
Chapter 4
Linear Marker and Genome-Wide Selection
Indices

Abstract There are two main linear marker selection indices employed in marker-
assisted selection (MAS) to predict the net genetic merit and to select individual
candidates as parents for the next generation: the linear marker selection index
(LMSI) and the genome-wide LMSI (GW-LMSI). Both indices maximize the
selection response, the expected genetic gain per trait, and the correlation with the
net genetic merit; however, applying the LMSI in plant or animal breeding requires
genotyping the candidates for selection; performing a linear regression of phenotypic
values on the coded values of the markers such that the selected markers are
statistically linked to quantitative trait loci that explain most of the variability in
the regression model; constructing the marker score, and combining the marker score
with phenotypic information to predict and rank the net genetic merit of the
candidates for selection. On the other hand, the GW-LMSI is a single-stage proce-
dure that treats information at each individual marker as a separate trait. Thus, all
marker information can be entered together with phenotypic information into the
GW-LMSI, which is then used to predict the net genetic merit and select candidates.
We describe the LMSI and GW-LMSI theory and show that both indices are direct
applications of the linear phenotypic selection index theory to MAS. Using real and
simulated data we validated the theory of both indices.

4.1 The Linear Marker Selection Index

4.1.1 Basic Conditions for Constructing the LMSI

In Chap. 2, Sect. 2.1, we indicated ten basic conditions for constructing a valid linear
phenotypic selection index (LPSI). These ten conditions are also necessary for the
linear marker selection index (LMSI); however, in addition to those conditions, the
LMSI also requires the following conditions:

1. The markers and the quantitative trait loci (QTL) should be in linkage disequi-
librium in the population under selection.

2. The QTL effects should be combined additively both within and between loci.
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3. The QTL should be in coupling mode, that is, one of the initial lines should have
all the alleles that have a positive effect on the chromosome, and the other lines
should have all the negative effects.

4. The traits of interest should be affected by a few QTL with large effects (and
possibly a number of very small QTL effects) rather than many small QTL
effects.

5. The heritability of the traits should be low.
6. Markers correlated with the traits of interest should be identified.

Under these conditions, the LMSI should be more efficient than the LPSI, at least
in the first selection cycles (Whittaker 2003; Moreau et al. 2007).

4.1.2 The LMSI Parameters

Let yi¼ gi + ei be the ith trait (i¼ 1, 2, . . ., t, t¼ number of traits), where ei~N(0, σ
2
ei
)

is the residual with expectation equal to zero and variance value σ2ei , and N stands for
normal distribution. Assuming that the QTL effects combine additively both within
and between loci, the ith unobservable genetic value gi can be written as

gi ¼
XNQ

k¼1

αkqk, ð4:1Þ

where αk is the effect of the kth QTL, qk is the number of favorable alleles at the kth
QTL (2, 1 or 0), and NQ is the number of QTL affecting the ith trait of interest.

If the QTL effect values are not observable, the gi values in Eq. (4.1) are also not
observable; however, we can use a linear combination of the markers linked to the
QTL (si) that affect the ith trait to predict the gi value as

si ¼
XM
j¼1

θ jx j, ð4:2Þ

where si is a predictor of gi, θj is the regression coefficient of the linear regression
model, xj is the coded value of the jth markers (e.g., 1, 0, and �1 for marker
genotypes AA, Aa and aa respectively), and M is the number of selected markers
linked to the QTL that affect the ith trait. Equation (4.2) is called the marker score
(Lande and Thompson 1990; Whittaker 2003) and this is the main reason why the
LMSI is not equal to the LPSI described in Chap. 2. The number of selected markers
is only a subset of potential markers linked to QTL in the population under selection;
thus, the si values should be lower than or equal to the gi values. One way of
estimating the si values is to perform a linear regression of phenotypic values on
the coded values of the markers, select markers that are statistically linked to
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quantitative trait loci that explain most of the variability in the regression model, and
then obtain the estimated value of si (bsi) as the sum of the products of the QTL effects
linked to markers and multiplied by the marker coded values associated with the ith
trait. Some authors (e.g., Moreau et al. 2007) callbsi the molecular score; in this book,
we call si the marker score and bsi the estimated marker score.

