
Chapter 5
Linear Genomic Selection Indices

Abstract The linear genomic selection index (LGSI) is a linear combination of
genomic estimated breeding values (GEBVs) used to predict the individual net genetic
merit and select individual candidates from a nonphenotyped testing population as
parents of the next selection cycle. In the LGSI, phenotypic and marker data from the
training population are fitted into a statistical model to estimate all individual available
genome marker effects; these estimates can then be used in subsequent selection
cycles to obtain GEBVs that are predictors of breeding values in a testing population
for which there is only marker information. The GEBVs are obtained by multiplying
the estimated marker effects in the training population by the coded marker values
obtained in the testing population in each selection cycle. Applying the LGSI in plant
or animal breeding requires the candidates to be genotyped for selection to obtain the
GEBV, and predicting and ranking the net genetic merit of the candidates for selection
using the LGSI. We describe the LGSI and show that it is a direct application of the
linear phenotypic selection index theory in the genomic selection context; next, we
present the combined LGSI (CLGSI), which uses phenotypic and GEBV information
jointly to predict the net genetic merit. The CLGSI can be used only in training
populations when there are phenotypic and maker information, whereas the LGSI is
used in testing populations where there is only marker information. We validate the
theoretical results of the LGSI and CLGSI using real and simulated data.

5.1 The Linear Genomic Selection Index

5.1.1 Basic Conditions for Constructing the LGSI

Conditions described in Chap. 4 (Sect. 4.1.1) for constructing a valid linear molec-
ular selection index (LMSI), are also necessary for the linear genomic selection
index (LGSI); however, in addition to those conditions, the LGSI also requires:

1. All marker effects to be estimated simultaneously in the training population.
2. The estimated marker effects to be used in subsequent selection cycles to obtain

GEBVs that are predictors of the individual breeding values in the testing
population (candidates for selection) for which there is only marker information.
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3. The GEBV values to be composed entirely of the additive genetic effects.
4. Phenotypes to be used to estimate all marker effects in the training population, not

to make selections in the testing population (Heffner et al. 2009; Lorenz et al.
2011).

5.1.2 Genomic Breeding Values and Marker Effects

The breeding value (gi) is the average additive effects of the genes an individual
receives from both parents; thus, it is a function of the genes transmitted from parents
to progeny and is the only component that can be selected and, therefore, the main
component of interest in breeding programs (Mrode 2005). The ith phenotypic value
(yi) can be denoted as yi ¼ gi + ei, where gi is the breeding value and ei the residual.
Basic assumptions for gi and ei are: both gi and ei have normal distribution with
expectation equal to zero and variance σ2gi and σ2ei respectively. This means that

yi ¼ μi + gi + ei is a linear mixed model (Mrode 2005; Searle et al. 2006), where μi is
the mean of yi.

Let y0i ¼ yi1 yi2 � � � yin½ � be a vector 1 � n of observations in the ith trait and let
g0i ¼ gi1 gi2 � � � gin½ � be a vector 1 � n of unobservable breeding values
associated with yi; then yi can be written as

yi ¼ 1μi þ Zgi þ ei, ð5:1Þ
where μi is the mean of the ith trait, 1 is a vector n � 1 of 1s, Z is a design matrix of
0s and 1s, gi ~ MVN (0,Aσ2gi) is a vector of breeding values, and ei ~ MVN (0, Inσ2ei)
is a vector of residuals; 0 is the mean and Aσ2gi and Inσ

2
ei
the covariance matrix of gi

and ei respectively; A is the numerical relationship matrix (Mrode 2005) and In an
identity matrix n � n; σ2gi and σ2ei are the additive and residual variances associated

with gi and ei; and MVN stands for multivariate normal distribution.
Suppose thatA, Z, μi,σ

2
gi
, andσ2ei are known; then, according to Mrode (2005), the

best linear unbiased predictor (BLUP) of gi can be written as

bgi ¼ σ2giAZ
0V�1 yi � 1μið Þ, ð5:2Þ

where V�1 is the inverse matrix of the variance of yi, i.e.,
Var yið Þ ¼ σ2giZAZ

0 þ Inσ2ei ¼ V. In the context of animal breeding, Eq. (5.2) is

considered a univariate linear phenotypic selection index (LPSI) (Mrode 2005)
and is used to rank and select individuals as parents of the next generation in the
context of one trait. Equation (5.2) can be extended to the multi-trait phenotypic
selection index case, but to predict the net genetic merit (H ¼ w0g, see Chap. 2 for
details) it would be necessary to construct linear combinations of the predicted
values of gi associated with the traits of interest as was described in the Foreword
of this book.
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The vector of the individual genomic breeding values (γi) associated with the ith
characteristic (i ¼ 1, 2,. . .,t; t ¼ number of traits) of the candidates for selection can
be written as

γi ¼ Xui, ð5:3Þ
where X is an n � m matrix (n ¼ number of observations and m ¼ number of
markers in the population) of coded marker values (2 � 2p, 1 � 2p, and �2p for
genotypes AA, Aa, and aa respectively) associated with the additive effects of the
quantitative trait loci (QTL) and ui is an m � 1 vector of the additive effects of the
QTL associated with markers that affect the ith trait. It is assumed that γi has MVN
with mean 0 and variance Gσ2γ , i.e., γi ~ MVN (0, Gσ2γi ), where σ2γi is the

additive genomic variance of γi and G ¼ XX0/c is the n � n additive genomic

relationship matrix between genotypes; c ¼
Xm
j¼1

2p j 1� p j

� �
in an F2 population,

and c ¼
Xm
j¼1

4p j 1� p j

� �
in a double haploid population; p is the frequency of allele

A and 1 � p is the frequency of allele a in the jth marker ( j ¼ 1, 2, . . ., m).
The additive genomic relationship matrix G ¼ XX0/c has special properties.

For example, in the asymptotic context, the expectation of matrix G is equal to the
numerical relationship matrix A, i.e., E(G)¼ A (Habier et al. 2007; Van Raden 2008);
this means that G is a particular realization of A and when the number of markers and
genotypes increases in the training population, the value of G tends to concentrate
around A. Thus, it can be assumed that at the limit, when the number of markers and
genotypes is very high,G ¼ A (Cerón-Rojas and Sahagún-Castellanos 2016).

