
Chapter 6
Constrained Linear Genomic Selection
Indices

Abstract The constrained linear genomic selection indices are null restricted and
predetermined proportional gain linear genomic selection indices (RLGSI and
PPG-LGSI respectively), which are a linear combination of genomic estimated
breeding values (GEBVs) to predict the net genetic merit. They are the results of a
direct application of the restricted and the predetermined proportional gain linear
phenotypic selection index theory to the genomic selection context. The RLGSI can
be extended to a combined RLGSI (CRLGSI) and the PPG-LGSI can be extended to
a combined PPG-LGSI (CPPG-LGSI); the latter indices use phenotypic and GEBV
information jointly in the prediction of net genetic merit. The main difference
between the RLGSI and PPG-LGSI with respect to the CRLGSI and the CPPG-
LGSI is that although the RLGSI and PPG-LGSI are useful in a testing population
where there is only marker information, the CRLGSI and CPPG-LGSI can be used
only in training populations when there are joint phenotypic and marker information.
The RLGSI and CRLGSI allow restrictions equal to zero to be imposed on the
expected genetic advance of some traits, whereas the PPG-LGSI and CPPG-LGSI
allow predetermined proportional restriction values to be imposed on the expected
trait genetic gains to make some traits change their mean values based on a
predetermined level. We describe the foregoing four indices and we validated their
theoretical results using real and simulated data.

6.1 The Restricted Linear Genomic Selection Index

Let H¼ w0g be the net genetic merit and IG ¼ β0γ the linear genomic selection index
(LGSI, see Chap. 5 for details), where g, γ, w, and β are vectors t� 1 (t¼ number of
traits) of breeding values, genomic breeding values, economic weights, and LGSI
coefficients respectively. It can be shown that Cov(IG, g) ¼ Γβ is the covariance
between g and IG ¼ β0γ, and that Var(γ) ¼ Γ is the genomic covariance matrix of
size t � t (see Chap. 5 for details). The objective of the restricted linear genomic
selection index (RLGSI) is to improve only (t� r) of t (r< t) traits (leaving r of them
fixed) in a testing population using only genomic estimated breeding values
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(GEBVs). The RLGSI minimizes the mean squared difference between IG and H,
E[(H� IG)

2], with respect to β under the restriction Cov(IG,U0g)¼U0Γβ¼ 0, where
U0 is a matrix (t � 1) � t of 1s and 0s, in a similar manner to the restricted linear
phenotypic selection index (RLPSI) described in Chap. 3 in the phenotypic selection
context.

6.1.1 The Maximized RLGSI Parameters

Let Var(IG) ¼ β0Γβ be the variance of IG ¼ β0γ, w0Cw the variance of H ¼ w0g, and
Cov(IG,H ) ¼ w0Γβ the covariance between H ¼ w0g and IG ¼ β0γ. The mean
squared difference betweenH and IG can be written as E[(H� IG)

2], which should be
minimized under the restriction U0Γβ ¼ 0 assuming that Γ, C, U0, and w are known,
i.e., it is necessary to minimize the function

f R β; vð Þ ¼ w0Cwþ β0Γβ� 2w0Γβþ 2v0U0Γβ ð6:1Þ
with respect to vectors β and v0 ¼ [v1 v2 � � � vr � 1], where v is a vector of Lagrange
multipliers. In matrix notation, the derivative results of Eq. (6.1) are

β
v

� �
¼ Γ ΓU

U0Γ 0

� ��1 Γw
0

� �
: ð6:2Þ

Following the procedure described in Chap. 3 (Eqs. 3.2 to 3.5), it can be shown
that the RLGSI vector of coefficients that minimizes E[(H � IG)

2] under the
restriction U0Γβ ¼ 0 is

βRG ¼ KGw, ð6:3Þ
where KG ¼ [It � QG], QG ¼ U(U0ΓU)�1U0Γ, w is a vector of economic weights,
and It is an identity matrix t � t. When no restrictions are imposed on any of the
traits, U0 is a null matrix and βRG¼w, the optimized LGSI vector of coefficients (see
Chap. 5 for details).

By Eq. (6.3), the RLGSI, and the maximized RLGSI selection response and
expected genetic gain per trait can be written as

IRG ¼ β0RGγ, ð6:4Þ
RRG ¼ kI

LG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΓβRG

q
ð6:5Þ

and
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ERG ¼ kI
LG

ΓβRGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΓβRG

p , ð6:6Þ

respectively, where kI is the standardized selection differential (or selection inten-
sity) associated with the RLGSI, and LG is the interval between selection cycles or
the time required to complete a selection cycle using the RLGSI. Equations (6.4) to
(6.6) depend only on GEBV information; thus, they are useful in testing populations.

6.1.2 Statistical Properties of RLGSI

Assuming that H ¼ w0g and IRG ¼ β0RGγ have bivariate joint normal distribution,
βRG ¼ KGw, and Γ, C, and w are known, it can be shown that the RLGSI has the
following properties:

1. Matrices KG and QG are idempotent (KG ¼ K2
G and QG ¼ Q2

G) and orthogonal
(KGQG ¼ QGKG ¼ 0), that is, they are projectors. Matrix QG projects vector
β ¼ w into a space generated by the columns of matrix U0Γ due to the restriction
U0Γβ ¼ 0 used when fR(β, v) (Eq. 6.1) is minimized with respect to vectors β and
v, whereas matrix KG projects w into a space perpendicular to that generated by
the U0Γ matrix columns.

2. Because of the restriction U0Γβ ¼ 0, matrix KG projects vector w into a space
smaller than the original space of w. The space reduction into which matrix KG

projects w is equal to the number of zeros that appears in Eq. (6.6).
3. Vector βRG ¼ KGw minimizes the mean square error under the restriction

U0Γβ ¼ 0.
4. The variance of IRG ¼ β0RGγ (σ

2
IRG

¼ β0RGΓβRG) is equal to the covariance between
IRG ¼ β0RGγ and H ¼ w0g (σHIRG ¼ w0ΓβRG).

5. The maximized correlation between H and IRG is equal to ρHIRG ¼ σIRG
σH

, where

σIRG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0RGΓβRG

q
and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p

are the standard deviations of IRG ¼ β0RGγ
and H ¼ w0g respectively.

6. The variance of the predicted error, Var H � IRGð Þ ¼ 1� ρ2HIRG

� �
σ2H , is minimal.

Note that Var H � IRGð Þ ¼ σ2IRG þ σ2H � 2σHIRG , and when βRG ¼ KGw,

σ2IRG ¼ σHIRG , whence Var H � IRGð Þ ¼ σ2H � σ2IRG ¼ 1� ρ2HIRG

� �
σ2H is minimal.

The statistical RLGSI properties are equal to the statistical RLPSI properties.
Thus the RLGSI is an application of the RLPSI to the genomic selection context.