The objective of the LMSI is to predict the net genetic merit of each individual
and select the individuals with the highest net genetic merit for further breeding. In
the LMSI context, the net genetic merit can be written as

H ¼ w0gþ w0
2s ¼ w0 w0

2

� � g
s

� �
¼ a0z, ð4:3Þ

where g0 ¼ g1 . . . gq
� �

is the vector of breeding values; w0 ¼ w1 � � � wt½ � is
the vector of economic weights associated with g; w0

2 ¼ 01 � � � 0t½ � is a null
vector associated with the vector of marker scores s0 ¼ s1 � � � st½ �; si is the ith
marker score; a0 ¼ w0 w0

2½ � and z ¼ g0 s0½ �.
The information provided by the marker score can be used in breeding programs

to increase the accuracy of predicting the net genetic merit of the individuals under
selection. The LMSI combines the phenotypic and marker scores to predictH in each
selection cycle and can be written as

IM ¼ β0yyþ β0ss ¼ β0y β0s
� � y

s

� �
¼ β0t, ð4:4Þ

where β0y and βs are vectors of phenotypic and marker score weights respectively;
y0 ¼ y1 � � � yt½ � is the vector of trait phenotypic values and s was defined in
Eq. (4.3); β0 ¼ β0y β0s

� �
and t0 ¼ y0 s0½ �.

The LMSI selection response can be written as

RM ¼ kIσHρIMH ¼ kIσH
a0ZMβffiffiffiffiffiffiffiffiffiffiffiffiffi

a0ZMa
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

β0TMβ
p , ð4:5Þ

where kI is the standardized selection differential of the LMSI, σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ZMa

p
andffiffiffiffiffiffiffiffiffiffiffiffiffi

β0TMβ
p

are the standard deviations of the variances of H and IM, whereas ρIMH and

a0ZMβ are the correlation and the covariance between H and IM respectively; TM

¼ Var
y
s

� �
¼ P S

S S

� �
and ZM ¼ Var

g
s

� �
¼ C S

S S

� �
are block matrices of

covariance where P ¼ Var(y), S ¼ Var(s), and C ¼ Var(g) are the covariance
matrices of phenotypic values (y), the marker score (s), and the genetic value (g)
respectively in the population. Vectors a and β were defined in Eqs. (4.3) and (4.4)
respectively.

The LMSI expected genetic gain per trait can be written as
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EM ¼ kI
ZMβffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TMβ

p : ð4:6Þ

All the parameters in Eq. (4.6) were previously defined.

4.1.3 The Maximized LMSI Parameters

Suppose that P, S and C are known matrices; then, matrices TM and ZM are known
and, according to the LPSI theory (Chap. 2 for details), the LMSI vector of
coefficients (βM) that maximizes ρIMH , RM, and EM can be written as

β ¼ T�1
M ZMa, ð4:7Þ

whence the maximized selection response and the maximized correlation (or LMSI
accuracy) between H and IM can be written as

RM ¼ kI
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TMβ

p
, ð4:8aÞ

and

ρIMH ¼ σIM
σH

, ð4:8bÞ

respectively, where σIM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β0TMβ

p
is the standard deviation of the variance of IM

and σH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ZMa

p
is the deviation of the variance of H. Equations (4.8a) and (4.8b)

show that the LMSI is a direct application of the LPSI theory in the marker-assisted
selection (MAS) context.

Let Q ¼ T�1
M ZM ; then, matrix Q can be written as

Q ¼ P� Sð Þ�1 C� Sð Þ 0
I� P� Sð Þ�1 C� Sð Þ I

� �
, ð4:9Þ

whence β ¼ Qa, and as w0
2 ¼ 01 � � � 0t½ �, we can write the two vectors of β0

¼ β0y β0s
� �

as

βy ¼ P� Sð Þ�1 C� Sð Þw and βs ¼ I� P� Sð Þ�1 C� Sð Þ
h i

w: ð4:10aÞ

Another way of writing the marker score vector weights is

βs ¼ w� βy, ð4:10bÞ

where βy ¼ (P� S)�1(C� S)w. By Eq. (4.10b), the optimal LMSI can be written as
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IM ¼ w0sþ β0y y� sð Þ: ð4:11Þ

Equation (4.11) indicates that, in practice, to estimate the optimal LMSI, we only
need to estimate the vector of coefficients βy. By Eq. (4.10a), Eq. (4.8a) can be
written as