The vector of genomic breeding values (Eq. 5.3) has a similar function in
genomic selection as gi in the phenotypic selection context. In addition, gi can be
written as gi ¼ γi + ηi, where ηi ¼ gi � γi (Gianola et al. 2003). Also, note that

Cov gi; γið Þ ¼ σ2γi , ð5:4Þ

i.e., the covariance between γi and gi is equal to the variance of γi (Dekkers 2007).
Lety0i ¼ yi1 yi2 � � � yin½ �be a vector 1� n of observation of the ith trait in the

training population and let γ0i ¼ γi1 γi2 � � � γin½ � be a vector 1 � n of
unobservable genomic breeding values associated with yi; then, yi can also be
written as

yi ¼ 1μi þ Zγi þ εi, ð5:5Þ
where μi is the mean of the ith trait, 1 is a vector n � 1 of 1s, Z is a design matrix,
γi ~ MVN (0, Gσ2γ) and εi ~ MVN (0, Inσ2εi) are vectors of genomic breeding values
and of residuals respectively, and σ2εi is the residual variance. In, G, and σ2γ were
defined in Eqs. (5.2) and (5.3).

According to Eqs. (5.2) and (5.3), when μi, σ
2
γ and σ2εi are known, the vector of

GEBVs for the individuals with the ith trait can be obtained as
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bγi ¼ σ2γiGZ0V�1 yi � 1μið Þ, ð5:6Þ

where the variance of yi should now be written as V ¼ σ2γiZGZ0 þ Inσ2εi . In the

context of genomic selection, Eq. (5.6) is considered a univariate LGSI and is used to
rank and select individuals as parents of the next generation (Van Raden 2008;
Togashi et al. 2011). Equation (5.6) is the BLUP of γi and can be extended to a multi-
trait genomic selection index, but to predict the net genetic merit (H ¼ w0g), it is
necessary to construct an LGSI, which is a linear combination of γi.

Although Eq. (5.6) is theoretically very important in LGSI, in practice we need to
estimate the marker effects associated with all the traits of interest and to use these
estimates in the testing population to obtain the GEBV of the candidates for
selection. Let u0 ¼ u01 u02 � � � u0t½ � be a vector 1 � nt associated with t traits.
In the univariate context, Van Raden (2008) showed that the ith vector ui of marker
effects in the training population can be estimated as

bui ¼ c�1X0 Gþ υIn½ ��1 yi � 1μið Þ, ð5:7Þ

where υ ¼ σ2ei
σ2gi

; σ2gi , σ
2
ei
and the other parameters were defined earlier. According to

Ceron-Rojas et al. (2015), to estimate the vector u0 ¼ u01 u02 � � � u0t½ � in the
multi-trait context, Eq. (5.7) can be written as

bu ¼ c�1W0
t It �Gð Þ þ N� Inð Þ½ ��1 y� μ� 1ð Þ, ð5:8Þ

whereWt¼ It� X, “�” denotes the Kronecker product (Schott 2005), c and X were
defined in Eq. (5.3); N ¼ RC�1, whereR and C are the residual and breeding value
covariance matrices for t traits respectively; y0 ¼ y01 y02 � � � y0t½ � ~ MVN(μ, V)
is a vector of size 1 � tn, with covariance matrix V ¼ C � G + R � In; It is an
identity matrix of size t � t and In was defined earlier; μ0 ¼ μ1 μ2 � � � μt½ � is a
vector 1 � t of means associated with vector y, and 1 is a vector n � 1 of 1s. In this
case, the estimator of the vector of sub-vectors of genomic breeding values γ0 ¼
γ1 γ2 . . . γt½ � in the testing population can be obtained as

bγ ¼ Wtbu: ð5:9Þ
Equation (5.9) is the vector of GEBVs for the multi-trait case. Thus, in the testing

population, in Eq. (5.9), only the coded values in matrix X change, whereas bu is the
same in each selection cycle. Note that to obtain Eqs. (5.7) and (5.8), we assumed
that μ, C, and R are known.

We indicated that the genomic breeding values have normal distribution
(Eq. 5.5). Using the simulated data described in Chap. 2, Sect. 2.8.1, in Fig. 5.1
we present the distribution of the GEBVs (Eq. 5.9) associated with traits T1 in the
first (Fig. 5.1a) and the fifth (Fig. 5.1b) selection cycles in the testing population. In
effect, the frequency distribution of the GEBVs approaches normal distribution in
both selection cycles.
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5.1.3 The LGSI and Its Parameters

Similar to the LPSI (Chap. 2), the objective of the LGSI is to predict the net genetic
merit H ¼ w0g, where g0 ¼ g1 g2 . . . gt½ � (t ¼ number of traits) is a vector of
unobservable true breeding values and w0 ¼ w1 w2 . . . wt½ � is a vector of
economic weights. Suppose that the genomic breeding values γi ¼ Xui are known;
then, the LGSI can be written as

IG ¼ β0γ, ð5:10Þ
where β is an unknown vector of weights.

The main advantage of the LGSI over the LPSI lies in the possibility of reducing
the intervals between selection cycles (LG) by more than two thirds (Lorenz et al.
2011); thus, this parameter should be incorporated into the LGSI selection response
and the expected genetic gain per trait to reflect the main advantage of the LGSI
over the LPSI and the other indices. Assuming that LG ¼ 1, in the LPSI context we

Fig. 5.1 Distribution of the genomic estimated breeding values (GEBVs) associated with traits T1
in (a) the first and (b) the fifth selection cycles in the testing population
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wrote the selection response as RI ¼ kIσHρHI; however, if LG 6¼ 1, the LGSI selection
response can be written as

RIG ¼ kI
LG

σHIG
σ2IG

¼ kI
LG

σHρHIG , ð5:11Þ

where kI is the standardized selection differential (or selection intensity) associated
with the LGSI, σHIG is the covariance between H ¼ w0g and the LGSI, σ2IG is the
variance of the LGSI, σH is the standard deviation of H, ρHIG is the correlation
between H and the LGSI, and LG denotes the intervals between selection cycles.