6.1.3 Numerical Examples

To estimate the parameters associated with the RLGSI, we use the real data set
described in Chap. 5, Sect. 5.1.8, where we found that, in the testing population, the
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estimate of matrix Γ was bΓ ¼
0:21 2:95 5:00
2:95 42:41 71:11
5:00 71:11 121:53

2
4

3
5. We use this matrix and the

GEBVs associated with the traits grain yield (GY, ton ha�1), ear height (EHT, cm),
and plant height (PHT, cm) to illustrate the RLGSI theoretical results.

Suppose that on the RLGSI expected genetic gain per trait we impose one

and two null restrictions using matrices U0
1 ¼ 1 0 0½ � and U0

2 ¼
1 0 0
0 1 0

� �
(see Chap. 3, Sect. 3.1.3, for details about matrix U0). We need to estimate the
RLGSI vector of coefficients (βRG ¼ KGw) as bβRG ¼ bKGw, where bKG ¼ �

I3 � bQG

�
and bQG ¼ U

	
U0bΓU
�1

U0bΓ are estimates of matrices KG ¼ [I3 � QG] and QG ¼ U
(U0ΓU)�1U0Γ respectively, and I3 is an identity matrix 3 � 3. The estimated QG

matrices for restrictions U0
1¼ 1 0 0½ � and U0

2¼
1 0 0
0 1 0

� �
were bQG1

¼U1
	
U0

1
bΓU1


�1

U0
1
bΓ¼

1:0 14:05 23:81
0 0 0
0 0 0

2
4

3
5 and bQG2

¼U2
	
U0

2
bΓU2


�1
U0

2
bΓ¼ 1:0 0 11:18

0 1:0 0:90
0 0 0

2
4

3
5 respec-

tively, whereas the estimated KG matrices for both restrictions were bKG1 ¼
�
I3� bQG1

�

¼
0 �14:05 �23:81
0 1:0 0
0 0 1:0

2
4

3
5 and bKG2¼

�
I3� bQG2

�¼ 0 0 �11:18
0 0 �0:90
0 0 1:0

2
4

3
5.

Let w0 ¼ 5 �0:1 �0:1½ � be the vector of economic weights; then the estimated
RLGSI vector of coefficients for one and two null restrictions were bβ0

RG1
¼ w0 bK0

G1
¼

3:78 �0:1 �0:1½ � and bβ0
RG2

¼ w0 bK0
G2

¼ 1:12 0:09 �0:1½ � respectively, and
the estimated RLGSI for both restrictions can be written as bIRG1 ¼ 3:78GEBV1 � 0:1
GEBV2 � 0:1GEBV3 and bIRG2 ¼ 1:12GEBV1 þ 0:09GEBV2 � 0:1GEBV3, where
GEBV1, GEBV2, andGEBV3 are the genomic estimated breeding values associated with
traits GY, EHT, and PHT respectively in the testing population.

Table 6.1 presents 20 genotypes selected from a population of 380 genotypes and
the GEBVs in the testing population ranked according to the estimated RLGSI
values for one restriction, where U0

1 ¼ 1 0 0½ �. The estimated RLGSI
values for genotypes 5 and 306 can be obtained as follows:bIRG5 ¼ 3:78 �0:6ð Þ � 0:1
�8:67ð Þ � 0:1 15:97ð Þ ¼ 0:196 andbIRG306 ¼ 3:78 0:13ð Þ � 0:1 1:31ð Þ � 0:1 1:66ð Þ ¼
0:194 respectively. This procedure is valid for any number of genotypes and GEBVs
in the testing population.

Assume a selection intensity of 10% (kIG ¼ 1:755); then the estimated
RLGSI selection response and expected genetic gain per trait not including the

interval length were bRRG1 ¼ kIG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG1

bΓbβRG1

q
¼ 0:40 and bE0

RG1
¼ kI

bβ0
RG1

bΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG1

bΓbβRG1

q
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¼ 0 �1:42 �2:58½ � respectively. For two restrictions, with U0
2 ¼

1 0 0
0 1 0

� �
,

the estimated RLGSI selection response and expected genetic gains not including

the interval length were bRRG2 ¼ kIG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG2

bΓbβRG2

q
¼ 0:23 and

bE0
RG2

¼ kI
bβ0
RG2

bΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
RG2

bΓbβRG2

q ¼ 0 0 �2:29½ � respectively. When the number of

restrictions increases, the estimated RLGSI selection response value decreases,
whereas the number of zeros increases in the estimated RLGSI expected genetic
gain per trait. The number of zeros in the estimated RLGSI expected genetic gain
per trait is equal to the number of restrictions imposed on RLGSI by matrix U0,
where each restriction appears as 1.

Figure 6.1 presents the frequency distribution of the estimated RLGSI values for
one (Fig. 6.1a) and two null restrictions (Fig. 6.1b). For both restrictions the
frequency distribution of the estimated RLGSI values approaches the normal
distribution.

Table 6.1 Number of genotypes selected from 380 genotypes of a real testing population; genomic
estimated breeding values (GEBVs) associated with three traits: grain yield (GY, ton ha�1), ear
height (EHT, cm), and plant height (PHT, cm) in the testing population, and estimated and ranked
restricted linear genomic selection index (RLGSI) values obtained in the testing population for one
null restriction

Number of genotypes

Estimated GEBVs in the testing population

Estimated RLGSIGEBV-GY GEBV-EHT GEBV-PHT

5 �0.6 �8.67 �15.97 0.196

306 0.13 1.31 1.66 0.194

6 0.06 1.83 �1.13 0.157

349 0.37 4.34 8.12 0.153

142 �0.26 �5.47 �5.85 0.149

69 �0.11 �3.43 �2.16 0.143

24 0.03 �0.43 0.19 0.137

192 �0.8 �13.91 �17.7 0.137

33 �0.18 �1.44 �6.71 0.135

18 �0.43 �5.48 �12.08 0.131

21 �1.00 �16.11 �22.96 0.127

41 0.17 1.09 4.08 0.126

351 0.16 2.64 2.15 0.126

323 0.04 �0.79 1.04 0.126

158 �0.49 �8.95 �10.83 0.126

25 �0.24 �3.46 �6.86 0.125

338 0.37 3.88 8.89 0.122

316 �0.01 �0.51 �1.09 0.122

32 �0.19 �3.97 �4.43 0.122

204 �0.46 �7.41 �11.19 0.121

6.1 The Restricted Linear Genomic Selection Index 125



Now we use the simulated data set described in Chap. 2, Sect. 2.8.1, to compare
RLPSI (restricted linear phenotypic selection index, Chap. 3 for details) efficiency
versus RLGSI efficiency. Table 6.2 presents the estimated RLPSI and RLGSI
selection response for one, two, and three null restrictions imposed by matrices

U0
1 ¼ 1 0 0½ �, U0

2 ¼
1 0 0
0 1 0

� �
, and U0

3 ¼
1 0 0 0
0 1 0 0
0 0 1 0

2
4

3
5 for five simulated

selection cycles including and not including the interval between selection cycles. In
each selection cycle, the sample size was equal to 500 genotypes, each with four
repetitions and four traits, whereas the selection intensity was 10% (kI ¼ 1.755); the
interval lengths for the RLPSI and RLGSI were 4 and 1.5 years (Beyene et al. 2015)
respectively.

