Chapter 4 )
Linear Marker and Genome-Wide Selection <o
Indices

Abstract There are two main linear marker selection indices employed in marker-
assisted selection (MAS) to predict the net genetic merit and to select individual
candidates as parents for the next generation: the linear marker selection index
(LMSI) and the genome-wide LMSI (GW-LMSI). Both indices maximize the
selection response, the expected genetic gain per trait, and the correlation with the
net genetic merit; however, applying the LMSI in plant or animal breeding requires
genotyping the candidates for selection; performing a linear regression of phenotypic
values on the coded values of the markers such that the selected markers are
statistically linked to quantitative trait loci that explain most of the variability in
the regression model; constructing the marker score, and combining the marker score
with phenotypic information to predict and rank the net genetic merit of the
candidates for selection. On the other hand, the GW-LMSI is a single-stage proce-
dure that treats information at each individual marker as a separate trait. Thus, all
marker information can be entered together with phenotypic information into the
GW-LMSI, which is then used to predict the net genetic merit and select candidates.
We describe the LMSI and GW-LMSI theory and show that both indices are direct
applications of the linear phenotypic selection index theory to MAS. Using real and
simulated data we validated the theory of both indices.

4.1 The Linear Marker Selection Index

4.1.1 Basic Conditions for Constructing the LMSI

In Chap. 2, Sect. 2.1, we indicated ten basic conditions for constructing a valid linear
phenotypic selection index (LPSI). These ten conditions are also necessary for the
linear marker selection index (LMSI); however, in addition to those conditions, the
LMSI also requires the following conditions:

1. The markers and the quantitative trait loci (QTL) should be in linkage disequi-
librium in the population under selection.
2. The QTL effects should be combined additively both within and between loci.
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3. The QTL should be in coupling mode, that is, one of the initial lines should have
all the alleles that have a positive effect on the chromosome, and the other lines
should have all the negative effects.

4. The traits of interest should be affected by a few QTL with large effects (and
possibly a number of very small QTL effects) rather than many small QTL
effects.

. The heritability of the traits should be low.

6. Markers correlated with the traits of interest should be identified.

W

Under these conditions, the LMSI should be more efficient than the LPSI, at least
in the first selection cycles (Whittaker 2003; Moreau et al. 2007).

4.1.2 The LMSI Parameters

Lety;, = g;+ ¢;be the ith trait (i = 1, 2, . . ., £, t = number of traits), where e,~N(0, o-f’,)
is the residual with expectation equal to zero and variance value ai_, and N stands for

normal distribution. Assuming that the QTL effects combine additively both within
and between loci, the ith unobservable genetic value g; can be written as

No

&= adg (4.1)
k=1

where a is the effect of the kth QTL, ¢, is the number of favorable alleles at the kth
QTL (2, 1 or 0), and Ny, is the number of QTL affecting the ith trait of interest.

If the QTL effect values are not observable, the g; values in Eq. (4.1) are also not
observable; however, we can use a linear combination of the markers linked to the
QTL (s;) that affect the ith trait to predict the g; value as

M
Si = Zajxj, (42)
Jj=1

where s; is a predictor of g;, 6; is the regression coefficient of the linear regression
model, x; is the coded value of the jth markers (e.g., 1, 0, and —1 for marker
genotypes AA, Aa and aa respectively), and M is the number of selected markers
linked to the QTL that affect the ith trait. Equation (4.2) is called the marker score
(Lande and Thompson 1990; Whittaker 2003) and this is the main reason why the
LMST is not equal to the LPSI described in Chap. 2. The number of selected markers
is only a subset of potential markers linked to QTL in the population under selection;
thus, the s; values should be lower than or equal to the g; values. One way of
estimating the s; values is to perform a linear regression of phenotypic values on
the coded values of the markers, select markers that are statistically linked to
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quantitative trait loci that explain most of the variability in the regression model, and
then obtain the estimated value of s; (5;) as the sum of the products of the QTL effects
linked to markers and multiplied by the marker coded values associated with the ith
trait. Some authors (e.g., Moreau et al. 2007) call’s; the molecular score; in this book,
we call s; the marker score and s; the estimated marker score.

The objective of the LMSI is to predict the net genetic merit of each individual
and select the individuals with the highest net genetic merit for further breeding. In
the LMSI context, the net genetic merit can be written as

H=wg+wys=[w w] [f] =a'z, (4.3)
whereg' = [g ... g,]isthe vector of breeding values; W' = [wy -+ w;]is
the vector of economic weights associated with g; w) =[0; --- 0,] is a null
vector associated with the vector of marker scores 8’ = [s; -+ s,]; s; is the ith

marker score; a' = [w wh]andz=[g ]

The information provided by the marker score can be used in breeding programs
to increase the accuracy of predicting the net genetic merit of the individuals under
selection. The LMSI combines the phenotypic and marker scores to predict H in each
selection cycle and can be written as

= by s = (8, 8[3] -pe (@4

where ﬁ; and B, are vectors of phenotypic and marker score weights respectively;

Yy =[» --- ¥] is the vector of trait phenotypic values and s was defined in
Eq. (43);p' =B, Bi]andt =[y ]
The LMSI selection response can be written as

a’ZM[i
VaZya\/BTup’

where k; is the standardized selection differential of the LMSI, 6y = v/a'Zya and
/B’ TP are the standard deviations of the variances of H and I;, whereas p1,n and

RM = k]GHpIMH = k]O'H (45)

a'ZyP are the correlation and the covariance between H and I, respectively; Ty,

B yl [P S o g/ _|C S ;
Var{s}{s S} and ZMVWL}{S g| are block matrices of

covariance where P = Var(y), S = Var(s), and C = Var(g) are the covariance
matrices of phenotypic values (y), the marker score (s), and the genetic value (g)
respectively in the population. Vectors a and § were defined in Eqgs. (4.3) and (4.4)
respectively.

The LMSI expected genetic gain per trait can be written as
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Ey =k (4.6)

VBTup

All the parameters in Eq. (4.6) were previously defined.