Let C and Γ be matrices of covariance of the breeding values (g) and of the
genomic breeding values (γ) respectively; then, the correlation betweenH¼w0g and
IG ¼ β0γ can be written as

ρHIG ¼ w0Γβffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p ffiffiffiffiffiffiffiffiffiffi
β0Γβ

p , ð5:12Þ

wherew0Γβ ¼ σHIG is the covariance between H ¼ w0g and IG ¼ β0γ, σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p
is the standard deviation of the variance of H ¼ w0g, and σIG ¼

ffiffiffiffiffiffiffiffiffiffi
β0Γβ

p
is the

standard deviation of the variance of IG ¼ β0γ.

5.1.4 Maximizing LGSI Parameters

To maximize the genomic selection response (Eq. 5.11), suppose that kI, σH and LG
are fixed and take the derivative of the natural logarithm (ln) of the correlation
between H and IG (Eq. 5.12) with respect to vector β, equate the result of the
derivative to the null vector, and isolate β, i.e.,

∂
∂β

ln ρHIg ¼
∂
∂β

ln
w0Γβffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p ffiffiffiffiffiffiffiffiffiffi

β0Γβ
p !

¼ 0: ð5:13Þ

The result is β ¼ sw, where s ¼ β0Γβ/w0Γβ is a proportional constant that does
not affect the maximum value of ρHIG , because this is invariant to the scale change;
then, assuming that β¼w, the maximized LGSI selection response can be written as

RIG ¼ kI
LG

ffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p
: ð5:14Þ

Hereafter, we refer to the LGSI genomic selection response as that of Eq. (5.14).
Also, because β ¼ w, Eq. (5.12) can be written as
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ρHIG ¼
ffiffiffiffiffiffiffiffiffiffiffi
w0Γw

pffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p ¼ σIG
σH

, ð5:15Þ

which is the maximized correlation between H ¼ w0g and IG ¼ β0γ, or LGSI
accuracy; σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w0Cw
p

is the standard deviation of the variance of H, and σIG ¼ffiffiffiffiffiffiffiffiffiffi
β0Γβ

p
is the standard deviation of the variance of IG.

The LGSI expected genetic gain per trait (EIG ) can be written as

EIG ¼ kI
LG

Γwffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p : ð5:16Þ

All the terms in Eq. (5.16) were previously defined.
Let λG ¼ ρHIG

ρHI
be LGSI efficiency versus LPSI efficiency to predict the net genetic

merit, where ρHIG is the LGSI accuracy and ρHI the LPSI accuracy; in percentage
terms, LGSI efficiency versus LPSI efficiency for each selection cycle can be written
as

pG ¼ 100 λG � 1ð Þ: ð5:17Þ
According to Eq. (5.17), if pG > 0, LGSI efficiency is greater than LPSI

efficiency; if pG ¼ 0, the efficiency of both selection indices is equal, and if
pG < 0, the LPSI is more efficient than the LGSI at predicting H ¼ w0g.

Equation (5.17) is useful for measuring LGSI efficiency in terms of accuracy
when predicting the net genetic merit (H ¼ w0g), whereas the Technow et al. (2013)
inequality measures LGSI efficiency in terms of the time needed to complete one
selection cycle. In the context of the LGSI and the LPSI, the Technow inequality can
be written as

LG <
ρHIG
hI

LP, ð5:18Þ

where LG and LP denote the time required to complete one selection cycle for the
LGSI and the LPSI respectively, ρHIG is the LGSI accuracy, and hI is the square root
of the heritability (Lin and Allaire 1977; Nordskog 1978) of the LPSI, which can be

denoted as hI ¼
ffiffiffiffiffiffiffiffi
b0Cb
b0Pb

q
(see Chap. 2 for details). Then, assuming that the selection

intensity is the same for both selection indices, if Eq. (5.18) is true, the LGSI is more
efficient than the LPSI per unit of time.

5.1.5 Relationship Between the LGSI and LPSI Selection
Responses

To obtain the relationship between RIG and RI in the asymptotic context, we omitted
the intervals between selection cycles (LG and LI respectively) to simplify the
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algebra. Consider a population where the number of genotypes and markers tends to
infinity; in this case, markers explain most of the true additive genetic variances and
covariances. Thus, we can assume that matrices Γ and C are very similar, and at the
limit, Γ ¼ C. Now suppose that in this population the phenotypic variance–covari-
ance matrix (P) is known and comprises matrix Γ and the variance–covariance
residual matrix (R). In this case, the inverse of P can be written as P�1 ¼ (Γ + R)�1 ¼
Γ�1� Γ�1(Γ�1 + R�1)�1Γ�1, where Γ�1 andR�1 are the inverses of matrices Γ and
R respectively. Thus, the LPSI selection response is given by

RI ¼ kI
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0ΓP�1Γw

p
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γw� w0 Γ�1 þ R�1

� ��1
w

q
, ð5:19Þ

where b¼ P�1Γw is the vector of coefficients of the LPSI in the asymptotic context.
Note that b0Pb � 0 and w0Γw � 0, i.e., b0Pb and w0Γw are positive semi-definite,
meaning that w0Γw � w0(Γ�1 + R�1)�1w � 0; then, in the asymptotic context,
RIG � RI . This result is not common when the number of genotypes and markers is
small; however, it gives an idea of the theoretical behavior of RIG with respect to RI

when the number of markers and genotypes is very large.
Because gq can be written as gq¼ γq + ηq, where ηq¼ gq� γq (q ¼ 1, 2, � � �, t),

for low numbers of markers and genotypes, the covariance genotypic matrix C can
be written as C ¼ Γ + E, where E ¼ C � Γ; then, the inverse of matrix P can be
written as P�1 ¼ [(Γ + E) + R]�1 ¼ (Γ + E)�1 � (Γ + E)�1[(Γ + E)�1 + R�1]�1

(Γ + E)�1. In the latter case, the LPSI selection response RI can be written as

RI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0 Γþ Eð ÞP�1 Γþ Eð Þw

q
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γwþ w0Ew� w0 Γþ Eð Þ�1 þ R�1

h i�1
w

r
: ð5:20Þ

Equation (5.20) indicates that in the non-asymptotic context (low numbers of
markers and genotypes), RIG and RI are related in three possible ways:

1. RI > RIG if w0Ew > w0[(Γ + E)�1 + R�1]�1w
2. RI ¼ RIG if w0Ew ¼ w0[(Γ + E)�1 + R�1]�1w
3. RIG > RI if w0Ew < w0[(Γ + E)�1 + R�1]�1w

