¢ = [ is a block covariance matrix

r
r I‘]
of a. = [g y'] where C and T are the covariance matrices of breeding (g) and
genomic (y) values respectively. This problem can be solved by minimizing the
mean squared difference between the CLGSI and H (E[(H — IC)Z]) under the
restriction U-¥ P = 0 similar to the RLGSI in Sect. 6.1.

6.3.1 The Maximized CRLGSI Parameters

P I
rr
are the covariance matrices of phenotypic (y) and genomic (y) values respectively.
Based on the Eq. (6.1) result, it can be shown that the CRLGSI vector of coefficients
that minimizes E[(H — Ic)?] under the restriction U/C‘I’cﬁc =0is

LetTc = [ be the block covariance matrix of t. = [y’ y'] where P and T’

Ber = KeBe, (6.13)

where K¢ = [I — Q¢l, Q¢ = Tgltl)c((l)'CTEI(I)C)A(I)'C, D = U Y, and B
= Tgl‘l‘cac (the vector of coefficients of the CLGSI, see Chap. 5 for details);
TEI is the inverse of matrix T, and I is an identity matrix 2¢ x 2¢. When no
restrictions are imposed on any of the traits, Uy is a null matrix and g = Be
(the vector of coefficients of the CLGSI). That is, the CRLGSI is more general
than the CLGSI. Similar to the RLPSI and the RLGSI, matrices K and Q. are
idempotent (K¢ = K2C and Q¢ = ch) and orthogonal (KcQ¢c = QcK¢ = 0), that
is, K¢ and Q¢ are projectors. Thus, we can assume that the CRLGSI has
similar properties to those described for the RLPSI (see Chap. 3 for details)

when matrices W = {g ?} and T = [llz ?} are known.

The maximized selection response and the optimized expected genetic gain per
trait of the CRLGSI can be written as


https://doi.org/10.1007/978-3-319-91223-3_5
https://doi.org/10.1007/978-3-319-91223-3_5
https://doi.org/10.1007/978-3-319-91223-3_3
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k
Rcr = L_j\/ BexrTcBer (6.14)

and

gl Whor
Ly vV ﬁ/CRTCﬁCR

respectively. Although in the RLGSI and the PPG-LGSI the interval between
selection cycles is denoted as Lg, in the CRLGSI it is denoted as L;. This is because
the RLPSI and the CRLGSI should have the same interval between selection cycles.

(6.15)

6.3.2 Numerical Examples

To illustrate the CRLGSI theoretical results, we use a real training maize (Zea mays)
F, population with 248 genotypes (each with two repetitions), 233 molecular
markers, and three traits: GY (ton hafl), EHT (cm), and PHT (cm). Matrices
P and C were estimated based on Egs. (2.22) to (2.24) described in Chap. 2. The
R 045 1.33 2.33
estimated matrices were P= 133 6507 83.71 and
2.33 83.71 165.99
R 0.07 0.61 1.06
C= 061 17.93 2275 |. In a similar manner, we estimated matrix I' using
1.06 22.75 44.53
Egs. (5.21) to (5.23) described in Chap. 5. The estimated matrix was
0.07 0.65 1.05
=065 1062 1425
1.05 14.25 26.37
To estimate the CRLGSI and its associated parameters (selection response,
expected genetic gain per trait, etc.), we need to obtain matrices Tc = {% %}

~ o~

and W¢ = {g %} using phenotypic and genomic information and the esti-

mated CRLGSI vector of coefficients BCR = Kcﬁc, where K¢ = [1— QC],
Qe = T2 B (BT Bc) B, B = UFe, and e — T-"Beac.

We have indicated that the main difference between the RLGSI and the CRLGSI
is matrix Uy, on which we now need to impose two restrictions: one for the trait and
another for its associated GEBV. Consider the (Zea mays) F, population described
earlier and suppose that we restrict trait GY; then, matrix U’C should be constructed as
U. — 1 000 0O

¢ =

. . o
000100l If we restrict traits GY and EHT, matrix U should


https://doi.org/10.1007/978-3-319-91223-3_2
https://doi.org/10.1007/978-3-319-91223-3_2
https://doi.org/10.1007/978-3-319-91223-3_2
https://doi.org/10.1007/978-3-319-91223-3_5
https://doi.org/10.1007/978-3-319-91223-3_5
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1 00 0 00O
, 1010 0 0 O -
be constructed as U, = 000100l etc. The procedure for obtaining
00 0O0T10O0
matrices K¢ = [I - Q¢], Q¢ = T¢'®¢ (CB’CTEICDC)_I(T)’C, and ®¢ = U W is

similar to that described in Chap. 3.