Table 6.2 was divided in two parts. The first part presents the estimated RLPSI
whereas the second part presents the estimated RLGSI selection responses. Columns
2, 3, and 4 in Table 6.2 present the estimated RLPSI and RLGSI selection responses
not including the interval length, whereas columns 5, 6, and 7 present the estimated
RLPSI and RLGSI selection response, including the interval length. The averages of
the estimated RLPSI selection response not including the interval length for one,
two, and three restrictions were 7.04, 5.50, and 3.90, whereas when the interval
length was included, the averages were 1.76, 1.38, and 0.98 respectively. The
averages of the estimated RLGSI selection response not including the interval length

Fig. 6.1 Distribution of 380 estimated restricted linear genomic selection index (RLGSI) values
with one (a) and two (b) null restrictions respectively obtained in a real testing population for one
selection cycle in one environment
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for one, two, and three restrictions were 5.04, 3.72, and 2.79, whereas when the
interval length was included the averages were 3.36, 2.48, and 1.86 respectively.
These results indicated that when the interval length was included in the estimation
of the RLPSI and RLGSI selection response, RLGSI efficiency was greater than
RLPSI efficiency, and vice versa, when the interval length was not included the
RLPSI efficiency was greater than RLGSI efficiency.

Table 6.3 presents the estimated RLPSI (first part) and RLGSI (second part)
expected genetic gain per trait not including the interval between selection cycles for
one, two, and three null restrictions in five simulated selection cycles. In this case,
RLPSI efficiency is greater than RLGSI efficiency because the averages of the
estimated RLPSI expected genetic gain per trait were �2.52, 2.26, and 2.26 for
one null restriction; 2.84 and 2.65 for two null restrictions; and 3.90 for three null
restrictions. For the same set of restrictions, the averages of the estimated RLGSI
expected genetic gain per trait were: �1.85, 1.13, and 2.06 for one null restriction;
1.52 and 2.19 for two null restrictions, and 2.79 for three null restrictions. However,
divided by the interval length (4 years in the RLPSI), the averages of the estimated
RLPSI expected genetic gain per trait were �0.63, 0.57, and 0.57 for one null
restriction; 0.71 and 0.66 for two null restrictions, and 0.98 for three null restrictions.
In a similar manner, dividing by the interval length (1.5 years in this case), the
averages of the estimated RLGSI expected genetic gain per trait were �1.23, 0.75,

Table 6.2 Estimated restricted linear phenotypic selection index (RLPSI) and RLGSI selection
responses for 1, 2, and 3 null restrictions for 5 simulated selection cycles including and not
including the interval between selection cycles. The interval lengths for the RLPSI and the
RLGSI were 4 and 1.5 years respectively

Cycle

Estimated RLPSI selection response

Not including interval length Including interval lengtha

1 2 3 1 2 3

1 6.87 5.54 4.13 1.72 1.39 1.03

2 8.45 5.94 4.27 2.11 1.49 1.07

3 7.17 5.79 4.16 1.79 1.45 1.04

4 6.68 5.06 3.72 1.67 1.27 0.93

5 6.02 5.16 3.24 1.51 1.29 0.81

Average 7.04 5.50 3.90 1.76 1.38 0.98

Cycle

Estimated RLGSI selection response

Not including interval length Including interval lengthb

1 2 3 1 2 3

1 6.41 5.58 4.71 4.28 3.72 3.14

2 5.04 3.47 2.47 3.36 2.32 1.65

3 4.76 3.36 2.22 3.17 2.24 1.48

4 4.51 3.07 2.28 3.01 2.05 1.52

5 4.46 3.10 2.26 2.97 2.07 1.51

Average 5.04 3.72 2.79 3.36 2.48 1.86
aThe estimated RLPSI selection response was divided by 4
bThe estimated RLGSI selection response was divided by 1.5
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and 1.37 for one restriction; 1.01 and 1.46 for two restrictions; and 1.86 for three
restrictions.

Table 6.4 presents the estimated RLPSI heritability (bh2IR ) values, the estimated
restricted linear genomic selection index (RLGSI) accuracy (bρHIRG) values, the values
of W ¼ bρHIRGbhIR LRP (LRP ¼ 4), and the values of bp ¼ 100

	bλR � 1


, where bλR ¼ bρHIR=

bρHIRG and bρHIR is the estimated RLPSI accuracy, for one, two, and three restrictions
for five simulated selection cycles. The RLGSI interval length was LRG ¼ 1.5

whereas the averages of the values of W ¼ bρHIRGbhIR LRP for each restriction were

1.22, 0.85, and 0.60; this means that the estimated Technow inequality (Technow

et al. 2013), LRG <
bρHIRGbhIR LRP (Chap. 5, Eq. 5.18), was not true. Thus, according to

the Technow inequality results, for this data set, RLGSI efficiency in terms of time

was not greater than RLPSI efficiency. The inequality LRG <
bρHIGbhIR LIR was not true

because the estimated RLGSI accuracywas very low, whereas RLPSI heritability was
high. Thus, note that the averages of the estimated RLGSI accuracy for one, two, and
three null restrictions were 0.25, 0.19, and 0.14 respectively, and the averages of the
estimated RLPSI heritability values were 0.70, 0.78 and 0.88, respectively. Thus,
according to these results, because the estimated RLGSI accuracy is very low and

Table 6.3 Estimated RLPSI and RLGSI expected genetic gain per trait for 1, 2, and 3 null
restrictions for 5 simulated selection cycles (each with 4 traits) not including the interval length
between selection cycles

Cycle

Estimated RLPSI expected genetic gain for one, two, and three null restrictions

1 2 3

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

1 0 �2.18 2.03 2.66 0 0 2.77 2.77 0 0 0 4.13

2 0 �3.41 2.33 2.71 0 0 2.87 3.07 0 0 0 4.27

3 0 �2.30 3.12 1.74 0 0 3.11 2.68 0 0 0 4.16

4 0 �2.88 1.42 2.38 0 0 2.35 2.70 0 0 0 3.72

5 0 �1.83 2.38 1.81 0 0 3.12 2.04 0 0 0 3.24

Average 0 �2.52 2.26 2.26 0 0 2.84 2.65 0 0 0 3.90

Cycle

Estimated RLGSI expected genetic gain for 1, 2, and 3 null restrictions

1 2 3

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

1 0 �1.41 1.29 3.72 0 0 1.89 3.70 0 0 0 4.71

2 0 �2.16 1.07 1.81 0 0 1.49 1.98 0 0 0 2.47

3 0 �1.94 1.24 1.57 0 0 1.58 1.78 0 0 0 2.22

4 0 �1.90 1.02 1.60 0 0 1.34 1.73 0 0 0 2.28

5 0 �1.83 1.02 1.61 0 0 1.33 1.77 0 0 0 2.26

Average 0 �1.85 1.13 2.06 0 0 1.52 2.19 0 0 0 2.79
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RLPSI heritability is high, RLGSI efficiency was lower than RLPSI efficiency in
terms of time.