The second and third points indicate that RIG may be equal to or larger than RI,
even under a small number of markers, depending on the size of w0Ew and w0

[(Γ + E)�1 + R�1]�1w. These three points explain the theoretical relationship
between RI and RIG for a low number of markers and genotypes. When Γ ¼ C,

E ¼ 0, and RI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Γw� w0 Γ�1 þ R�1

� ��1
w

q
, then RIG � RI .
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5.1.6 Statistical LGSI Properties

Assuming that H and IG have joint bivariate normal distribution and that Γ, C, and
w are known, the LGSI has the following properties:

1. The variance of IG (σ2IG) and the covariance between H and IG (σHIG) are equal, i.e.,

σ2IG ¼ σHIG .
2. The maximized correlation between H and IG (or LGSI accuracy) is equal to

ρHIG ¼ σIG
σH
, where σIG is the standard deviation of σ2IG and σH is the standard

deviation of the variance of H (σ2H).

3. The variance of the predicted error, Var H � IGð Þ ¼ 1� ρ2HIG

� �
σ2H , is minimal.

Note that Var H � IGð Þ ¼ σ2IG þ σ2H � 2σHIG , and when β ¼ w, σ2IG ¼ σHIG ,

whence Var H � IGð Þ ¼ σ2H � σ2IG ¼ 1� ρ2HIG

� �
σ2H is minimal.

4. The total variance of H explained by IG is σ2IG ¼ ρ2HIGσ
2
H . It is evident that if

ρHIG ¼ 1, σ2IG ¼ σ2H , and if ρHIG ¼ 0, σ2IG ¼ 0. That is, the variance of H explained

by IG is proportional to ρHIG , and when ρHIG is close to 1, σ
2
IG
is close to σ2H; if ρHIG

is close to 0, σ2IG is close to 0.

The LGSI properties described in points 1–4 of this subsection are the same as the
LPSI properties described in Chap. 2. This corroborates the LGSI as an application
of the LPSI theory to the genomic selection context.

5.1.7 Genomic Covariance Matrix in the Training
and Testing Population

To derive the LGSI theory, we assumed that the true genomic additive variance–
covariance matrix Γ was known. However, in practice, we need to estimate it. In the
training population, matrix Γ can be estimated by restricted maximum likelihood
(REML) using phenotypic and genomic information, as described by Vattikuti et al.
(2012) and Su et al. (2012). In Eqs. (2.22) to (2.24) of Chap. 2, we presented the
formulas for estimating the genotypic and residual variance and covariance based on
the formulas described by Lynch and Walsh (1998). Here, we present a brief
description of how we can estimate the qth component (σγqq) of Γ in the training
population using the REML method.

We estimated σγqq ¼ σ2γq (q, q0 ¼ t ¼ number of traits) in the absence of
dominance and epistatic effects, using the model yq ¼ 1μq + Zγq + εq, where the
vector yq ~ NMV(1μq,Vq) g� 1 (g ¼ number of genotypes in the population) had a
multivariate normal distribution; 1 was a g � 1 vector of 1s, μq was the mean of the
qth trait, Zwas an identity matrix g� g; γq ~ NMV(0,Gσ2γq) was a vector of genomic
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breeding values, and εq ~ NMV(0, Iσ2εq ) was a g � 1 vector of residuals. Matrix

G¼XX0/cwas the genomic relationship matrix, and in an F2 population,c ¼
XN
j¼1

2p jq j;

X was a g� mmatrix (m ¼ number of markers) of the coded marker values (2� 2p
for AA, 1 � 2p for Aa, and �2p for aa) for the additive effects of the markers; p and
q denote the frequency of allele A and the frequency of allele a in the jth marker
( j ¼ 1, 2, . . ., m), and Vq ¼ Gσ2γq þ Iσ2εq .

The expectation–maximization algorithm allowed the REML for the variance
components σ2γq and σ2εq to be computed by iterating the following equations:

σ2 nþ1ð Þ
γq ¼ σ2 nð Þ

γq þ
σ2 nð Þ
γq

� �2
g

y0q T nð ÞGT nð Þ
� �

yq � tr T nð ÞG
� �h i

ð5:21Þ

and

σ2 nþ1ð Þ
εq

¼ σ2 nð Þ
εq

þ
σ2 nð Þ
εq

� �2
g

y0q T nð ÞT nð Þ
� �

yq � tr T nð Þ
� �h i

, ð5:22Þ

where g is the number of genotypes. After n iterations, when σ2 nþ1ð Þ
γq was very similar

to σ2 nð Þ
γq and σ2 nþ1ð Þ

εq
was very similar to σ2 nð Þ

εq
, σ2 nþ1ð Þ

γq and σ2 nþ1ð Þ
εq

were the estimated

variance components ofσ2γq andσ
2
εq
respectively. In Eqs. (5.21) and (5.22) tr(.) denoted

the trace of the matrices within brackets; T ¼ V�1
q � V�1

q 1 10V�1
q 1

� ��1
10V�1

q , and

V�1
q was the inverse of Vq ¼ Gσ2γq þ Iσ2εq . In matrix T(n), V�1 nð Þ

q was the inverse of

matrix V nð Þ
q ¼ Gσ2 nð Þ

γq þ Iσ2 nð Þ
εq

.

The genomic additive genetic covariance between the observations of the qth and
ith traits, yq and yi (σγqi , q, i ¼ 1, 2,. . .,t), can be estimated by REML. Here, we
adapted Eqs. (5.21) and (5.22) using the variance of the sum of yq and yi, i.e., Var
(yi + yq) ¼ Vi + Vq + 2Ciq, where Vi ¼ Gσ2γi þ Iσ2εi ¼ Var yið Þ is the variance of yi
and Vq ¼ Gσ2γq þ Iσ2εq ¼ Var yq

� �
is the variance of yq; 2Ciq ¼ 2Gσγiq þ 2Iσεiq

¼ 2Cov yi; yq
� �

is the covariance of yq and yi, and σγiq and σεiq are the genomic and
residual covariance respectively, associated with yi and yq. Thus, one way of
estimating σγiq and σeiq is by using the following equation:

0:5Var yi þ yq
� �� 0:5Var yið Þ � 0:5Var yq

� �
, ð5:23Þ

for which Eqs. (5.21) and (5.22) can be adapted.
If there is only marker information on the testing population, then it is not

possible to estimate Γ using Eqs. (5.21) to (5.23). Another way of estimating Γ is
to use the method proposed by Ceron-Rojas et al. (2015), which requires the
estimated values of γq (bγq ) in the cycle of interest. Let bu be the estimator of the
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vector of marker effects u0 ¼ u01 u02 � � � u0t½ � for t traits obtained in the training
population. We obtained the qth GEBVs (q ¼ 1, 2, . . ., t) in the lth selection
cycle (l ¼ 1, 2, . . ., number of cycles) as

bγql ¼ Xlbuq ð5:24Þ

where buq is the vector of size m � 1 of the estimated marker effects of the qth trait in
the training population andXl is a matrix of size n�m of the coded values of marker
genotypes in the lth selection cycle of the testing population.