RM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0C P� Sð Þ�1 C� Sð Þwþ w0S I� P� Sð Þ�1 C� Sð Þ

h i
w

r
: ð4:12Þ

Thus, by Eqs. (4.10a) and (4.12), when S is a null matrix, vector βy is equal to
βy ¼ P�1Cw ¼ b and RM ¼ kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ RI , which are the LPSI vector of coeffi-

cients and its selection response respectively.
Assume that when the number of markers and genotypes tend to infinity, S tends

to C; then, at the limit, we can suppose that S ¼ C, and by this latter result, RM is
equal to

kI
ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p
: ð4:13Þ

That is, Eq. (4.13) is the maximum value of the LMSI selection response when
the numbers of markers and genotypes tend to infinity. Thus, the possible LMSI
selection response values of Eq. (4.12) should be between kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
and kI

ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p
,

i.e.,

kI
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
� RM � kI

ffiffiffiffiffiffiffiffiffiffiffiffi
w0Cw

p
, ð4:14Þ

or between 1 and
ffiffiffiffiffiffiffiffiffi
w0Cw

p ffiffiffiffiffiffiffi
b0Pb

p ¼ σH
σI
, that is,

1 � RM � σH
σI

: ð4:15Þ

Note that σHσI ¼ 1
ρHI
, where ρHI is the maximized correlation between the net genetic

merit (H ) and the LPSI (I ) described in Chap. 2. Equation (4.15) indicates that LMSI
efficiency tends to infinity when the ρHI value tends to zero and is an additional way
of denoting the paradox of LMSI efficiency described by Knapp (1998), which
implies that LMSI efficiency tends to infinity when the ρHI value tends to zero.

4.1.4 The LMSI for One Trait

For the one-trait case, matrices TM, ZM, and Q can be written as
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TM ¼ σ2y σ2s
σ2s σ2s

� �
, ZM ¼ σ2g σ2s

σ2s σ2s

� �
and Q ¼

σ2g � σ2s
σ2y � σ2s

0

σ2y � σ2g
σ2y � σ2s

1

26664
37775, ð4:16Þ

where σ2y , σ2g, and σ2s are the phenotypic, genetic, and marker score variances
respectively. By Eqs. (4.10a) and (4.10b), when a0 ¼ 1 0½ �, the elements of vector
β ¼ Qa are

βy ¼
σ2g � σ2s
σ2y � σ2s

and βs ¼ 1� βy, ð4:17aÞ

whence the optimal LMSI can be written as

IM ¼ sþ βy y� sð Þ; ð4:17bÞ

whereas by Eq. (4.12), the maximized LMSI selection response can be written as

RM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2g σ2g � σ2s

� �
þ σ2s σ2y � σ2g

� �
σ2y � σ2s

vuut
: ð4:18Þ

When σ2s ¼ 0, βy ¼
σ2g
σ2y

¼ h2, IM ¼ h2y, andRM ¼ k
σ2g
σy

¼ kσyh
2 ¼ R, the selection

response for the one-trait case without markers.

4.1.5 Efficiency of LMSI Versus LPSI Efficiency for One
Trait

Suppose that the intensity of selection is the same in both indices; then, to compare
LMSI versus LPSI efficiency for predicting the net genetic merit, we can use the
ratio λM ¼ ρIMH

ρHI
¼ RM

RI
(Bulmer 1980; Moreau et al. 1998), where RI is the maximized

LPSI selection response. In percentage terms, the LMSI versus LPSI efficiency can
be written as

pM ¼ 100 λM � 1ð Þ: ð4:19Þ
When pM ¼ 0, the efficiency of both indices is the same; when pM > 0, the

efficiency of the LMSI is higher than that of the LPSI, and when pM < 0, LPSI
efficiency is higher than LMSI efficiency for predicting the net genetic merit.

In the case of one trait, Lande and Thompson (1990) showed that LMSI efficiency
(not in percentage terms) with respect to phenotypic efficiency can be written as
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λM ¼ RM

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

h2
þ 1� qð Þ2

1� qh2
,

s
ð4:20Þ

where RM was defined in Eq. (4.18), R¼ kσyh
2, h2 is the trait heritability, and q ¼ σ2s

σ2g
is the proportion of additive genetic variance explained by the markers. According to
Eq. (4.20), the advantage of the LMSI over phenotypic selection increases as the

population size increases and heritability decreases, because in such cases, q ¼ σ2s
σ2g

tends to 1 and Eq. (4.20) approaches 1h. Therefore, the LMSI is most efficient for traits
with low heritability and when the marker score explains a large proportion of the
genetic variance. Thus, note that when h2 tends to zero, 1h tends to infinity; this means
that in the asymptotic context, LMSI efficiency with respect to phenotypic efficiency
for one trait (Eq. 4.20) tends to infinity and this is the LMSI paradox pointed out by
Knapp (1998). There are other problems associated with the LMSI: it increases the
selection response only in the short term and can result in lower cumulative
responses in the longer term than phenotypic selection, as the LMSI fixes the QTL
at a faster rate than phenotypic selection. In addition, it requires the weights
(Eq. 4.17a) to be updated, because in each generation the frequency of the QTL
changes (Dekkers and Settar 2004).