The last three columns of Table 6.4, from left to right, present the estimated
p values, bp ¼ 100

	bλR � 1


, for one, two, and three null restrictions in five simulated

selection cycles. The average of the bp values indicates that for each of the three
restrictions the RLPSI efficiency was 65.05%, 78.73%, and 74.09%, greater than
RLGSI efficiency at predicting the net genetic merit. Thus, for this data set, the
RLPSI was a better predictor of the net genetic merit than the RLGSI in each cycle.

6.2 The Predetermined Proportional Gain Linear Genomic
Selection Index

6.2.1 Objective of the PPG-LGSI

Let d0 ¼ d1 d2 . . . dr½ � be a vector 1 � r (r is the number of predetermined
proportional gains) of the predetermined proportional gains imposed by the breeder,
and assume that μq is the population mean of the qth trait before selection. The
objective of the predetermined proportional gain linear genomic selection index
(PPG-LGSI) is to change μq to μq + dq in the testing population, where dq is a
predetermined change in μq. It is possible to solve this problem minimizing the mean
squared difference between IG ¼ β0γ and H ¼ w0g, E[(H � IG)

2], under the
restriction U0Γβ ¼ θGd, where θG is a proportionality constant, or under the

restriction D0U0Γβ ¼ 0, where D0 ¼
dr 0 . . . 0 �d1
0 dr . . . 0 �d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . dr �dr�1

2
664

3
775 is a matrix

(r� 1)� r (see Chap. 3 for details), and dq (q¼ 1, 2. . ., r) is the qth element of vector

d0 ¼ d1 d2 . . . dr½ �; U0 is a matrix (t� 1) � t of 1s and 0s, and Γ ¼ σγqq0
n o

(q,

q0 ¼ 1, 2, . . ., t, t ¼ number of traits) is a covariance matrix of additive genomic
breeding values, γ0 ¼ [γ1 γ2. . .γt].

6.2.2 The Maximized PPG-LGSI Parameters

In this subsection, we minimize E[(H � IG)
2] under the restriction D0U0Γβ ¼ 0 and

later under the restriction U0Γb ¼ θGd. Under the restriction D0U0Γβ ¼ 0, it is
necessary to minimize the function

f P β; vð Þ ¼ β0Γβþ w0Cw � 2w0Γβþ 2v0D0U0Γβ ð6:7Þ
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with respect to β and v0 ¼ v1 v2 . . . vr�1½ �, where v0 is a vector of Lagrange
multipliers. From a mathematical point of view, Eq. (6.7) is equal to Eq. (6.1); thus,
the vector of coefficients β of the PPG-LGSI should be similar to the vector of
coefficients of the RLGSI (Eq. 6.3), i.e., the PPG-LGSI vector of coefficients is equal
to

βPG ¼ KPw, ð6:8Þ
where now KP ¼ [It � QP], QP ¼ UD(D0U0ΓUD)�1D0U0Γ, w is a vector of
economic weights, and It is an identity matrix t � t. When D0 ¼ U0, βPG ¼ βRG
(the RLGSI vector of coefficients), and when U0 is a null matrix, βPG ¼ w (the LGSI
vector of coefficients). This means that the PPG-LGSI includes the RLGSI and the
LGSI as particular cases.

Under the restriction U0Γβ ¼ θGd (see Chap. 3 for details) the vector of coeffi-
cients of the PPG-LGSI can be written as

βPG ¼ βRG þ θGU U0ΓUð Þ�1d, ð6:9Þ
where βRG ¼ KGw (Eq. 6.3), KG ¼ [I � QG], QG ¼ U(U0ΓU)�1U0Γ, and d0 ¼
d1 d2 . . . dr½ � is the vector of the predetermined proportional gains imposed by
the breeder. It can be shown that θG, the proportionality constant, can be written as

θG ¼ d0 U0ΓUð Þ�1U0Γw
d0 U0ΓUð Þ�1d

: ð6:10Þ

When θG¼ 0, βPG¼ βRG, and when U0 is a null matrix, βPG¼w. Equations (6.8)
and (6.9) give the same results, that is, both equations express the same result in a
different mathematical way.

The maximized selection response and expected genetic gain per trait of the
PPG-LGSI can be written as

RPG ¼ kI
LG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΓβPG

q
ð6:11Þ

and

EPG ¼ kI
LG

ΓβPGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΓβPG

p , ð6:12Þ

respectively, where LG is the time required to complete a selection cycle using the
PPG-LGSI. Equations (6.11) and (6.12) depend only on GEBV information.
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6.2.3 Statistical Properties of the PPG-LGSI

Assuming that H¼ w0g and the PPG-LGSI (IPG ¼ β0PGγ) have bivariate joint normal
distribution, βPG ¼ KPw; Γ, C, and w are known, it can be shown that PPG-LGSI
has the following statistical properties:

1. The vector βPG ¼ KPw minimizes the mean square error under the restriction
D0U0Γβ ¼ 0.

2. The variance of IPG ¼ β0PG γ (σ
2
IPG

¼ β0PGΓβPG) is equal to the covariance between
IPG ¼ β0PG γ and H ¼ w0g (σHIPG ¼ w0ΓβPG).

3. The maximized correlation between H and IPG (also called PPG-LGSI accuracy)

is equal to ρHIPG ¼ σIPG
σH

, where σIPG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0PGΓβPG

q
and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p

are the

standard deviations of IPG ¼ β0PG γ and H ¼ w0g respectively.

4. The variance of the predicted error, Var H � IPGð Þ ¼ 1� ρ2HIPG

� �
σ2H , is minimal.

The statistical PPG-LGSI properties are equal to the statistical PPG-LPSI prop-
erties, then, the PPG-LGSI is an application of the PPG-LPSI to the genomic
selection context.

6.2.4 Numerical Example

To illustrate the PPG-LGSI theory, we use the estimated matrix

bΓ ¼
0:21 2:95 5:00
2:95 42:41 71:11
5:00 71:11 121:53

2
4

3
5 and the GEBVs associated with the traits GY (ton

ha�1), EHT (cm), and PHT (cm), described in Sect. 6.1.3.
It is necessary to estimate the PPG-LGSI vector of coefficients βPG¼ βRG + θgU

(U0ΓU)�1d (Eqs. 6.9 and 6.10). In Sect. 6.1.3, we showed that the estimated
vectors of coefficients of βRG ¼ KGw for the null restrictions U0

1 ¼ 1 0 0½ �
andU0

2 ¼
1 0 0
0 1 0

� �
were bβ0

RG1 ¼ w0 bK0
G1 ¼ 3:78 �0:1 �0:1½ � and bβ0

RG2 ¼ w0

bK0
G2 ¼ 1:12 0:09 �0:1½ � respectively, where w0 ¼ 5 �0:1 �0:1½ �. This

means that to estimate βPG ¼ βRG + θGU(U0ΓU)�1d, we need only to estimate
θGU(U0ΓU)�1d for both sets of restrictions.