Now suppose that γq and γq0 have multivariate normal distribution jointly,
with mean 1μγq and 1μγq0 respectively, and covariance matrix Gσγqq0 , where 1 is

an n � 1 vector of 1s and G ¼ XX0/c is the additive genomic relationship matrix.

Then, Γ ¼ σγqq0
n o

can be estimated as

bΓl ¼ bσγqq0

n o
, ð5:25Þ

where bσγqq0 ¼
1
g

�bγql � 1bμγql

�0
G�1

l

�bγq0l � 1bμγq0 l

�
is the estimated covariance between

γq and γq0 in the lth selection cycle of the testing population; g is the number of
genotypes; bγql was defined in Eq. (5.24); bμγql

and bμγq0 l are the estimated arithmetic

means of the values of bγql and bγq0l; 1 is a g � 1 vector of 1s andGl ¼ c�1XlX0
l is the

additive genomic relationship matrix in the lth selection cycle (l ¼ 1, 2, . . ., number
of cycles) in the testing population.

From Eq. (5.25) we can estimate the LGSI response and expected genetic gain per
trait in the testing population as

bRIG ¼ kI
LG

ffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp

and bEIG ¼ kI
LG

bΓwffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp , ð5:26Þ

respectively. The estimated LGSI (bIG ) values in the lth selection cycle can be
obtained as

bIG ¼
Xt
q¼1

wqbγql, ð5:27Þ

where wq is the qth economic weight and bγql was defined in Eq. (5.24). Equation

(5.27) is a vector of size g � 1 (g¼ number of genotypes). In practice, bIG values are
ranked to select individual genotypes with optimal GEBVs.
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5.1.8 Numerical Examples

To estimate matrices C and R and the marker effects in the training population,
we used a real maize (Zea mays) F2 population with 248 genotypes (each with
two repetitions), 233 molecular markers, and three traits—grain yield (GY, ton
ha�1), ear height (EHT, cm), and plant height (PHT, cm)—evaluated in one

environment. The estimated matrices were bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35 and

bR ¼
0:38 0:72 1:27
0:72 47:14 60:96
1:27 60:96 121:46

24 35, which were estimated by Eqs. (5.21) to (5.23)

using the numerical relationship A instead of the genomic relationship matrix
(G ¼ XX0/c).

Table 5.1 presents the first 20 BLUPs of the estimated marker effects (Eq. 5.8)
in the training population and the first 20 marker coded values and GEBVs
(Eq. 5.9) obtained in the testing population associated with trait GY. In the

Table 5.1 The 20 best linear unbiased predictors (BLUPs) of the estimated marker effects in the
training population and the first 20 marker coded values and genomic estimated breeding values
(GEBVs) obtained in the testing population associated with grain yield

Training population Testing population

BLUPs

Marker coded values

GEBVsM1 M2 M3 . . . M233

�0.0003 1 1 0 . . . �1 0.195

�0.0038 0 0 0 . . . �1 0.221

�0.0085 �1 1 0 . . . �1 �0.643

0.0069 0 1 0 . . . 1 0.525

�0.0042 0 0 0 . . . 0 �0.603

0.0038 �1 0 0 . . . 0 0.062

0.0008 0 1 1 . . . 0 �0.226

0.0012 0 1 1 . . . 1 0.023

�0.0004 0 �1 0 . . . 0 0.444

0.0062 0 0 1 . . . �1 �0.286

0.0121 �1 1 0 . . . 1 �0.196

0.0077 �1 �1 �1 . . . 0 �0.566

0.0033 �1 0 0 . . . 0 0.073

0.0102 �1 1 0 . . . 1 0.058

0.0054 0 1 0 . . . 0 0.874

0.0002 0 0 0 . . . 0 0.102

0.0171 0 1 0 . . . �1 �0.342

0.0159 �1 0 1 . . . �1 �0.428

0.0117 �1 0 0 . . . �1 0.072

0.0121 0 �1 0 . . . �1 �0.428
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testing population, there were 380 genotypes and 233 molecular markers. In this

population, the estimated genomic covariance matrix Γ ¼ σγqq0
n o

was

bΓ ¼
0:21 2:95 5:00
2:95 42:41 71:11
5:00 71:11 121:53

24 35. The first GEBV (0.195) related to GY in

Table 5.1 was obtained as 0.195 ¼ � 0.0003(1) � 0.0038(1) � 0.0085
(0) + � � � � 0.03(�1). The other GEBVs can be obtained in a similar manner.

Suppose a selection intensity of 10% (kI¼ 1.755) and a vector of economic weights of
w0 ¼ 5 �0:1 �0:1½ �; then, the estimated LGSI selection response and the expected
genetic gain per trait without including the interval between selection cycle is bRIG ¼
1:755ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp

¼ 0:92 and bE 0
IG

¼ 1:755ð Þ w0bΓffiffiffiffiffiffiffiffiffiffiffiffi
w0bΓwp ¼ 0:80 11:41 19:28½ �

respectively, whereas the estimated LGSI accuracy was bρHIG ¼ 0:48.
Chapter 11 presents RIndSel, a graphical unit interface that uses selection index

theory to select individual candidates as parents for the next selection cycle, which
can be used to obtain the results of the real numerical example described in this
subsection.