Let ww=[5 —0.1 —0.1 0 0 O] be the vector of economic weights
and assume that we restrict trait GY; in this case, according to the estimated matrices
IA’, 6, and T' described earlier, the estimated CRLGSI vector of coefficients was
B;ec =[0.076 —0.004 —-0.018 2.353 —0.096 —0.082], whence the esti-
mated CRLGSI can be written as

Tcr = 0.076GY — 0.004EHT — 0.018PHT + 2.353GEBV gy — 0.096GEBVyr
— 0.082GEBVpur

where GEBVgy, GEBVggt, and GEBVpyr are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions.

Figure 6.3 presents the frequency distribution of the estimated CRLGSI values for
one (Fig. 6.3a) and two null restrictions (Fig. 6.3b) using matrices U’C1 and U'CZ, and
the real data set of the F, population. For both restrictions, the frequency distribution
of the estimated CRLGSI values approaches normal distribution.

Suppose a selection intensity of 10% (k;, = 1.755), matrix

U. — 1 0 0 00O

G 0 001 0O
[5 —0.1 —0.1 0 0 O0];then,according to the estimated matrices P, C, and T’
described earlier, the estimated CRLGSI selection response and the estimated
CRLGSI expected genetic gain per trait were Rer = kry/ B/CRTCECR =0.96 and
B

/BT cBer

whereas the estimated CRLGSI accuracy was py;,,, = @ = 0.51 (see Chaps. 3
OH

] and that the vector of economic weights is w' =

E’CR:kI =[0 —-3.53 —-6.03 0 -293 —4.87]respectively,

~

and 5 for details).

Now, we use the simulated data described in Chap. 2, Sect. 2.8.1 to compare
CRLGSI efficiency versus RLGSI efficiency. The criteria for this comparison are the
Technow inequality (Eq. 5.18, Chap. 5) and the ratio of the estimated CRLGSI
accuracy (P, ) to the estimated RLGSI accuracy (py;, ) expressed as percentages
(Eq. 5.17, Chap. 5), ie., p = 1OO@CR — 1), where ap = PHicy/PHr,» for one, two,
and three null restrictions for five simulated selection cycles.

Table 6.7 presents the estimated CRLGSI heritability (EZC), the estimated RLGSI

accuracy (ﬁHIR), the values of W¢ :pflR L; (L; = 4), and the values of
1
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Fig. 6.3 Distribution of 244 estimated combined restricted linear genomic selection index
(CRLGSI) values with one (a) and two (b) null restrictions respectively obtained in a real training
population for one selection cycle in one environment

pP= 100@@ — 1), where Acr = Prilee/Prr, and Py, is the estimated CRLGSI
accuracy, for one, two, and three null restrictions for five simulated selection cycles.

-~

The averages of the W¢ = Hlg L; values for one, two, and three null restrictions

c
were 1.26, 0.92, and 0.59 respectively, whereas the RLGSI interval length was 1.5

(Lg = 1.5). This means that the estimated Technow inequality (Lg < p;l\”‘; L) was

I
not true. Thus, for this data set, RLGSI efficiency in terms of time is not greater than

CRLGSI efficiency. The inequality Lg < %LI was not true because the estimated
I

RLGSI accuracy was very low, whereas CRLGSI heritability was high. Thus, note
that the averages of the estimated RLGSI accuracy for one, two, and three null
restrictions were 0.25, 0.19, and 0.14 respectively, whereas the averages of the
estimated CRLGSI heritability values were 0.72, 0.75, and 0.89 respectively.
Thus, according to these results, when the estimated RLGSI accuracy is very low
and the estimated CRLGSI heritability is high, RLGSI efficiency will be lower than
CRLGSI efficiency in terms of time.
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The last three columns of Table 6.7, from left to right, present the average of the
values of p = IOOQCR — 1), for one, two, and three null restrictions of five

simulated selection cycles. According to these results, CRLGSI efficiency was
53.78%, 78.25%, and 61.25% higher than RLGSI efficiency. Thus, for this data
set, the CRLGSI was a better predictor of the net genetic merit than the RLGSI.