Consider matrix U0
1 ¼ 1 0 0½ � and let d1 ¼ 7.0 be the predetermined

proportional gain restriction for trait 1. We can estimate θG and U(U0ΓU)�1d as

bθG1 ¼ 7:0
	
U0

1
bΓU1


�1
U0

1
bΓw

7:0
	
U0

1
bΓU1


�1
7:0

¼ 0:036 and U1

	
U0

1
bΓU1


�1
7:0 ¼

33:333
0
0

2
4

3
5,

whence the PPG-LGSI vector of coefficients was

bβPG1
¼ bβRG1

þ bθG1U1

	
U0

1
bΓU1


�1
7:0 ¼

5:0
�0:1
�0:1

2
4

3
5, and the estimated PPG-LGSI
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was bI PG1 ¼ 5:0GEBV1 � 0:1GEBV2 � 0:1GEBV3. In a similar manner, we can
estimate the PPG-LGSI vector of coefficients under restrictions

U0
2 ¼

1 0 0
0 1 0

� �
and d02 ¼ 7 �3½ �. In this case,

bβPG2
¼ bβRG2

þ bθG2U2
	
U0

2
bΓU2


�1
d2 ¼

4:97
�0:18
�0:10

2
4

3
5 and the estimated PPG-LGSI

was bI PG2 ¼ 4:97GEBV1 � 0:18GEBV2 � 0:1GEBV3.
Figure 6.2 presents the frequency distribution of the estimated PPG-LGSI

values for one (Fig. 6.2a) and two (Fig. 6.2b) predetermined restrictions, d ¼ 7
and d0 ¼ 7 �3½ � respectively, obtained in a real testing population for one
selection cycle in one environment. For both restrictions, the frequency distribution
of the estimated PPG-LGSI values approaches the normal distribution.

Assume a selection intensity of 10% (kIG ¼ 1:755); then, for one predetermined
restriction, where U0

1 ¼ 1 0 0½ � and d1 ¼ 7.0, the estimated PPG-LGSI selection
response and expected genetic gain per trait, not including the interval length, were

bRPG1 ¼kIG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG1

bΓbβPG1

q
¼1:05 and bE0

PG1
¼kI

bβ0
PG1

bΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG1

bΓbβPG1

q ¼ 0:74 9:92 16:54½ �

Fig. 6.2 Distribution of 380 estimated predetermined proportional gain linear genomic selection
index (PPG-LGSI) values with one (a) and two (b) predetermined restrictions, d ¼ 7 and d0 ¼
7 �3½ � respectively, obtained in a real testing population for one selection cycle in one
environment
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respectively. For two restrictions, with U0
2¼

1 0 0
0 1 0

� �
and d0 ¼ 7 �3½ �, the

estimated RLGSI selection response and expected genetic gains, not including the

interval length, were bRPG2 ¼kIG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG2

bΓbβG2

q
¼0:52 and bE0

PG2
¼kI

bβ0
PG2

bΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
PG2

bΓbβPG2

q ¼

0:11 �0:05 0:14½ � respectively.
Now, we use the simulated data set described in Chap. 2, Sect. 2.8.1 to compare

PPG-LGSI efficiency versus predetermined proportional gain linear phenotypic

selection index (PPG-LPSI) efficiency. Let U0
1 ¼ 1 0 0½ �, U0

2 ¼
1 0 0
0 1 0

� �
,

and U0
3 ¼

1 0 0 0
0 1 0 0
0 0 1 0

2
4

3
5 be the matrices and d1 ¼ 7, d02 ¼ 7 �3½ �, and d03 ¼

7 �3 5½ � the vectors for one, two, and three predetermined restrictions respec-
tively. Table 6.5 presents the estimated PPG-LPSI and PPG-LGSI selection response
for each predetermined restriction in five simulated selection cycles including
and not including the interval between selection cycles (4 years for the PPG-LPSI
and 1.5 years for the PPG-LGSI); estimated PPG-LPSI and PPG-LGSI accuracy;
and estimated variance of the predicted error (VPE). In each selection cycle, the
sample size was equal to 500 genotypes, each with four repetitions and four
traits. The selection intensity was 10% (kI ¼ 1.755).

The averages of the estimated PPG-LPSI selection response not including the
interval length were 15.14, 14.87, and 13.30, whereas when the interval length was
included, the average selection responses were 3.79, 3.72, and 3.33, for one, two,
and three predetermined restrictions respectively (Table 6.5). The averages of the
estimated PPG-LGSI selection responses not including the interval length for one,
two, and three predetermined restrictions were 14.48, 13.47, and 11.26 respectively,
and when the interval length was included, the selection responses were 9.65, 8.98,
and 7.51 respectively (Table 6.5). These results indicate that when the interval length
was included in the estimation of the PPG-LPSI and PPG-LGSI selection responses,
PPG-LGSI efficiency was greater than PPG-LPSI efficiency, and vice versa, when
the interval length was not included in the PPG-LPSI and PPG-LGSI selection
responses, PPG-LPSI efficiency was higher than PPG-LGSI efficiency.

The averages of the estimated VPE values of the PPG-LPSI for one, two, and
three predetermined restrictions were 22.42, 30.56, and 41.17 respectively, whereas
the estimated VPE values of the PPG-LGSI (see Sect. 6.2.3 for details) were 59.80,
66.95, and 83.98, respectively, that is, in all selection cycles, the VPE of the
PPG-LPSI was lower than that of the PPG-LGSI. This means that for this data set,
the PPG-LPSI was a better predictor of the net genetic merit than the PPG-LGSI.
These results can be explained by observing that the averages of the estimated
PPG-LPSI accuracies were 0.88, 0.86, and 0.77, whereas the estimated PPG-LGSI
accuracies were 0.65, 0.68, and 0.57 for each predetermined restriction, that is, the
estimated PPG-LGSI accuracies were lower than the estimated PPG-LPSI accuracies
for this data set.
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Table 6.6 presents the estimated predetermined PPG-LPSI heritability (bh2P) values,
WP ¼ bρHIGbhP LP (LP ¼ 4) values, and ratio of the estimated PPG-LPSI accuracy (bρHIP)
to the estimated PPG-LGSI accuracy (bρHIPG ), i.e., bλP ¼ bpHIP=bpHIPG , and, finally,
values of bp ¼ 100

	bλP � 1



for one, two, and three null restrictions for five
simulated selection cycles.