To compare LGSI efficiency versus LPSI efficiency we used the simulated data
described in Chap. 2, Sect. 2.8.1. According to Beyene et al. (2015), at least 4 years
are required to complete one phenotypic selection cycle in maize, whereas genomic
selection requires only 1.5 years. Thus, to compare LGSI efficiency versus LPSI
efficiency in terms of time, we can use the Technow et al. (2013) inequality
described in Eq. (5.18).

Table 5.2 presents the estimated value of Eq. (5.18) for five simulated selection
cycles. The LGSI efficiency was higher than LPSI efficiency in terms of time,
because the Technow et al. (2013) inequality was true in the five selection cycles.
An additional result obtained by Ceron-Rojas et al. (2015) is presented in Fig. 5.2,
which shows the correlation among the LGSI, the LPSI, and the true net genetic

Table 5.2 Five simulated
selection cycles

Cycle LG LP bρHIG bhI bρHIGbhI LP

1 1.5 4.0 0.73 0.92 3.17

2 1.5 4.0 0.78 0.89 3.50

3 1.5 4.0 0.83 0.88 3.77

4 1.5 4.0 0.74 0.87 3.40

5 1.5 4.0 0.71 0.87 3.30

Time required for the linear genomic selection index (LG) and
linear phenotypic selection index (LP) to complete one selection
cycle; estimated accuracy (bρHIG ) of the linear genomic selection
index and the square root of the estimated heritability of the

linear phenotypic selection index (bhI ); estimated right-hand side

(
bρHIGbhI LP) of the inequality formula (LG <

ρH, IG
hI

LP)
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merit values in seven selection cycles. According to Fig. 5.2, the correlation between
the LGSI and the true net genetic merit values was higher than the correlation
between the LPSI and the true net genetic merit values for the first three selection
cycles; after this cycle, the correlation between LGSI and the true net genetic merit
values tended to decrease.

5.2 The Combined Linear Genomic Selection Index

The combined LGSI (CLGSI) developed by Dekkers (2007) is a slightly modified
version of the LMSI (see Chap. 4 for details), which, instead of using the marker
scores, uses the GEBVs and the phenotypic information jointly to predict the net
genetic merit. The main difference between the CLGSI and the LGSI is that the
CLGSI can only be used in training populations, whereas the LGSI is used in testing
populations. The basic conditions for constructing a valid CLGSI include conditions
for constructing the LPSI, the LMSI, and the LGSI, because the CLGSI uses GEBVs
and phenotypic information jointly to predict the net genetic merit.
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Fig. 5.2 Correlation between the linear genomic selection index (LGSI), the linear phenotypic
selection index (LPSI), and true net genetic merit (H) values in seven selection cycles. For each
selection cycle, the first column indicates the correlation between the LGSI estimated values and the
H true values, whereas the second column shows the correlation between the LPSI estimated values
and the H true values
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5.2.1 The CLGSI Parameters

The net genetic merit can be written in a similar manner to that in the LMSI context,
that is, as

H ¼ w0gþ w0
2γ ¼ w0 w0

2½ � g
γ

� �
¼ a0GzG, ð5:28Þ

where g0 ¼ g1 . . . gt½ � is the vector of breeding values, w0 ¼ w1 � � � wt½ �
is the vector of economic weights associated with breeding values,
w0

2 ¼ 01 � � � 0t½ � is a null vector associated with the vector of genomic breeding
values γ0 ¼ γ1 γ2 . . . γt½ �, a0G ¼ w0 w0

2½ � and zG ¼ g0 γ0½ �.
The CLGSI can be written as

IC ¼ β0yyþ β0Gγ ¼ β0y β0G
	 
 y

γ

� �
¼ β0CtC, ð5:29Þ

where y0 ¼ y1 � � � yt½ � (t¼ number of traits) is the vector of phenotypic values; γ
was defined earlier; β0y and βG are vectors of coefficients of phenotypic and genomic
weight values respectively; β0C ¼ β0y β0G

	 

and t0G ¼ y0 γ0½ �.

The CLGSI selection response can be written as

RC ¼ kIσHρHIC ¼ kIσH
a0CΨCβCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0CΨCaC
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0CTCβ
p

C

, ð5:30Þ

where kI is the standardized selection differential of the CLGSI, σ2H ¼ a0CΨCaC and
Var ICð Þ ¼ β0CTCβC are the variances of H and IC, whereas a

0
CΨCβC and ρHIC are the

covariance and the correlation between H and IC respectively; TC ¼ Var
y
γ

� �
¼

P Γ
Γ Γ

� �
and ΨC ¼ Var

g
γ

� �
¼ C Γ

Γ Γ

� �
are block matrices of the phenotypic

covariance matrix, P ¼ Var(y), the genomic covariance matrix, Γ ¼ Var(γ), and
the genetic breeding values covariance matrix, C ¼ Var(g).

Suppose that matrices ΨC and TC are known; then the CLGSI vector of coeffi-
cients that simultaneously maximizes ρHIC and RC can be written as

βC ¼ T�1
C ΨCaC, ð5:31Þ

whence the optimized CLGSI is

IC ¼ β0CtC, ð5:32Þ
Equations (5.31) and (5.32) indicate that the CLGSI is an application of the LPSI

to the genomic selection context.
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From Eq. (5.31), the maximized CLGSI selection response, expected genetic gain
per trait and accuracy can be written as

RC ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

q
, ð5:33Þ

EC ¼ kI
ΨCβCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

p ð5:34Þ

and

ρHIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

p ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p , ð5:35Þ

respectively. Note that the maximized LPSI accuracy is ρHI ¼
ffiffiffiffiffiffiffi
b0Pb

pffiffiffiffiffiffiffiffiffi
w0Cw

p (see Chap. 2).

The denominator of the accuracy of the CLGSI and ρHI ¼
ffiffiffiffiffiffiffi
b0Pb

pffiffiffiffiffiffiffiffiffi
w0Cw

p is the same;

however, the numerator of the two indices accuracy is different. We would expect

that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

q
�

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
, and then ρHIC � ρHI . Similar results can be observed

when we compared the maximized LPSI selection response and expected genetic
gain per trait with the maximized CLGSI selection response and expected genetic
gain per trait.