6.4 The Combined Predetermined Proportional Gains
Linear Genomic Selection Index

In the PPG-LPSI described in Chap. 3, the vector of the PPG (predetermined
proportional gains) was d’ = [d; d, ... d,]. However, because the combined
predetermined proportional gains LGSI (CPPG-LGSI) uses phenotypic and GEBV
information jointly to predict the net genetic merit, the vector of the PPG (d.) should
be twice the standard vector d, that is,
d.=[di d» -+ d dy dro -+ do], where we would expect that if
d; is the PPG imposed on trait 1, then d, , ; should be the PPG imposed on the
GEBYV associated with trait 1, etc. In addition, in the CPPG-LGSI, we have three
possible options for determining (for each trait and GEBV) the PPG, e.g., for trait
1,dy=d,,,d >d,.,ord, <d,, ;. This is the main difference between the
standard PPG-LPSI described in Chap. 3 and the CPPG-LGSI.

6.4.1 The Maximized CPPG-LGSI Parameters

It can be shown that the vector of coefficients of the CPPG-LGSI can be written as
Bcr = Ber + Ocrdep, (6.16)
where

_ BeDe(@, T @) e

Ocp — -1
de (PLT ' @) de

(6.17)

is a proportionality constant. In addition, in Eq. (6.16), fcr = KB is the vector of
~ -1
coefficients of the CRLGSI (Eq. 6.13), 8cp =T '®@c(P T '®c) de,
@, =U.¥., and B- =T:'Wcac (the vector of coefficients of the CLGSI).
When 0cp = 0, Bep = Pk, and if 6 = 0 and U is the null matrix, then fcr = Pe.
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https://doi.org/10.1007/978-3-319-91223-3_3

6.4 The Combined Predetermined Proportional Gains Linear Genomic Selection Index 143

Thus, the CPPG-LGSI is more general than the CRLGSI and the CLGSI, and
includes the latter two indices as particular cases. In addition, it can be shown that
the CPPG-LGSI has the same properties as the PPG-LPSI described in Chap. 3.

The maximized selection response and the expected genetic gain per trait of the
CPPG-LGSI can be written as

kr /
RCPZE ﬁ/CPTCﬁCP (6-18)

and

B, Whor
L vV ﬁ/CPTCﬁCP

respectively. Although in the RLGSI and the PPG-LGSI the interval between
selection cycles is denoted as Lg, in the CPPG-LGSI it is denoted as L;. This is
because the RLPSI and the CPPG-LGSI should have the same interval between
selection cycles because they use phenotypic information to predict the net genetic
merit.

(6.19)

6.4.2 Numerical Examples

Similar to the CRLGSI, to illustrate the CPPG-LGSI results we use the
real training maize (Zea mays) F, population with 248 genotypes,
233 molecular markers, and three traits—GY (ton hafl), EHT (cm), and PHT

N 045 1.33 2.33 R 0.07 0.61 1.06
(cm)—where P = | 1.33 65.07 83.71 |, C= |0.61 1793 22.75], and
2.33 83.71 165.99 1.06 22.75 44.53

0.07 065 1.05
=065 1062 1425 were the estimated matrices of P, C, and T’
1.05 14.25 26.37
respectively.
We can obtain the estimated CPPG-LGSI vector of coefficients as Bcp = ECR +

/écpgcp (Eq. 6.16). Suppose that we restrict trait GY and its associated GEBV
1 0 00 0O
0001 O00O0

d-=[7 3.5]. In Sect. 6.3.2, we showed that the estimated CRLGSI vector of
coefficients was Pr = [0.076 —0.004 —0.018 2.353 —0.096 —0.082];
then, we only need to calculate O¢p and 8¢p to obtain the vector of coefficients f -p.