The averages of theWP values for one, two, and three null restrictions were 3.29,
3.12, and 2.53, respectively, whereas the PPG-LGSI interval length was 1.5

(LG ¼ 1.5). This means that the estimated Technow inequality, LG <
bρHIGbhP LP (see

Chap. 5, Eq. 5.18) was true. Thus, PPG-LGSI efficiency in terms of time was greater
than PPG-LPSI efficiency for this data set. These results coincide with those
obtained earlier in this chapter, when we compared PPG-LGSI efficiency versus
PPG-LPSI efficiency in terms of interval length. However, the average values ofbp ¼ 100

	bλP � 1



(see Chap. 5, Eq. 5.15) were, in percentage terms, 16.80%,
20.76%, and 25.85% for each restriction. These latter results indicate that for this
data set, the PPG-LPSI was a better predictor of the net genetic merit than the
PPG-LGSI. This is because the estimated PPG-LPSI accuracies were higher than the
estimated PPG-LPSI accuracies for this data set. We found similar results when we
compared the PPG-LPSI VPE versus PPG-LGSI VPE (Table 6.5).

6.3 The Combined Restricted Linear Genomic Selection
Index

The combined restricted linear genomic selection index (CRLGSI) is based on the
RLPSI (Chap. 3) and combined linear genomic selection index (CLGSI, Chap. 5)
theory. In the RLPSI, the breeder’s objective is to improve only (t � r) of t (r < t)

Table 6.6 Estimated PPG-LPSI heritability (bh2P), values ofWP ¼ bρHIGbhP LP (LP¼ 4), and the ratio of

the estimated PPG-LPSI accuracy (bρHIP ) to the estimated PPG-LGSI accuracy (bρHIPG ):bλP ¼ bρHIP=bρHIPG , and values of bp ¼ 100
	bλp � 1



for 1, 2 and 3 predetermined restrictions for

five simulated selection cycles

Cycle

PPG-LPSI heritability Values of WP Estimated ratio values (bp)
1 2 3 1 2 3 1 2 3

1 0.84 0.77 0.83 4.71 4.13 3.72 �18.62 �6.71 �10.20

2 0.80 0.78 0.83 3.22 3.17 2.42 18.30 20.54 32.04

3 0.77 0.76 0.8 3.18 3.09 2.45 19.89 21.59 31.42

4 0.76 0.75 0.78 2.80 2.71 2.10 29.16 31.84 33.75

5 0.75 0.75 0.79 2.57 2.49 1.97 35.26 36.55 42.35

Average 0.72 0.71 0.76 3.29 3.12 2.53 16.80 20.76 25.87
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traits, leaving r of them fixed; the same is true for the CRLGSI, but in the latter case,
it is necessary to impose 2r restrictions, i.e., we need to fix r traits and their
associated r GEBVs to obtain results similar to those obtained with the RLPSI.
This is the main difference between the CRLGSI and the RLPSI.

It can be shown that Cov(IC, aC) ¼ ΨCβC is the covariance between the breeding
value vector (a0C ¼ g0 γ0½ �) and the CLGSI, IC ¼ β0CtC (see Chap. 5 for details),
where t0C ¼ y0 γ0½ �. In the CRLGSI, we want some covariances between the
linear combinations of aC (U0

CaC ) and CLGSI to be zero, i.e.,
Cov IC;U0

CaC
	 
 ¼ U0

CΨCβC ¼ 0, where U0
C is a matrix 2(t � 1) � 2t of 1s and 0s

(1 indicates that the trait and its associated GEBV are restricted, and 0 that the trait

and its GEBV have no restrictions) andΨC ¼ C Γ
Γ Γ

� �
is a block covariance matrix

of a0C ¼ g0 γ0½ � where C and Γ are the covariance matrices of breeding (g) and
genomic (γ) values respectively. This problem can be solved by minimizing the
mean squared difference between the CLGSI and H (E[(H � IC)

2]) under the
restriction U0

CΨCβC ¼ 0 similar to the RLGSI in Sect. 6.1.

6.3.1 The Maximized CRLGSI Parameters

Let TC ¼ P Γ
Γ Γ

� �
be the block covariance matrix of t0C ¼ y0 γ0½ � where P and Γ

are the covariance matrices of phenotypic (y) and genomic (γ) values respectively.
Based on the Eq. (6.1) result, it can be shown that the CRLGSI vector of coefficients
that minimizes E[(H � IC)

2] under the restriction U0
CΨCβC ¼ 0 is

βCR ¼ KCβC, ð6:13Þ

where KC ¼ [I � QC], QC ¼ T�1
C ΦC Φ0

CT
�1
C ΦC

	 
�1Φ0
C, ΦC ¼ U0

CΨC, and βC
¼ T�1

C ΨCaC (the vector of coefficients of the CLGSI, see Chap. 5 for details);
T�1
C is the inverse of matrix TC, and I is an identity matrix 2t � 2t. When no

restrictions are imposed on any of the traits, U0
C is a null matrix and βCR ¼ βC

(the vector of coefficients of the CLGSI). That is, the CRLGSI is more general
than the CLGSI. Similar to the RLPSI and the RLGSI, matrices KC and QC are
idempotent (KC ¼ K2

C andQC ¼ Q2
C) and orthogonal (KCQC ¼ QCKC ¼ 0), that

is, KC and QC are projectors. Thus, we can assume that the CRLGSI has
similar properties to those described for the RLPSI (see Chap. 3 for details)

when matrices ΨC ¼ C Γ
Γ Γ

� �
and TC ¼ P Γ

Γ Γ

� �
are known.

The maximized selection response and the optimized expected genetic gain per
trait of the CRLGSI can be written as
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RCR ¼ kI
LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CRTCβCR

q
ð6:14Þ

and

ECR ¼ kI
LI

ΨβCRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CRTCβCR

p , ð6:15Þ

respectively. Although in the RLGSI and the PPG-LGSI the interval between
selection cycles is denoted as LG, in the CRLGSI it is denoted as LI. This is because
the RLPSI and the CRLGSI should have the same interval between selection cycles.

6.3.2 Numerical Examples

To illustrate the CRLGSI theoretical results, we use a real training maize (Zea mays)
F2 population with 248 genotypes (each with two repetitions), 233 molecular
markers, and three traits: GY (ton ha�1), EHT (cm), and PHT (cm). Matrices
P and C were estimated based on Eqs. (2.22) to (2.24) described in Chap. 2. The

estimated matrices were bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

2
4

3
5 and

bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

2
4

3
5. In a similar manner, we estimated matrix Γ using

Eqs. (5.21) to (5.23) described in Chap. 5. The estimated matrix was

bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

2
4

3
5.