4.1.3 The Maximized LMSI Parameters

Suppose that P, S and C are known matrices; then, matrices T,; and Z,, are known
and, according to the LPSI theory (Chap. 2 for details), the LMSI vector of
coefficients (By,) that maximizes p;, ., Ry, and Ey can be written as

B =T, Zya, (4.7)

whence the maximized selection response and the maximized correlation (or LMSI
accuracy) between H and Iy, can be written as

Ry = kiv/ B TuP, (4.8a)
and

PryH = Gﬂ’ (4.8b)
OH
respectively, where o7, = /B Ty is the standard deviation of the variance of I,
and oy = v/a'Zya is the deviation of the variance of H. Equations (4.8a) and (4.8b)
show that the LMSI is a direct application of the LPSI theory in the marker-assisted
selection (MAS) context.
Let Q = T,,'Zy; then, matrix Q can be written as

[ ®-s)7'c-8) o 49
Q [I—(P—S)I(C—S) 1) (4.9)
whence f = Qa, and as w'2 =1[0; --- 0], we can write the two vectors of i

=[P B]as
B,=(P-85) ' (C-S)w and P, =[1-(P-5) ' (C-S)|w. (4100
Another way of writing the marker score vector weights is
B, =w—P,, (4.10b)

where B, = (P — S)~'(C — S)w. By Eq. (4.10b), the optimal LMSI can be written as
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Iy =Ws+B(y—s). (4.11)

Equation (4.11) indicates that, in practice, to estimate the optimal LMSI, we only
need to estimate the vector of coefficients B,. By Eq. (4.10a), Eq. (4.8a) can be
written as

Ry = k,\/w’C(P —S)(C—S)w+wS [1 —P-S)(C-8)|w. @12

Thus, by Eqgs. (4.10a) and (4.12), when S is a null matrix, vector B, is equal to
B, = P 'Cw = b and Ry = k;vVb'Pb = R;, which are the LPSI vector of coeffi-
cients and its selection response respectively.

Assume that when the number of markers and genotypes tend to infinity, S tends
to C; then, at the limit, we can suppose that S = C, and by this latter result, Ry, is
equal to

kivVw'Cw. (4.13)

That is, Eq. (4.13) is the maximum value of the LMSI selection response when
the numbers of markers and genotypes tend to infinity. Thus, the possible LMSI
selection response values of Eq. (4.12) should be between k;v/b'Pb and k;v/'w'Cw,
ie.,

k[ \% b/Pb < RM < k[\/ W’CW, (414)
VWCw __ on :
or between 1 and TPy — o that is,
1 <Ry <28 (4.15)
o
Note that‘;—‘,‘ = p#m, where py; is the maximized correlation between the net genetic

merit (H) and the LPSI (/) described in Chap. 2. Equation (4.15) indicates that LMSI
efficiency tends to infinity when the pg; value tends to zero and is an additional way
of denoting the paradox of LMSI efficiency described by Knapp (1998), which
implies that LMSI efficiency tends to infinity when the py; value tends to zero.

4.1.4 The LMSI for One Trait

For the one-trait case, matrices Ty, Z,,, and Q can be written as
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2 _ 2
(Fg oy 0
2 2 2 2 2 2
O [ O O o, — O
Tu=|3% 3. Zu=|"% "53| and Q=3 5 |, (4.16)
62 62 2 2 62—02
s s K s Y g
1
2 _ 52
(Fy Oy

where 63,

respectively. By Egs. (4.10a) and (4.10b), whena’ = [1 0], the elements of vector
p = Qa are

O'g, and 6? are the phenotypic, genetic, and marker score variances

o2 — o2
po="5—— ad p=1-4, (4.17a)
y s

whence the optimal LMSI can be written as
Iy =s+p,(—s); (4.17b)

whereas by Eq. (4.12), the maximized LMSI selection response can be written as

2( 2 _ 2 2( 2 _ 2
og(ag os)—l—as(ay ag)

Ry =k; p—— (4.18)
y s
2 2
2 % 0, g2 _ % 2 .
Wheno; =0, ,By === h”, Iy = h”y, and Ry = k— = ko,h” = R, the selection
oy oy

response for the one-trait case without markers.

4.1.5 Efficiency of LMSI Versus LPSI Efficiency for One
Trait

Suppose that the intensity of selection is the same in both indices; then, to compare

LMSI versus LPSI efficiency for predicting the net genetic merit, we can use the

ratio Ay = p/’)";:’ = % (Bulmer 1980; Moreau et al. 1998), where R, is the maximized

LPSI selection response. In percentage terms, the LMSI versus LPSI efficiency can
be written as

Py = 100(Ay — 1). (4.19)

When p,, = 0, the efficiency of both indices is the same; when p,, > 0, the
efficiency of the LMSI is higher than that of the LPSI, and when p,, < 0, LPSI
efficiency is higher than LMSI efficiency for predicting the net genetic merit.

In the case of one trait, Lande and Thompson (1990) showed that LMSI efficiency
(not in percentage terms) with respect to phenotypic efficiency can be written as
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Ry q (1—51)2
ﬁv - = _+ s
MR 11— gh?

(4.20)

2
where R, was defined in Eq. (4.18), R = ka)h2 h? is the trait heritability, and g = 6—32

Og
is the proportion of additive genetic variance explained by the markers. According to

Eq. (4.20), the advantage of the LMSI over phenotypic selection increases as the
2

population size increases and heritability decreases, because in such cases, g = 6—;

8
tends to 1 and Eq. (4.20) approaches % Therefore, the LMSI is most efficient for traits
with low heritability and when the marker score explains a large proportion of the
genetic variance. Thus, note that when A” tends to zero, %tends to infinity; this means
that in the asymptotic context, LMSI efficiency with respect to phenotypic efficiency
for one trait (Eq. 4.20) tends to infinity and this is the LMSI paradox pointed out by
Knapp (1998). There are other problems associated with the LMSI: it increases the
selection response only in the short term and can result in lower cumulative
responses in the longer term than phenotypic selection, as the LMSI fixes the QTL
at a faster rate than phenotypic selection. In addition, it requires the weights
(Eq. 4.17a) to be updated, because in each generation the frequency of the QTL
changes (Dekkers and Settar 2004).

4.1.6 Statistical LMSI Properties

Assume that H and I, have bivariate joint normal distribution, = T]\}l Zya, and
that P, C, S, and w are known; then, the statistical LMSI properties are the same as
the LPSI properties described in Chap. 2. That is,

1. G%M = oyy,,: the variance of I, (an) and the covariance between H and Iy, (opy,,)
are the same.

2. The maximized correlation between H and Iy, (or Iy, accuracy) is py,,, = (Z—g

3. The variance of the predicted error, Var(H — Iy) = (1 - PHJ )GH, is minimal.

4. The total variance of H explained by I, is a, pH,Mai,

_ ﬁMZMBM
By Tuby

Properties 1 to 4 are the same as LPSI properties 1 to 4, but, because the LMSI
jointly incorporates the phenotypic and marker information to predict the net genetic
merit, LMSI accuracy should be higher than LPSI accuracy. The same is true of the
LMST selection response and expected genetic gain per trait when compared with the
LPSI selection response and expected genetic gain per trait.

5. The heritability of Iy is hy
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4.2 The Genome-Wide Linear Selection Index

The genome-wide linear marker selection index (GW-LMSI) is a single-stage
procedure that treats information at each individual marker as a separate trait.
Thus, all marker information can be entered together with phenotypic information
into the GW-LMSI, which is then used to predict the net genetic merit. In a similar
manner to the LMSI, the GW-LMSI exploits the linkage disequilibrium between
markers and the QTL produced when inbred lines are crossed.