with matrix U’Cl = and the vector of predetermined restriction


https://doi.org/10.1007/978-3-319-91223-3_3
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Let ww=[5 —0.1 —0.1 0 0 0] be the vector of economic weights. It
can be shown that 8cp = 0.00030 is the estimated value of the proportionality
constant and 8, =[0.56 —77.28 40.89 49.44 77.28 —40.89]. Thus,
the estimated CPPG-LGSI vector of coefficients was
E'CR =[0.76 —0.030 —0.004 2.369 —0.070 —0.096], whence the esti-
mated CPPG-LGSI can be written as

Tcp = 0.076GY — 0.03EHT — 0.004PHT + 2.369GEBV gy — 0.070GEBVgyr
— 0.096GEBVpyr,

where GEBVgy, GEBVggt, and GEBVpyr are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions. Note that because §Cp = 0.0003 is very small, the estimated CPPG-
LGSI and CRLGSI values were very similar.

Figure 6.4 presents the frequency distribution of the estimated CPPG-LGSI

values for one (Fig. 6.4a) and two predetermined restrictions (Fig. 6.4b) using
0 0 0O

matrices U and Up, = the vectors of the PPG
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Fig. 6.4 Distribution of 244 estimated combined predetermined proportional gain linear genomic
selection index (CPPG-LGSI) values with one (a) and two (b) predetermined restrictions, d = 7 and
d' =[7 -—3] respectively, obtained in a real training population for one selection cycle in one
environment
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d, =[7 3.5]andd,, =[7 -3 3.5 —1.5], and the real data set F,. For both
restrictions, the frequency distribution of the estimated CPPG-LGSI values
approaches normal distribution.

Suppose a selection intensity of 10% (k; = 1.755) and that we restrict trait GY and
its associated GEBV. The estimated CPPG-LGSI selection response and /e\xpefted

!
=~ PPN =~ L 4
genetic gain per trait were Rcp = ki\/BrpTcPep = 0.98 and Ep = k; AﬁciPAA
\/ BerTBer
=1[0.007 —-3.647 —5.760 0.004 —2.829 —4.711] respectively, whereas

the estimated CPPG-LGSI accuracy was py;,,, = %ler _ 1,52, Once again, because
OH

§Cp = 0.0003, the latter results are very similar to the CRLGSI results.

Now, we use the simulated data described in Chap. 2, Sect. 2.8.1, to compare
CPPG-LGSI efficiency versus PPG-LGSI efficiency. The criteria for this compari-
son are the Technow inequality (Chap. 5, Eq. 5.18) and the ratio of CPPG-LGSI
accuracy (ppy,,) to PPG-LGSI accuracy (py;,) expressed as percentages (Chap. 5,
Eq. 5.17), p = 100 @Cp — 1), where dcp = PHic,/Pur, for one, two, and three null
restrictions in five simulated selection cycles.

Table 6.8 presents the estimated CPPG-LGSI heritability ( ﬁ% ), the

P g’c L (L, = 4) and

I
P = 100(Zcp — 1), where p = ., /P, and pyy, is the estimated CPPG-LGSI
accuracy, for one, two, and three null restrictions in five simulated selection cycles.
The averages of the estimated Wcp values for one, two, and three predetermined
restrictions were 3.60, 3.31, and 2.50 respectively, whereas the PPG-LGSI interval
lengthAwas 1.5 (Lg = 1.5). This means that the estimated Technow inequality,

Ls < ﬂg@ L;, was true. Thus, for this data set, PPG-LGSI efficiency is greater

estimated PPG-LGSI accuracy (pg;,,), values of Wep =

than CPIgG—LGSI efficiency in terms of time.

The last three columns of Table 6.8, from left to right, present the values of
p =100 @Cp — 1), for one, two, and three null restrictions in five simulated selec-
tion cycles. The average values of p = 100 @Cp — 1) for each of the three restric-
tions, in percentage terms, were 37.19%, 32.82%, and 37.08% respectively. This
means that the CPPG-LGSI efficiency was greater than PPG-LGSI efficiency at
predicting the net genetic merit.
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