5.2.2 Relationship Between the CLGSI and the LGSI

As we have indicated, the CLGSI is mathematically equivalent to the LMSI; thus, it
has similar statistical properties to those of the LMSI, some of which are described in
this section. The rest can be seen in Chap. 4. Let QC ¼ T�1

C ΨC, then matrix QC can
be written as

QC ¼ P� Γð Þ�1 C� Γð Þ 0
I� P� Γð Þ�1 C� Γð Þ I

� �
, ð5:36Þ

whence asw0
2 ¼ 01 � � � 0t½ �, the two sub-vectors that conform vector βC¼QCaC

or β0C ¼ β0y β0G
	 


can be written as

βy ¼ P� Γð Þ�1 C� Γð Þw, ð5:37Þ

and

βG ¼ I� P� Γð Þ�1 C� Γð Þ
h i

w ¼ w� βy: ð5:38Þ
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When Γ is equal to the null matrix (no genomic information), Eq. (5.37) is equal
to βy ¼ P�1Cw ¼ b and RC ¼ kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ RI , which are the LPSI vector of

coefficients and the selection response.
By Eqs. (5.37) and (5.38), the maximized CLGSI selection response and the

optimized CLGSI can be written as

RC ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0C P� Γð Þ�1 C� Γð Þwþ w0Γ I� P� Γð Þ�1 C� Γð Þ

h i
w

r
ð5:39Þ

and

IC ¼ βyyþ βGγ ¼ w0γþ βy y� γð Þ, ð5:40Þ

respectively.
Assume that when the number of markers and genotypes increases, matrix Γ

tends to matrix C and that, at the limit, Γ ¼ C; then, Eq. (5.39) can be written as
RC ¼ kI

ffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p ¼ RG (except by LG); in addition, βy¼ 0 and βG¼w, the weights of
the LGSI, and, in this latter case, the CLGSI is equal to the LGSI, as we would
expect. Thus, in the asymptotic context, the LGSI and the CLGSI are the same.

An additional interesting result of the relationship between the CLGSI and the
LGSI is as follows. The maximized correlation between H and IC (or CLGSI
accuracy) can be written as

ρHIC ¼ a0CΨCβCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0CΨCaC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

p ; ð5:41Þ

However, when Γ ¼ C, ΨC ¼ Γ Γ
Γ Γ

� �
, βy ¼ 0, βG ¼ w, and

β0C ¼ β0y β0G
	 
 ¼ 0 w0½ �, whence a0CΨCβC ¼ a0CΨCaC ¼ β0CTCβC ¼ w0Γw,

and Eq. (5.41) is equal to 1. That is, the maximum correlation between H and IC
in the asymptotic context is equal to the maximum correlation between H and the
LGSI, and that value will be equal to 1.

The asymptotic relationship between the CLGSI expected genetic gain per trait,
EC (Eq. 5.34), and the LGSI expected genetic gain per trait, EIG (Eq. 5.16), is as

follows. When Γ ¼ C, ΨC ¼ Γ Γ
Γ Γ

� �
and β0C ¼ 0 w0½ �, whence

EC ¼ kI
ΨCβCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0CTCβC

p ¼ kI
2Γwffiffiffiffiffiffiffiffiffiffiffi
w0Γw

p ¼ 2EIG : ð5:42Þ

This means that in the asymptotic context, the CLGSI expected genetic gain per
trait is twice the LGSI expected genetic gain per trait. Of course, 2 is only a
proportionality constant; thus, in reality, EC ¼ EIG .
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5.2.3 Statistical Properties of the CLGSI

Assume that H and IC have bivariate joint normal distribution; P, C, Γ, and w are
known, and βC ¼ T�1

C ΨCaC; then, the CLGSI properties are as follow:

1. σ2IC ¼ σHIC , i.e., the variance of IC (σ2IC) and the covariance between H and IC (σHIC)
are the same.

2. The maximized correlation between H and IC is ρHIC ¼ σIC
σH
, where σIC is the

standard deviation of the variance of IC (σ2IC ) and σH is the standard deviation of

the variance of H(σ2H).

3. The variance of the predicted error, Var H � ICð Þ ¼ 1� ρ2HIC

� �
σ2H , is minimal.

4. The total variance of H explained by IC is σ2IC ¼ ρ2HICσ
2
H .

Note that CLGSI properties 1 to 4 are the same as LMSI properties 1 to 4 and that
both indices jointly incorporate phenotypic and marker information to predict the net
genetic merit; however, the LMSI incorporates the marker information by the marker
score values, whereas the CLGSI uses the GEBVs.

5.2.4 Estimating the CLGSI Parameters

Using the real maize (Zea mays) F2 population with 248 genotypes (each with two
repetitions), 233 molecular markers and three traits—GY (ton ha�1), EHT (cm), and
PHT (cm)—described in Sect. 5.1.8 of this chapter, we estimated matrices P and
C using Eqs. (2.22) to (2.24) described in Chap. 2 of this book. The estimated

matrices were bP ¼
0:45 1:33 2:33
1:33 65:07 83:71
2:33 83:71 165:99

24 35 and bC ¼
0:07 0:61 1:06
0:61 17:93 22:75
1:06 22:75 44:53

24 35.
In a similar manner, we estimated matrix Γ using Eqs. (5.21) to (5.23). The

estimated matrix was bΓ ¼
0:07 0:65 1:05
0:65 10:62 14:25
1:05 14:25 26:37

24 35. Note that matrices bC and bΓ
have similar values. This means that, in the asymptotic context, we can assume that
matrix Γ tends to matrix C.

To estimate the CLMSI and its associated parameters (selection response,
expected genetic gain per trait, etc.), we need to estimate the vector of coefficients

βC ¼ T�1
C ΨCaC as bβC ¼ bT�1

C
bΨCaC, where bTC ¼ bP bΓbΓ bΓ

� �
and bΨC ¼ bC bΓbΓ bΓ

� �
are

estimates of matrices TC ¼ P Γ
Γ Γ

� �
and ΨC ¼ C Γ

Γ Γ

� �
respectively. The esti-

mated CLGSI vector of coefficients bβC ¼ bT�1
C
bΨCaC is conformed by the vector of

116 5 Linear Genomic Selection Indices

https://doi.org/10.1007/978-3-319-91223-3_2
https://doi.org/10.1007/978-3-319-91223-3_2
https://doi.org/10.1007/978-3-319-91223-3_2


phenotypic weights, bβy ¼
�bP � bΓ��1�bC � bΓ�w, and by the vector of genomic

weights, bβG ¼ I� �bP � bΓ��1�bC � bΓ�h i
w.