4.2.1 The GW-LMSI Parameters

In a similar manner to the LPSI, the main objective of the GW-LMSI is to predict the
net genetic merit values of each individual and select the best individuals for further
breeding. In the GW-LMSI context, the net genetic merit can be written as

H=wg+wm=[w W/2]|:Ii:| = aj,zy, (4.21)
where g =[g, ... g] (j=1,2,...,t= number of traits) is the vector of
breeding values, w' = [w; --- w;]is the vector of economic weights associated
with the breeding values, and W'2 =[0; --- 0] is anull vector associated with
the coded values of the markers m’ = [m; --- m,], where m; (j = 1,2, ...,
m = number of markers) is the jth marker in the training population;

ay, =[w w)andzy =[g m'].

The GW-LMSI (/) combines the phenotypic value and the molecular informa-
tion linked to the individual traits to predict H values in each selection cycle. It can
be written as

o =By + B =6, 8] [ 5] =By 422)

where [i; and B,, are vectors of phenotypic and marker weights respectively;

y=[y - ] is the vector of phenotypic values and m was defined in
Eq. (4.21); By = [B, B,,] and t}, =[y m'].
The GW-LSI selection response can be written as

ay, Wy
Vay Yay /B, @By,

where k; is the standardized selection differential of the GW-LMSI, 6%1 = ay, Way
and Var(ly) = §,,®Py, are the variance of H and Iy, whereas p; =

ay, By,
Val,Yay /Bl PPy

RW = kIGHpIWH = k[GH (4233)

and ajy, WPy, are the correlation and the covariance between
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. ] o y| [P W
H and Iy  respectively; D = Var{m] = [W M and
Y = Var gl _|C w are block covariance matrices where P = Var(y)
“m| T W M - ey

M = Var(m), C = Var(g), and W = Cov(y,m) = Cov(g,m) are the covariance
matrices of phenotypic values (y), the molecular marker (m) coded values, and the
genetic (g) values, whereas W is the covariance matrix between y and m, and
between g and m. The size of matrices P and C is 7 x ¢, but the sizes of matrices
M and W are m x m and m X t respectively.

From a theoretical point of view, Crossa and Cerén-Rojas (2011) showed that
matrix M can be written as

1 (1—2511) (1_251N)
Mo | (120 1 (1=28) | (4.23b)
(1—=28v1) (1—26v) - 1

where (1 — 26, is the covariance (or correlation) and 6;; the recombination fre-
quency between the ith and jth marker (i, j = 1, 2, ..., m = number of markers).
According to Crossa and Cerén-Rojas (2011), matrix W can be written as

(I=2r)an (1 =2r)ay -+ (1 =2ry)aw,
wo [(=2rar (1=2r)an - (1= 2r)a, (4.23¢)
(1=2rm)an (1 =2rv)an -+ (1= 2rw)aw,

where (1 — 2rp)ay (i=1,2,...,m k=1,2,..., Ny = number of QTL, g =1,
2, ..., t) is the covariance between the gth trait and the ith marker; r; is the
recombination frequency between the ith marker and the kth QTL; and a is the
effect of the kth QTL over the gth trait.

The GW-LMSI expected genetic gain per trait can be written as

Y
= e

All parameters in Eq. (4.24) were previously defined.

Matrix @ could be singular, i.e., its inverse ((I)_l) could not exist because matrix
W is singular. Suppose that matrices ® and ¥ are known; then, according to the
LPSI theory, the GW-LMSI vector of coefficients (By) that maximizes p;, ; can be
written as

(4.24)
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Py = @ Yay, (4.25a)

where matrix @~ denotes a generalized inverse of ®. By Eq. (4.25a), the maximized
GW-LMSI selection response is

Ry = k;\/ By ®Pyy- (4.25b)

Equations (4.25a) and (4.25b) show that the GW-LMSI is a direct application of
the LPSI to MAS. By Eq. (4.25a), the maximized correlation between H and Iy is

Oly
PiyH = ’ (4.25¢)
OH

where o7, = /Py ®Py is the standard deviation of the variance of Iy and oy
= \/aj,Way is the standard deviation of the variance of H.

4.2.2 Relationship Between the GW-LMSI and the LPSI

Matrix @~ can be written as

_ L~ L WM~
@ = -MWL™ M +M WL WM |’ (4.26)
where L™ is a generalized inverse of matrix L = P — W/M_W, and M~ is a
generalized inverse of matrix M. In matrix @, the inverse of matrix W is not

required and the standard inverse of matrix M (M~ ") may exist. In the latter case, the

standard inverse of matrix L (L.~ ") exists and can be written as L' = (P — wWM™!
W) '=P '+ P'W[M — WP 'W ] 'WP! (Searle et al. 2006).
By Eq. (4.26) and because w, =[0; --- Oy], the vector components of

By = [B, B, ], or py = ® WPay, can be written as
B, =[L C—L WM Ww (427)
and
B, =[(M" +M WL WM )W - M WL C]w, (4.28)

where w is the vector of economic weights. Suppose that there is no marker
information; then, matrices M and W are null and Eq. (4.27) is equal to §, = P!
Cw = b (the LPSI vector of -coefficients), whereas f,, = 0 and

Ry = kiy/ ﬁ'W(I)[SW = k;Vb'Pb = R;, the LPSI selection response. Now suppose

that the markers explain all the genetic variability; in this case, f, = 0 and §,, = X
X)"XY, the matrix of linear regression coefficients in the multivariate context,
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where (X X) ™ is a generalized inverse matrix of X'X and Y is a matrix of phenotypic
observations.

4.2.3 Statistical Properties of GW-LMSI

Assume that H and Iy, have bivariate joint normal distribution, fy, = ® Way,, and P,
C,M, W, and w are known; then, the statistical GW-LMSI properties are the same as
the LMSI properties. That is,

1. a%w = opy,, 1.€., the variance of Iy, (G%W) and the covariance between H and Iy (
onr, ) are the same.

. . . . (o)
2. The maximized correlation between H and Iy, or Iy accuracy, is pg;, = 0’—3

3. The variance of the predicted error, Var(H — Iy) = (1 - Pé]w)cﬁ,, is minimal.

4. The total variance of H explained by Iy is afw = p%,,w 6%,.

According to Lange and Whittaker (2001), GW-LMSI efficiency should be
greater than LMSI efficiency. However, this would be true only if matrices P, C,
M, and W are known and trait heritability is very low.