To estimate the CRLGSI and its associated parameters (selection response,

expected genetic gain per trait, etc.), we need to obtain matrices bTC ¼ bP bΓbΓ bΓ
� �

and bΨC ¼ bC bΓbΓ bΓ
� �

using phenotypic and genomic information and the esti-

mated CRLGSI vector of coefficients bβCR ¼ bKC
bβC, where bKC ¼ �

I� bQC

�
,bQC ¼ bT�1

C
bΦC

	 bΦ0
C
bT�1
C

bΦC


�1 bΦ0
C, bΦC ¼ U0

C
bΨC, and bβC ¼ bT�1

C
bΨCaC.

We have indicated that the main difference between the RLGSI and the CRLGSI
is matrixU0

C, on which we now need to impose two restrictions: one for the trait and
another for its associated GEBV. Consider the (Zea mays) F2 population described
earlier and suppose that we restrict trait GY; then, matrixU0

C should be constructed as

U0
C1

¼ 1 0 0 0 0 0
0 0 0 1 0 0

� �
. If we restrict traits GY and EHT, matrix U0

C should
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be constructed as U0
C2

¼
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2
664

3
775, etc. The procedure for obtaining

matrices bKC ¼ �
I� bQC

�
, bQC ¼ bT�1

C
bΦC

	 bΦ0
C
bT�1
C

bΦC


�1 bΦ0
C, and bΦC ¼ U0

C
bΨC is

similar to that described in Chap. 3.
Let w0 ¼ 5 �0:1 �0:1 0 0 0½ � be the vector of economic weights

and assume that we restrict trait GY; in this case, according to the estimated matricesbP, bC, and bΓ described earlier, the estimated CRLGSI vector of coefficients wasbβ0
RG ¼ 0:076 �0:004 �0:018 2:353 �0:096 �0:082½ �, whence the esti-

mated CRLGSI can be written as

bICR ¼ 0:076GY� 0:004EHT� 0:018PHTþ 2:353GEBVGY � 0:096GEBVEHT

� 0:082GEBVPHT

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions.

Figure 6.3 presents the frequency distribution of the estimated CRLGSI values for
one (Fig. 6.3a) and two null restrictions (Fig. 6.3b) using matrices U0

C1
and U0

C2
, and

the real data set of the F2 population. For both restrictions, the frequency distribution
of the estimated CRLGSI values approaches normal distribution.

Suppose a selection intensity of 10% (kI ¼ 1.755), matrix

U0
C1

¼ 1 0 0 0 0 0
0 0 0 1 0 0

� �
and that the vector of economic weights is w0 ¼

5 �0:1 �0:1 0 0 0½ �; then, according to the estimated matrices bP, bC, and bΓ
described earlier, the estimated CRLGSI selection response and the estimated

CRLGSI expected genetic gain per trait were bRCR ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CR

bTC
bβCR

q
¼ 0:96 and

bE0
CR ¼ kI

bβ0
CR

bΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CR

bTC
bβCR

q ¼ 0 �3:53 �6:03 0 �2:93 �4:87½ � respectively,

whereas the estimated CRLGSI accuracy was bρHICR ¼ bσ ICRbσH
¼ 0:51 (see Chaps. 3

and 5 for details).
Now, we use the simulated data described in Chap. 2, Sect. 2.8.1 to compare

CRLGSI efficiency versus RLGSI efficiency. The criteria for this comparison are the
Technow inequality (Eq. 5.18, Chap. 5) and the ratio of the estimated CRLGSI
accuracy (bρHICR ) to the estimated RLGSI accuracy (bρHIR ) expressed as percentages
(Eq. 5.17, Chap. 5), i.e., bp ¼ 100

	bλCR � 1


, where bλP ¼ bρHICR=bρHIR , for one, two,

and three null restrictions for five simulated selection cycles.
Table 6.7 presents the estimated CRLGSI heritability (bh2C), the estimated RLGSI

accuracy (bρHIR ), the values of WC ¼ bρHIRbhI LI (LI ¼ 4), and the values of
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bp ¼ 100
	bλCR � 1



, where bλCR ¼ bρHICR=bρHIR and bρHICR is the estimated CRLGSI

accuracy, for one, two, and three null restrictions for five simulated selection cycles.

The averages of the WC ¼ bρHIRbhC LI values for one, two, and three null restrictions

were 1.26, 0.92, and 0.59 respectively, whereas the RLGSI interval length was 1.5

(LG ¼ 1.5). This means that the estimated Technow inequality (LG <
bρHIGbhI LI ) was

not true. Thus, for this data set, RLGSI efficiency in terms of time is not greater than

CRLGSI efficiency. The inequality LG <
bρHIGbhI LI was not true because the estimated

RLGSI accuracy was very low, whereas CRLGSI heritability was high. Thus, note
that the averages of the estimated RLGSI accuracy for one, two, and three null
restrictions were 0.25, 0.19, and 0.14 respectively, whereas the averages of the
estimated CRLGSI heritability values were 0.72, 0.75, and 0.89 respectively.
Thus, according to these results, when the estimated RLGSI accuracy is very low
and the estimated CRLGSI heritability is high, RLGSI efficiency will be lower than
CRLGSI efficiency in terms of time.

Fig. 6.3 Distribution of 244 estimated combined restricted linear genomic selection index
(CRLGSI) values with one (a) and two (b) null restrictions respectively obtained in a real training
population for one selection cycle in one environment
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The last three columns of Table 6.7, from left to right, present the average of the
values of bp ¼ 100

	bλCR � 1


, for one, two, and three null restrictions of five

simulated selection cycles. According to these results, CRLGSI efficiency was
53.78%, 78.25%, and 61.25% higher than RLGSI efficiency. Thus, for this data
set, the CRLGSI was a better predictor of the net genetic merit than the RLGSI.

6.4 The Combined Predetermined Proportional Gains
Linear Genomic Selection Index

In the PPG-LPSI described in Chap. 3, the vector of the PPG (predetermined
proportional gains) was d0 ¼ d1 d2 . . . dr½ �. However, because the combined
predetermined proportional gains LGSI (CPPG-LGSI) uses phenotypic and GEBV
information jointly to predict the net genetic merit, the vector of the PPG (dC) should
be twice the standard vector d0, that is,
d0C ¼ d1 d2 � � � dr drþ1 drþ2 � � � d2r½ �, where we would expect that if
d1 is the PPG imposed on trait 1, then dr + 1 should be the PPG imposed on the
GEBV associated with trait 1, etc. In addition, in the CPPG-LGSI, we have three
possible options for determining (for each trait and GEBV) the PPG, e.g., for trait
1, d1 ¼ dr + 1, d1 > dr + 1, or d1 < dr + 1. This is the main difference between the
standard PPG-LPSI described in Chap. 3 and the CPPG-LGSI.