Let w0 ¼ 5 �0:1 �0:1½ � be the vector of economic weights; then, according
to the estimated matrices bP, bC, and bΓ, bβ0

y ¼ 0:08 �0:02 �0:01½ � andbβ0
G ¼ 4:92 �0:08 �0:09½ �, whence the estimated CLGSI in the training popu-

lation can be written as

bIC ¼ bβyyþ bβGbγ: ð5:43Þ

Suppose a selection intensity of 10% (kI ¼ 1.755); then, the estimated CLGSI

selection response and expected genetic gain per trait were bRC ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0CbTC
bβC

q
¼

1:54 and bE0
C ¼ kI

bβ0
C
bΨCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0CbTC
bβC

q ¼ 0:36 1:04 1:70 0:36 1:53 2:38½ � respec-

tively, whereas the estimated CLGSI accuracy was bρHIC ¼ bσ ICbσH
¼ 0:814.

The estimated LPSI selection response, expected genetic gain per trait, and
accuracy were 0.601, 0:09 �0:81 �0:89½ �, and 0.32 respectively; thus, the
CLGSI was more efficient to predict the net genetic merit than the LPSI because
the CLGSI accuracy and selection response were 0.814 and 1.54 respectively.

5.2.5 LGSI and CLGSI Efficiency Vs LMSI, GW-LMSI and
LPSI Efficiency

In this subsection, we compare the accuracy, selection response, and efficiency of the
LGSI and CLGSI with the LMSI, the GW-LMSI, and the LPSI using the simulated
data for a maize (Zea mays) population described in Chap. 2, Sect. 2.8.1.

Figure 5.3 presents the estimated accuracy values of the LMSI, the LGSI, the
CLGSI, the LPSI, and the GW-LMSI for five simulated selection cycles. According to
these results, for the first three selection cycles, the estimated accuracies of the indices,
in decreasing order, were LMSI> LGSI> CLGSI> LPSI> GW-LMSI. That is, the
highest estimated accuracy was obtained with the LMSI, whereas the lowest was
obtained with the GW-LMSI. For the fourth and fifth selection cycles, the estimated
accuracies, in decreasing order, were LMSI> LPSI> CLGSI> LGSI> GW-LMSI.
This means that in all five selection cycles, the LMSI had the highest accuracy and the
GW-LMSI had the lowest accuracy, whereas the estimated LGSI accuracy was
reduced to fourth place. Thus, the accuracy of the LGSI tended to decrease after the
first three selection cycles whereas LPSI accuracy was a constant.

To compare LGSI efficiency versus the efficiency of the other selection indices,
we assumed that the interval between selection cycles in the LGSI is 1.5 years,
whereas for CLGSI, LMSI, GW-LMSI, and LPSI, the interval was 4.0 years.
Table 5.3 presents the estimated selection response of the LPSI, the LMSI, the
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Fig. 5.3 Estimated accuracy values of the linear molecular selection index (LMSI), the LGSI, the
combined LGSI (CLGSI), the LPSI, and the genome-wide LMSI (GW-LMSI) with the net genetic
merit for four traits, 2500 markers, and 500 genotypes (each with four repetitions) in one environ-
ment for five simulated selection cycles

Table 5.3 Estimated selection response of the linear phenotypic selection index (LPSI), the linear
molecular selection index (LMSI), the genome-wide LMSI (GW-LMSI), the linear genomic
selection index (LGSI), and the combined LGSI (CLGSI), not including (first part of the Table)
and including (second part of the Table) the interval length between selection cycles, obtained using
five simulated selection cycles

Cycle LPSI LMSI GW-LMSI LGSI C-LGSI

Estimated selection response not including the interval length

1 17.84 19.60 16.24 14.36 18.24

2 15.66 24.36 13.88 13.90 16.02

3 14.44 14.70 12.13 13.59 14.61

4 14.29 15.29 12.48 12.30 14.14

5 13.86 15.15 11.49 11.38 13.51

Average 15.22 17.82 13.24 13.11 15.30

Estimated selection response including the interval lengtha

1 4.46 4.90 4.06 9.58 4.56

2 3.92 6.09 3.47 9.27 4.00

3 3.61 3.68 3.03 9.06 3.65

4 3.57 3.82 3.12 8.20 3.53

5 3.47 3.79 2.87 7.59 3.38

Average 3.80 4.46 3.31 8.74 3.83
aThe interval length for the LPSI, LMSI, GW-LMSI, and C-LGSI was 4 years, whereas the interval
length for the LGSI was 1.5 years
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GW-LMSI, the LGSI, and the CLGSI, including and not including the interval
between selection cycles (first and second parts of Table 5.3 respectively), obtained
using five simulated selection cycles. According to the first part of Table 5.3, the
average estimated selection responses, in decreasing order, of the LMSI, CLGSI,
LPSI, GW-LMSI, and LGSI for the five simulated selection cycles were 17.82,
15.30, 15.22, 13.24, and 13.11 respectively, when the length of the interval between
selection was not included. If the length of the interval between selection cycles is
included when comparing the selection response of the indices in terms of time, the
estimated selection response of LMSI, CLGSI, LPSI, GW-LMSI must be divided by
4 in each selection cycle, and the estimated LGSI selection response should be
divided by 1.5. Thus, according to the second part of Table 5.3, if we include the
length of the interval between selection cycles, the average estimated selection
responses, in decreasing order, of LGSI, LMSI, CLGSI, LPSI, and GW-LMSI for
the five simulated selection cycles were 8.74, 4.46, 3.83, 3.80, and 3.31. This means
that in terms of time, the efficiency of the LGSI was higher than the efficiency of the
other four selection indices.

Table 5.4 presents the estimated accuracy of the LMSI, LGSI, CLGSI, LPSI, and
the GW-LMSI. In addition, Table 5.4 presents the efficiency when predicting the net
genetic merit of the LMSI with respect to the LGSI, CLGSI, LPSI, and GW-LMSI as
percentages, for five simulated selection cycles. Note that in this case, LMSI
efficiency was higher than the efficiency of the other four selection indices, because
the LMSI had the highest correlation with the net genetic merit.
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