4.3 Estimating the LMSI Parameters

When covariance matrices P, C, and S, and the vector of economic weights (w) are
known, there is no error in the estimation of the LMSI parameters (selection
response, expected genetic gain, etc.); the same is true for the GW-LMSI when, in
addition to P, C, and w, the covariance matrices M and W are known. In such cases,
the relative efficiency of the LMSI (GW-LMSI) depends only on the heritability of
the traits and on the portion of phenotypic variation associated with markers. Using
simulated data, Lange and Whittaker (2001) found that GW-LMSI efficiency was
higher than LMSI efficiency when trait heritability was 0.2 and matrices P, C, M,
and W were known. When P, C, S, M, and W are unknown, it is necessary to
estimate them; then, the LMSI and GW-LMSI vector of coefficients and the effects
associated with markers are estimated with some error. This error leads to lower
LMSI and GW-LMSI efficiency than expected under the assumption that the
parameters are known; however, in the latter case, Lange and Whittaker (2001)
also found that GW-LMSI efficiency was greater than that of the LMSI when trait
heritability was 0.05. Moreover, in the LMSI there is additional bias in the estima-
tion of the parameters because only markers with significant effects are included in
the index (Moreau et al. 1998).

In Chap. 2, we described the restricted maximum likelihood (REML) method for
estimating matrices P and C. Some authors (Lande and Thompson 1990; Charcosset
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and Gallais 1996; Hospital et al. 1997; Moreau et al. 1998, 2007) have described
methods for estimating marker scores, the variance of the marker scores, the LMSI
vector of coefficients, etc., in the context of one trait; however, up to now there have
been no reports on the estimation of matrix S in the multi-trait case. Lange and
Whittaker (2001) only indicated that matrix S can be estimated as S = Var(s),
where § is a vector of estimated marker scores associated with several individual
traits.
The main problems associated with the estimated LMSI parameters are:

1. The estimated values of the covariance matrix S (§) tend to overestimate the
genetic covariance matrix (C).
2. The estimated variances of the marker scores can be negative.

When the first point is true, the estimated LMSI selection response and efficiency

could be negative because the estimated matrix Ty = {g 2} is not positive

~ o~

definite (all eigenvalues positive) and the estimated matrix Zy = [g g] is not
positive semi-definite (no negative eigenvalues). In addition, the results can lead to
all weights being placed on the molecular score and the weights on the phenotype
values can be negative (Moreau et al. 2007). When the second point is true, the
variance of the marker scores is not useful. The two problems indicated above could
be caused by using the same data set to select markers and to estimate marker effects,
and there is no simple way of solving them. Lande and Thompson (1990) proposed
that the markers used to obtain S be selected a priori as those with the most highly
significant partial regression coefficients from among all the markers in the linkage
group analyzed in the previous generation. Zhang and Smith (1992, 1993) proposed
using two independent sets of markers: one to estimate marker effects and the other
to select markers. Additional solutions to these problems were described by Moreau
et al. (2007).

In this subsection, we describe methods (in the univariate and multivariate
context) for estimating molecular marker effects, marker scores, and their variance
and covariance, and for estimating the LMSI and GW-LMSI vector of coefficients,
selection response, expected genetic gain, and accuracy. This subsection is only for
illustration; we use the same data set to select markers, and to estimate marker effects
and the variance of marker scores.

4.3.1 Estimating the Marker Score

According to Egs. (4.11) and (4.17b), when the vector of economic weights is equal
toa’=[1 0], the LMSI for the ith traity; i = 1,2, ---, ;¢ = number of traits)
value can be written as Iy, = s; + ﬂ,vi (y;j—si)(I = 1,2,---,n; n = number of
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i W0 (-4,
individuals or genotypes), where f,; = — > = >~ is the LMSI coeffi-
) 0y, — %% 1 - qihi
o o I . o . .
cient, hy = —- is the heritability of the ith trait, and ¢, = —- is the proportion of
o o
Yi 8i

genetic variance explained by the QTL or markers associated with the ith trait; s;

M
= Ze,-xj G =1, 2,---, M; M = number of selected markers) is the ith
=1

individual trait marker score; and 05, 6:,
phenotypic, genetic, and marker score values respectively.

The simplest way of estimating the ith marker score s; is to perform a multiple
linear regression of phenotypic values (y;) on the coded values of the markers (x;) and
then select the markers statistically linked to the ith QTL that explain most of the
variability in the regression model and use them to construct s; = > 6x;.

jem
We can fit the model y;* = Z 0;x; + e, wherey =y, — y;and y; are the average
jem
values of the ith trait, by maximum likelihood or least squares. When estimating 6,
the main problem is to choose the set of markers M based on criteria for declaring
markers as significant and then use the estimated values of 0; (9;) to estimate the ith
marker score s; as’s; = Z 0;x ;. The values of 5; may increase or decrease according
jeM
to the number of markers (x;) included in the model, and ; affects LMSI selection
response and efficiency by means of the estimated variance of s; (8%_) (Figs. 4.1 and

4.2).

According to the least squares method of estimation, 6 = (X'X)”'X'y* is an
estimator of the vector of regression coefficients 0 = [ 6, --- 6,], where
m (m < n) is the number of markers, X is a matrix n x m of coded marker values
(e.g., 1, 0 and —1 for marker genotypes AA, Aa, and aa respectively) and y™ is a
vector n X 1 of phenotypic values centered based on its average values. Only a
subset M(M < m) of the m markers is statistically linked to the QTL and then only a

and afi are the ith variances of the

M
subset M of the estimated vector 0 values is selected to estimate s; as s; = Z Oix;.
j=1

To illustrate how to obtain §; = ngx j» we use a real maize (Zea mays) F,
jeM

population with 247 genotypes (each one with two repetitions), 195 molecular
markers, and four traits — grain yield (GY, ton hafl); plant height (PHT, cm), ear
height (EHT, cm), and anthesis day (AD, days) — evaluated in one environment. In
an F, population, the marker homozygous loci for the allele from the first parental
line can be coded by 1, whereas the marker homozygous loci for the allele from the
second parental line can be coded by —1, and the marker heterozygous loci by 0.
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Fig. 4.1 Efficiency of the linear molecular selection index with respect to phenotypic selection for
the one-trait case for different values of the variance of the marker score when the phenotypic and
genetic variances are fixed

LMSI response values

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Variace of the marker score values

Fig. 4.2 Selection response values of the linear molecular selection index for the one-trait case for
different values of the variance of the marker score when the phenotypic and genetic variances are
fixed

For this example, we used trait PHT. Only seven markers were statistically linked
to the fHT. The estimated vector of regression coefficients for these seven markers
was 0 =[546 —454 098 739 -7.75 —191 —3.53]. Table 4.1 pre-
sents the first 20 genotypes, the coded values of the seven selected markers, and
the first 20 estimated Spyr values of the 247 genotypes in the maize (Zea mays) F,
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Table 4.1 Number of selected genotypes, coded values of seven selected markers, and estimated
marker score values obtained from a maize (Zea mays) F, population with 247 genotypes and
195 molecular markers