6.4.1 The Maximized CPPG-LGSI Parameters

It can be shown that the vector of coefficients of the CPPG-LGSI can be written as

βCP ¼ βCR þ θCPδCP, ð6:16Þ
where

θCP ¼ β0CΦC

	
Φ0

C
bT�1
C ΦC


�1
dC

d0C
	
Φ0

C
bT�1
C ΦC


�1
dC

ð6:17Þ

is a proportionality constant. In addition, in Eq. (6.16), βCR ¼ KCβC is the vector of

coefficients of the CRLGSI (Eq. 6.13), δCP ¼ T�1
C ΦC

	
Φ0

C
bT�1
C ΦC


�1
dC,

Φ0
C ¼ U0

CΨC, and βC ¼ T�1
C ΨCaC (the vector of coefficients of the CLGSI).

When θCP ¼ 0, βCP ¼ βCR, and if θ ¼ 0 and U0
C is the null matrix, then βCR ¼ βC.
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Thus, the CPPG-LGSI is more general than the CRLGSI and the CLGSI, and
includes the latter two indices as particular cases. In addition, it can be shown that
the CPPG-LGSI has the same properties as the PPG-LPSI described in Chap. 3.

The maximized selection response and the expected genetic gain per trait of the
CPPG-LGSI can be written as

RCP ¼ kI
LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CPTCβCP

q
ð6:18Þ

and

ECP ¼ kI
LI

ΨβCPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CPTCβCP

p , ð6:19Þ

respectively. Although in the RLGSI and the PPG-LGSI the interval between
selection cycles is denoted as LG, in the CPPG-LGSI it is denoted as LI. This is
because the RLPSI and the CPPG-LGSI should have the same interval between
selection cycles because they use phenotypic information to predict the net genetic
merit.

6.4.2 Numerical Examples

Similar to the CRLGSI, to illustrate the CPPG-LGSI results we use the
real training maize (Zea mays) F2 population with 248 genotypes,
233 molecular markers, and three traits—GY (ton ha�1), EHT (cm), and PHT

(cm)—where bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

2
4

3
5, bC ¼

0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

2
4

3
5, and

bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

2
4

3
5 were the estimated matrices of P, C, and Γ

respectively.
We can obtain the estimated CPPG-LGSI vector of coefficients as bβCP ¼ bβCR þbθCPbδCP (Eq. 6.16). Suppose that we restrict trait GY and its associated GEBV

withmatrixU0
C1

¼ 1 0 0 0 0 0
0 0 0 1 0 0

� �
and the vector of predetermined restriction

d0C ¼ 7 3:5½ �. In Sect. 6.3.2, we showed that the estimated CRLGSI vector of
coefficients was bβ0

CR ¼ 0:076 �0:004 �0:018 2:353 �0:096 �0:082½ � ;
then, we only need to calculate bθCP and bδCP to obtain the vector of coefficients bβCP.
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Let w0 ¼ 5 �0:1 �0:1 0 0 0½ � be the vector of economic weights. It
can be shown that bθCP ¼ 0:00030 is the estimated value of the proportionality
constant and δ0CP ¼ 0:56 �77:28 40:89 49:44 77:28 �40:89½ �. Thus,
the estimated CPPG-LGSI vector of coefficients wasbβ0
CR ¼ 0:76 �0:030 �0:004 2:369 �0:070 �0:096½ �, whence the esti-

mated CPPG-LGSI can be written as

bICP ¼ 0:076GY� 0:03EHT� 0:004PHTþ 2:369GEBVGY � 0:070GEBVEHT

� 0:096GEBVPHT,

where GEBVGY, GEBVEHT, and GEBVPHT are the GEBVs associated with traits
GY, EHT, and PHT respectively. The same procedure is valid for two or more
restrictions. Note that because bθCP ¼ 0:0003 is very small, the estimated CPPG-
LGSI and CRLGSI values were very similar.

Figure 6.4 presents the frequency distribution of the estimated CPPG-LGSI
values for one (Fig. 6.4a) and two predetermined restrictions (Fig. 6.4b) using

matrices U0
C1

and U0
C2

¼
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

2
664

3
775, the vectors of the PPG

Fig. 6.4 Distribution of 244 estimated combined predetermined proportional gain linear genomic
selection index (CPPG-LGSI) values with one (a) and two (b) predetermined restrictions, d¼ 7 and
d0 ¼ 7 �3½ � respectively, obtained in a real training population for one selection cycle in one
environment
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d0C1 ¼ 7 3:5½ � and d0C2 ¼ 7 �3 3:5 �1:5½ �, and the real data set F2. For both
restrictions, the frequency distribution of the estimated CPPG-LGSI values
approaches normal distribution.

Suppose a selection intensity of 10% (kI¼ 1.755) and that we restrict trait GY and
its associated GEBV. The estimated CPPG-LGSI selection response and expected

genetic gain per trait were bRCP ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CP

bTC
bβCP

q
¼ 0:98 and bE0

CP ¼ kI
bβ0
CP

bΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0
CP

bTbβCP

q
¼ 0:007 �3:647 �5:760 0:004 �2:829 �4:711½ � respectively, whereas

the estimated CPPG-LGSI accuracy was bρHICP ¼ bσ ICPbσH
¼ 0:52. Once again, because

bθCP ¼ 0:0003, the latter results are very similar to the CRLGSI results.
Now, we use the simulated data described in Chap. 2, Sect. 2.8.1, to compare

CPPG-LGSI efficiency versus PPG-LGSI efficiency. The criteria for this compari-
son are the Technow inequality (Chap. 5, Eq. 5.18) and the ratio of CPPG-LGSI
accuracy (ρHICP ) to PPG-LGSI accuracy (ρHIP ) expressed as percentages (Chap. 5,
Eq. 5.17), bp ¼ 100

	bλCP � 1


, where bλCP ¼ bρHICP=bρHIP for one, two, and three null

restrictions in five simulated selection cycles.
Table 6.8 presents the estimated CPPG-LGSI heritability ( bh2I ), the

estimated PPG-LGSI accuracy ( bρHICP ), values of WCP ¼ bρHIGbhI LI (LI ¼ 4) and

bp ¼ 100
	bλCP � 1



, where bλP ¼ bρHICP=bρHIP and bρHIP is the estimated CPPG-LGSI

accuracy, for one, two, and three null restrictions in five simulated selection cycles.
The averages of the estimated WCP values for one, two, and three predetermined
restrictions were 3.60, 3.31, and 2.50 respectively, whereas the PPG-LGSI interval
length was 1.5 (LG ¼ 1.5). This means that the estimated Technow inequality,

LG <
bρHIGbhI LI , was true. Thus, for this data set, PPG-LGSI efficiency is greater

than CPPG-LGSI efficiency in terms of time.
The last three columns of Table 6.8, from left to right, present the values ofbp ¼ 100

	bλCP � 1


, for one, two, and three null restrictions in five simulated selec-

tion cycles. The average values of bp ¼ 100
	bλCP � 1



for each of the three restric-

tions, in percentage terms, were 37.19%, 32.82%, and 37.08% respectively. This
means that the CPPG-LGSI efficiency was greater than PPG-LGSI efficiency at
predicting the net genetic merit.
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