Coded values of the selected markers
Number of genotypes | M1 M2 |M3 M4 | M5 M6 | M7 Marker score
1 0 0 0 0 0 1 —1 1.62
2 —1 —1 0 0 0 —1 0 0.99
3 0 0 0 0 0 0 1 —3.53
4 1 1 0 0 0 -1 -1 6.37
5 1 1 0 -1 -1 -1 -1 6.72
6 0 0 1 0 0 0 0 0.98
7 1 1 0 1 1 0 0 0.57
8 0 0 0 0 0 0 0 0
9 0 0 1 0 0 1 0 —0.93
10 0 0 1 1 0 0 1 4.84
11 0 0 0 0 0 0 0 0
12 —1 —1 0 0 0 0 0 —0.92
13 0 0 0 0 0 0 0 0
14 1 1 0 —1 —1 0 —1 4.81
15 0 0 1 —1 —1 0 0 1.34
16 0 0 0 0 0 0 0 0
17 —1 —1 0 0 0 0 1 —4.46
18 —1 —1 0 0 0 0 1 —4.46
19 —1 —1 1 0 0 —1 1 —1.56
20 0 0 0 0 0 0 -1 3.53

population. According to ®' and the coded values of the seven markers, the first
estimated Spyr value was obtained as Spyr; = —1.91(1) + —3.53(—1) = 1.62;
the second estimated Spyr value was obtained as Spyrp = 5.46(—1)+
—4.54(—1) = 1.91(—1) = 0.99, etc. The 20th estimated Spyr value was obtained
as Spura0 = —3.53(—1) = 3.53. This estimation procedure is valid for any number
of genotypes and markers.

Figure 4.3 shows the distribution of the 247 estimated marker scores associated
with traits PHT and EHT of the maize F, population. Note that the estimated marker
score values approach normal distribution.

4.3.2 Estimating the Variance of the Marker Score

There are many methods of estimating the variance of the marker score associated
with the ith trait (o-fi); the first one was proposed by Lande and Thompson (1990).

According to these authors, afi can be estimated as
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Fig. 4.3 Distribution of the marker scores associated with traits (a) plant height and (b) ear height
of a maize (Zea mays) F, population. Note that the distribution of frequencies of the marker score
values approaches normal distribution

~2 DN D ME?
62 = M0, — —=, (4.29)
S n

where 6,- is the estimated vector of regression coefficients of the selected markers,
2 . . .

M,; = —X;X[ is the covariance matrix M x M of the selected markers that are
n

R "TI-H
statistically linked to the ith trait marker loci; 05_ _Yu-uy ( )i’
1 n — ‘4 —

estimated variance of the residuals, H =1 — X; (X;X,-)le;, I is an identity matrix
n x n, M is the number of selected markers statistically linked to the QTL, and X is a
matrix n X M with the coded values of the selected markers. According to Lande and
Thompson (1990), Eq. (4.29) is an unbiased estimator of ofi and its variance can be
written as

is the unbiased

2 2
v (Az ) 40?,-05,- N 2M (cri) N 2M? <O’£i)
)T T n? n*(n—M)’

(4.30)

which tends to zero when n, the number of genotypes or individuals, is very high.
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From Eq. (4.29), it is possible to obtain an estimator of the covariance between
the ith and jth marker scores when the number of selected markers statistically linked
to the QTL is the same in the ith and jth traits. Thus, by Eq. (4.29), the covariance
between the ith and jth marker scores can be estimated as

o~

Oey

5~ = 0/M;9,

S',j

(4.31)

where 6; and ﬁj are the estimated vectors of regression coefficients of the selected
markers associated with the ith and jth trait loci respectively; M;; = =XX is the
n

covariance matrix M x M of the markers statistically linked to the ith and jth trait
marker loci; X; and X are n X M matrices with the coded values of the selected
yi(I-Hy)y; .
n—M-—1 s
the estimated covariance of the residuals between the ith (y;) and jth (y)) trait values,
H;=1-X; (X;X_,-)_IX’j, I is an identity matrix n x n, and M is the number of
selected markers statistically linked to the QTL.
According to the PHT values described in Sect. 4.3.1 of this chapter, M = 7,
n=247,5, = 180.80 and 6% = 48.23 (Eq. 4.29). Note that a%PHT <5, where

SPHT
~2

markers associated with the ith and jth trait loci respectively; 6., =

O,y = 83.01s an estimate of the genetic variance of PHT. The estimated portion of
~ 48.23
the genetic variance attributable to 6= = 48.23 was Gpyy = T 0.5811; that
S PHT

is, the seven markers explain 58.11% of the genetic variance associated with PHT.

Charcosset and Gallais (1996) considered two possible methods of estimating

o> based on the coefficient of multiple determination or squared multiple

S
correlation R* (note that in this case R” is not the square of the selection response).
The coefficient R gives the portion of the total variation in the phenotypic values

that is “explained” by, or attributable to, the markers and can be written as

0X'y —ny® &
R=—3"" % (4.32a)
yy-ny* 6

IS AR S

~

where 0X/ y — ny* is the overall regression sum of squares adjusted for the intercept
and y'y — nj” is the total sum of squares adjusted for the mean. The coefficient R? is
equal to 1 if the fitted equation y; = 0y + ) 6,x; + ¢; passes through all the data
jeM
points, so that all residuals are null; then, the markers explain all the phenotypic
variance. At the other extreme, R? is zero if y; = @0 and the estimated regression
coefficients are null, i.e., 51 = 52 =...= EM = 0. In the latter case, markers do not
affect the phenotypic observations and the variance of the marker score values is

zero. Thus, the R? values are between 0 and 1, i.e., 0 < R? < 1.0. Equation (4.32a) is
M

useful for estimating 6?,- as 85' Z R? = 83, where Rﬁ is the estimated value of the jth
=1
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marker and 85 is the phenotypic variance of the ith trait; however, this is a biased
estimator of of’, (Hospital et al. 1997).

Charcosset and Gallais (1996) and Hospital et al. (1997) proposed an unbiased
estimator of ai_ based on all the selected markers using the adjusted coefficient of
multiple determination, i.e.,

n—1

- 4.32b
n—M—1 ’ (4.326)

BN

Rij=1- (1-r) =

whence we can obtain a unbiased estimator of > as Ez.Ri 4= 62 by jointly using all
Si y i Si

the markers that affect the phenotypic values. The problem with Eq. (4.32b) is that
the Rf, dj values could be negative; in that case, the estimated value of ‘75, would also be
negative. One additional problem with Eq. (4.32b) is that the R} 4 Values can produce
Ef values that are higher than those of the estimated variance of the breeding values
5.

Using Egs. (4.32a) and (4.32b), we can estimate afi, but from them it is not clear
how we can estimate the covariance between two different estimated marker score
values.

Consider the case of the PHT values described in Sect. 4.3.1 of this chapter,
where M = 7, n = 247, and the estimated variance of PHT was EPHT =191.81. The
estimated values of R? for each of the seven markers were 0.0038, 0.0005, 0.006,
0.0013, 0.0036, 0.0114, and 0.0298, whence, by multiplying each estimated R*
value by 65, = 191.81 and summing the results, we found that the estimated

value of afPHT was 8% = 9.78. In this case, the estimated portion of the genetic
SPHT
. . ~ ~ 9.78
variance attributable to o% =9.78 was gpyr = T 0.1178; thus, when we
PHT

estimated afPHT according to Eq. (4.32a), the seven markers explained only 11.78% of
the genetic variance associated with PHT.
The estimated value of Rf‘ 4 for the seven markers jointly was 0.06, whence EEPHT

= (191.81)(0.06) = 11.50 is an estimate of a?PHT. In the latter case, the estimated

portion of the genetic variance attributable to 62 =11.50 was

SPHT
=R 11.5 . . .
9pur = =3 = 0.1385; that is, according to Eq. (4.32b), the seven markers explain

13.85% of the genetic variance associated with PHT.
One additional way of estimating the variance of the marker score 532,/_ was
proposed by Lange and Whittaker (2001) as

LS 6-a) (4.33)

n—1 i=1
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M
wheres; = > 0x; and My, is the mean of 5; values. The covariance between the ith
J=1

and jth marker scores can be estimated as the cross products of the marker score
values divided by n — 1. Note that in this case, the number of markers associated
with the ith and jth traits may be different.

For the PHT values described in Sect. 4.3.1 of this chapter, where n = 247, the
estimated value of afi was EfPHT = 15.75 and the estimated portion of the genetic

~ ~ 15.75 .
variance attributable to 62PHT = 15.75 was qpyr = 3 0.1897. That is, the

seven markers jointly explain 18.97% of the genetic variance associated with PHT
according to Eq. (4.33).

4.3.3 Estimating LMSI Selection Response and Efficiency

With the estimated phenotypic variances (E%HT = 191.81), the estimated genetic

variance (E§ = 83.0) and the estimated marker score variances: 62 =48.23
PHT S PHT

(Eq. 4.29), 2 =9.78 (Eq. 4.32a), 62 = 11.50 (Eq. 4.32b), and 67 = 15.75
SPHT PHT PHT

(Eq. 4.33), we can estimate the LMSI coefficient, selection response, and efficiency.

Using the estimated value 62 = 48.23 obtained with Eq. (4.29), it is possible to

SPHT
=2 =2

— c -0 83.0 — 48.23
timate the LMSI weight = _Sear eAT _ =0.242,
estmate the weight as fpur =25 52 191.81 —48.23
whereas for 62 = 9.78, Efpm = 11.50, and /ofpm, = 15.75, the estimated values

SPHT

of fprr were 0.402, 0.40, and 0.382 respectively. The latter results indicate that the
estimated values of fpgr associated with the phenotypic values tend to decrease when
the estimated values of the variance of the marker score increase. This means that at the
limit, when all the genetic variance is explained by the markers, the estimated values of
Ppyr are zero and the estimated LMSI is equal to TM =5. Thus, for trait PHT, when
the estimated values of fpyr are not zero, the estimated LMSI can be written as
Tryy = Spur + Brur (PHT; — Spur). The Ty, values are used to predict, rank, and
select the net genetic merit value of each individual candidate for selection.

Based on the result E%PHT = 48.23 obtained with Eq. (4.29) and using a selection

intensity of 10% (k= 1.755), the estimated LMSI selection response can be
obtained as
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52(62 — 52 52(52 — 52
by D
y s

| 755\/83(83 — 48.23) 4 48.23(191.81 — 83)
' 191.81 — 48.23

= 1.755v/56.65 = 13.21.
In a similar manner, using the result Efmﬂ = 15.75, the estimated selection

~ 83(83 — 15.75) + 15.75(191.81 — 83)
Ry =1. = 1.755V41.44
response was Ry 755\/ 19181 = 1575 755

= 11.30. With 32 =9.78 and 5., = 11.50, the estimated values of the LMSI

selection responses were 10.99 and 11.10 respectively. The latter results indicate that

the estimated values of the LMSI selection responses tend to increase when the
estimated values of the variance of the marker score increase.
We can estimate LMSI versus phenotypic efficiency for one trait as

2
~ 1 — ~ A?
A==+ % where h” is the estimated trait heritability and § = % is
h? 1 —gh? Og
the estimated portion of additive genetic variance explained by the markers. When

48.23 ~
62 =48.23, Gpyr = —53 — 0-3811, and h* = 0.433, the estimated LMSI effi-

SPHT

ciency was Ay =V1.58=125. For &2 =1575 &% =9.78, and

§ SPHT
~2

05, = 11.50, the estimated portions of the additive genetic variance explained by
~ 15.75 . 9.78

the markers were  Gpyr = - - 0.1897,  qpyr = T 0.1178, and

~ 11.5

dpur = g3~ = 0.1385 respectively, whence the estimated LMSI efficiencies were

1.1, 1.04, and 1.05 respectively. The latter results indicate that the estimated values
of LMSI efficiency tend to increase when the estimated values of the variance of the
marker score increase (Fig. 4.1).

Figure 4.1 presents the change in LMSI efficiency with respect to phenotypic
selection for different values of the variance of the marker score when the pheno-
typic (191.81) and genetic (83) variances are fixed. In a similar manner, Fig. 4.2
presents the change in the LMSI selection response for different values of the
variance of the marker score when the phenotypic (191.81) and genetic (83) vari-
ances are fixed. In effect, LMSI efficiency and the selection response depend on the
genetic variance explained by the markers.
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4.3.4 Estimating the Variance of the Marker Score
in the Multi-Trait Case

Equation (4.33) can be used in the multi-trait context when the numbers of markers
associated with the ith and jth traits are different. Also, it is possible to adapt
Egs. (4.32a) and (4.32b) to the multi-trait case. However, in the latter case, in
addition to the markers linked to the QTL that affect one specific trait, we need to
find markers that affect more than one trait, which may be very difficult. For this
reason, in the multi-trait context, Eqs. (4.32a) and (4.32b) could be used to estimate
the variance of the marker score (S) without preselecting the markers that affect the
phenotypic traits, only when the number of genotypes is higher than the number of
markers.

Letyy, y2, ..., ¥, be r independent multivariate normal vectors of observations,
Y Y2 0 i

each with n observations, such that Y = |2 2 7" 2 | s a matrix n x ¢ of
Ynt. Y2 0 Ve

observations for  traits; then, the multivariate linear regression model can be written
as Y = XB + U, where X is a matrix n x m (m= number of markers and m < n) of
known coded marker values, B is a matrix m X n of regression coefficients, and U is
a matrix n x t of unobserved random disturbance whose rows for given X are
uncorrelated, each with mean 0 and common covariance matrix E (Mardia et al.
1982; Rencher 2002). According to the least squares method of estimation, B =

~ i ~
Nl . A_(Y_BX) (Y_BX)
(X’X) XY is an estimator of B and E = 1
n—m—

the residual covariance matrix E assuming that n > m (Johnson and Wichern 2007).

/\/\

e'e
Note that 1 — R*> = ——, where € is a vector of estimated residual values of the
Yy

is an estimator of

model y; =60y + > 0;x; + ¢; and R” is the coefficient of multiple determination
jeM

(Eq 4.32a). In addition, as in the multi-trait context the est1mated matrix of residuals

is U=Y — BX, 1 — R? can be written as D = (Y'Y)~ '0'U (Mardia et al. 1982),

whence R? in the multivariate context can written as

R2=1I-D=P'S, (4.34a)
whereas Ri dj (Eq. 4.32b) can be written as

2 n—1 p-1g
where I is an identity matrix ¢ X f, P! is the inverse of the estimated covariance
matrix of phenotypic values (P), and S is the estimated covariance matrix of marker
score values. From Eq. (4.34b),
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PR}, =S (4.34¢)

is an unbiased estimator of matrix §, whereas PR? = S (Eq. 4.34a) is a biased
estimator of matrix S. The main problem of Eq. (4.34c) is that the diagonal elements
of S could be negative.

From the maize F, population including 247 genotypes (each one with two
repetitions) and 195 molecular markers described in Sect. 4.3.1, we used two
traits—PHT (cm) and EHT (cm)—to illustrate the multivariate method of estimating
the LMSI parameters. The estimated phenotypic and genetic covariance matrices
were P = “gég; igggg] and C = [2322 g;gg}, whereas the estimated

15.750 0.983
0.983 28.083]'
When we used Eq. (4.34a) and Eq. (4.34c), we obtained estimated values of the
variance and covariance of the marker scores that were higher than the genetic values
(data not presented). Equations (4.29) and (4.31) are used later to compare LMSI
efficiency versus GW-LMSI efficiency using the simulated data described in Chap. 2,
Sect. 2.8.1.

With matrices IA’, 6, and §, and the vector of economic weights a’ = [w’ 0’ 1,

covariance matrix of marker scores, using Eq. (4.33), was S = [

where W =[—1 —1] and 0/ =[0 0], we obtained the estimated matrices T
= [SE g] and Z = {g 2} , whence the estimated LMSI vector of coefficients

was p' = a'ZyT;' =[—0.59 —0.18 —0.41 —0.82]. Using a selection inten-
sity of 10% (k; = 1.755), the estimated LMSI selection response and the expected

Vo
~ ~ o ~ ~ Z
genetic gains per trait were Ry = k;\/ ' Typ = 20.41 and E), = kIﬁA;M =
B'T P
—10. —10. —2. —4. respectively, whereas the estimate

10.09 —10.31 —2.53 —4.39 pectively, wh. he estimated LMSI
~ Oly
accuracy was py; o

The estimated LPSI parameters (see Chap. 2 for details) using the phenotypic
information from the maize F, population for traits PHT and EHT are as follows.

The estimated LPSI vector of coefficients was b’ = w/CP~! = [-0.53 —0.36],
and, with a selection intensity of 10% (k; = 1.755), the estimated LPSI selection

A~

response and the expected genetic gains per trait were R =k b'Pb = 18.97 and

-  bC
E =k —=[-10.52 —8.45] respectively, whereas the estimated LPSI accu-
o1

~ c
racy was py; = L —o0.67.
OH
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We can determine LMSI efficiency versus LPSI efficiency to predict the net

genetic merit using the ratio of estimated accuracy values py; = 0.72 and py;

~ 0.72
= 0.67 of the LMSI and LPSI respectively, i.e., Ay = 067 = 1.075, whence,

according to Eq. (4.19), the estimated LMSI efficiency versus the LPSI efficiency,
in percentage terms, was p,, = 100(1.075 — 1) = 7.5. That is, for these data, the
estimated LMSI efficiency was only 7.5% greater than LPSI efficiency at predicting
the net genetic merit.

4.4 Estimating the GW-LMSI Parameters
in the Asymptotic Context

Lange and Whittaker (2001) proposed the GW-LMSI. However, these authors did
not provide detailed procedures for estimating matrices P, C, W, and M. They
indicated that matrix C can be estimated using the estimated matrix of covariance of
marker scores (§) and that matrices P, W, and M can be estimated directly by their
empirical variances and covariances, but this assertion does not indicate a clear
method for estimating those covariance matrices. In Chap. 2, we described the
REML method of estimating C and P. Crossa and Cerén-Rojas (2011) described
matrices W and M in a doubled haploid population. In this study, we describe and
estimate matrices W and M for an F, population in the asymptotic context according
to the Wright and Mowers (1994) approach, which is based on regressing phenotype
values on marker coded values. We used this latter approach to estimate W and M,
because it is a clearer estimation method than that of Lange and Whittaker (2001);
however, the Wright and Mowers (1994) approach is an asymptotic method and
should be regarded with precaution.

Matrix M is the covariance matrix of the molecular marker code values. All
marker information used to construct matrix M is presented in Table 4.2. Based on
this information, we found that the expectations (E(X;) and E(X,)) and the variances
(V(X,) and V(X>)) of the marker coded values X; and X, are E(X;) = E(X,) = 0 and
V(X1) = V(X,) = 1, whereas the covariance (Cov(X;, X,)) and correlation (Corr(X;,
X5)), between X and X, were

COV(X],XQ) = CO}"V(XhXQ) =1-26. (435)

Thus, as the variances of X; and X, are equal to 1, the correlation between X; and

X, is Corr(Xy,X3) — ColXiXo) 26, i.e., the covariance and correlation
V(X1)V(X2)

between X; and X, are the same. Equation (4.35) results indicate that if we perform
the same operation with many markers, we will obtain similar results; they also
indicate that this is the way to construct matrix M.
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Tablet4(.12f Marker genztypes, Marker genotype Expected frequency X, X,
coded values (X, and Xy of  ABY/AIB: (-5 L
the marker genotypes in an F, _A1B1/Ai1B, 2(6—07)/4 1 0
population AB,/AB, 5/4 1 —1
AB,/A:B, 2(6—8%)/4 0 1
AB,/A,B, 2(1-28 + 28%)/4 0 0
ABy/A,B, 2(6—8%)/4 0 -1
A>B/A-B, 5%/4 -1 1
A>B1/A;B, 2(6—8%)/4 -1 0
A>B,/AB, (1-8)%/4 —1 -1

Let X be a matrix of coded markers of size n x m, where n > m and
m= number of markers; then according to Wright and Mowers (1994), because
all marker information is contained in matrix X/X, when the number of observations
(n) tends to infinity, the product xx;/n tends to the covariance between markers
ith and jth, whence matrix n~'X'X should tend to the covariance matrix between
the markers that conform matrix X with the ijth element equal to (0.5 — &;). Thus,
matrix 2n~'X'X should tend to a covariance matrix where the ijth entry is equal to
(I — 25;). Based on the latter result, an estimator of matrix M in the asymptotic
context is

M =2n"'X'X. (4.36)

Equation (4.36) is an asymptotic result and should be taken with caution. To date,
there has been no clear method for estimating M in the non-asymptotic context; for
this reason, Eq. (4.36) is used to estimate the GW-LMSI parameters.

Assume that a QTL is between the two markers in Table 4.2; then, § can be
written as 0 = ry + r, — 2r r,, where r| and r, denote the recombination frequency
between marker 1 and marker 2 respectively, with the QTL between them. When the
number of genotypes or individuals tends to infinity, the covariance between the
phenotypic trait values (y) and the marker 1 coded values (X;) in an F, population
can be written as

1
Cov(Xy,y) = Eal(l —2r), (4.37)

where a;(1 — 2ry) is the portion of the additive effect (a;) of the QTL linked to
marker 1 (Edwards et al. 1987), and r, is the recombination frequency between the
QTL and marker 1. We can assume that for many markers, the covariance of the
phenotypic values is similar to Eq. (4.37), whence matrix W can be obtained.

Let y be a vector n x 1 of recorded phenotypic values, where n denotes the
number of observation or records, and X is a matrix of coded markers of size n x m.
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When 7 tends to infinity, 2n_1X/y tends to be a vector with elements equal to
ai(1 — 2r;), where «; is the additive effect of the ith QTL linked to the ith marker,
and r; is the recombination frequency between the ith QTL and the ith marker. Now

i Yz o Y
let Y= 2 Y 2 Y 21| be a matrix of observations for ¢ traits; then, an
Ynt Y2 "0 YV

estimator of matrix W in the asymptotic context is

W =2n"'XY. (4.38)

Once again, Eq. (4.38) is an asymptotic result and should be accepted with
caution. But to date, there has been no clear method for estimating W in the
non-asymptotic context; for this reason, Eq. (4.38) is used to estimate the
GW-LMSI parameters.

4.5 Comparing LMSI Versus LPSI and GW-LMSI
Efficiency

To compare LMSI efficiency versus GW-LMSI efficiency for predicting the net
genetic merit, we use the simulated data set described in Chap. 2, Sect. 2.8.1.

o~

Figure 4.4 presents the estimated accuracy values of the LPSI (p,; = ,6\—1), the

& & !

LMSI (57, = #), and the GW-LMSI (5,,;, = 3%) for five simulated selection
cycles. In addition, Table 4.3 presents the estimated LPSI, LMSI, and GW-LMSI
selection responses, the estimated LPSI, LMSI, and GW-LMSI variances of the
predicted error ((1 —p%; )57, (1 — ﬁZiM)E?{ and (1 — ﬁiﬁw)gé respectively), the
ratios of the estimated LMSI accuracy to the estimated LPSI accuracy and the
estimated LMSI accuracy to the estimated GW-LMSI accuracy, expressed as per-
centages (Eq. 4.19), for five simulated selection cycles.

According to Fig. 4.4, for this data set the estimated LMSI accuracy (py;, ) was
higher than the estimated LPST and GW-LMSI accuracy (p;; andp;;  respectively),
for the five simulated selection cycles, that is, py; > pyi > Py, In a similar
manner, Table 4.3 results indicate that the estimated LMSI selection response (RM)
was higher than the estimated LPSI and GW-LMSI selection responses (R; and Ry
respectively): RM > R, > RW.

Note that the estimated LPSI, LMSI, and GW-LMSI variances of the predicted
error, and the estimated LMSI efficiency versus LPSI efficiency and versus
GW-LMSI efficiency (expressed in percentages) are related to the estimated
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Accuracy values

3
Cycle

LPSI GW-LMSI

Fig. 4.4 Estimated correlation values of the linear phenotypic selection index (LPSI), the linear
molecular selection index (LMSI), and the genome-wide LMSI (GW-LMSI) with the net genetic
merit for four traits, 2500 markers and 500 genotypes (each with four repetitions) in one environ-
ment for five simulated selection cycles

Table 4.3 Estimated linear phenotypic, molecular, and genome-wide selection indices (LPSI,
LMSI, and GW-LMSI respectively), selection responses and variance of the predicted error, and
estimated ratio of LMSI accuracy to LPSI and GW-LMSI accuracy expressed in percentages for
4 traits, 2500 markers and 500 genotypes (each with four repetitions) in one environment for five
simulated selection cycles

Variance of the predicted

Efficiency of LMSI

Selection response error versus
Cycle LPSI |LMSI |GW-LMSI |LPSI |LMSI |GW-LMSI |LPSI GW-LMSI
1 17.84 |19.60 |16.24 22.53 10.07 39.84 10.07 | 20.67
2 15.66 |24.36 |13.88 22.66 |0.07 |40.06 12.14 | 26.81
3 14.44 |14.70 | 12.13 2195 |1.86 [39.86 343  [21.27
4 1429 | 1529 |12.48 22.84 |1.46 |39.09 6.57 |22.50
5 13.86 |15.15 |11.49 22.13 |0.88 39.65 11.11 | 31.88
Average |15.22 | 17.82 |13.24 2242 10.87 39.70 8.66 |24.63
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LMSI, LPSI, and GW-LMSI accuracies, and that in all five selection cycles,
Pui, > Pui > Pyi,- This implies that the estimated LMSI variance of the predicted

error was lower than the estimated LPSI and GW-LMSI variance of the predicted
error. In a similar manner, because ﬁHiM > Py > Z)\Hiw’ the estimated LMSI

efficiency was higher than the estimated LPSI efficiency and the estimated
GW-LMSI efficiency.

Based on Fig. 4.4 and Table 4.3 results, we conclude that the LMSI was a better
predictor of the net genetic merit than the LPSI, and that the LPSI is a better predictor
of the net genetic merit than the GW-LMSI for this simulated data set.
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credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
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