4.1.6 Statistical LMSI Properties

Assume that H and IM have bivariate joint normal distribution, β ¼ T�1
M ZMa, and

that P, C, S, and w are known; then, the statistical LMSI properties are the same as
the LPSI properties described in Chap. 2. That is,

1. σ2IM ¼ σHIM : the variance of IM (σ2IM ) and the covariance between H and IM (σHIM )
are the same.

2. The maximized correlation between H and IM (or IM accuracy) is ρHIM ¼ σIM
σH
.

3. The variance of the predicted error, Var H � IMð Þ ¼ 1� ρ2HIM

� �
σ2H , is minimal.

4. The total variance of H explained by IM is σ2IM ¼ ρ2HIMσ
2
H .

5. The heritability of IM is h2M ¼ β0MZMβM
β0MTMβM

.

Properties 1 to 4 are the same as LPSI properties 1 to 4, but, because the LMSI
jointly incorporates the phenotypic and marker information to predict the net genetic
merit, LMSI accuracy should be higher than LPSI accuracy. The same is true of the
LMSI selection response and expected genetic gain per trait when compared with the
LPSI selection response and expected genetic gain per trait.
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4.2 The Genome-Wide Linear Selection Index

The genome-wide linear marker selection index (GW-LMSI) is a single-stage
procedure that treats information at each individual marker as a separate trait.
Thus, all marker information can be entered together with phenotypic information
into the GW-LMSI, which is then used to predict the net genetic merit. In a similar
manner to the LMSI, the GW-LMSI exploits the linkage disequilibrium between
markers and the QTL produced when inbred lines are crossed.

4.2.1 The GW-LMSI Parameters

In a similar manner to the LPSI, the main objective of the GW-LMSI is to predict the
net genetic merit values of each individual and select the best individuals for further
breeding. In the GW-LMSI context, the net genetic merit can be written as

H ¼ w0gþ w0
2m ¼ w0 w0

2½ � g
m

� �
¼ a0WzW , ð4:21Þ

where g0 ¼ g1 . . . gt½ � ( j ¼ 1, 2, . . ., t ¼ number of traits) is the vector of
breeding values, w0 ¼ w1 � � � wt½ � is the vector of economic weights associated
with the breeding values, and w0

2 ¼ 01 � � � 0m½ � is a null vector associated with
the coded values of the markers m0 ¼ m1 � � � mm½ �, where mj ( j ¼ 1, 2, . . .,
m ¼ number of markers) is the jth marker in the training population;
a0W ¼ w0 w0

2½ � and zW ¼ g0 m0½ �.
The GW-LMSI (IW) combines the phenotypic value and the molecular informa-

tion linked to the individual traits to predict H values in each selection cycle. It can
be written as

IW ¼ β0yyþ β0mm ¼ β0y β0m
� � y

m

� �
¼ β0W tW , ð4:22Þ

where β0y and βm are vectors of phenotypic and marker weights respectively;
y0 ¼ y1 � � � yt½ � is the vector of phenotypic values and m was defined in
Eq. (4.21); β0W ¼ β0y β0m

� �
and t0W ¼ y0 m0½ �.

The GW-LSI selection response can be written as

RW ¼ kIσHρIWH ¼ kIσH
a0WΨβWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0WΨaW
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0WΦβW
p , ð4:23aÞ

where kI is the standardized selection differential of the GW-LMSI, σ2H ¼ a0WΨaW
and Var IWð Þ ¼ β0WΦβW are the variance of H and IW, whereas ρIWH ¼

a0WΨβWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0WΨaW

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WΦβW

p and a0WΨβW are the correlation and the covariance between
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H and IW respectively; Φ ¼ Var
y
m

� �
¼ P W0

W M

� �
and

Ψ ¼ Var
g
m

� �
¼ C W0

W M

� �
are block covariance matrices where P ¼ Var(y),

M ¼ Var(m), C ¼ Var(g), and W ¼ Cov(y,m) ¼ Cov(g,m) are the covariance
matrices of phenotypic values (y), the molecular marker (m) coded values, and the
genetic (g) values, whereas W is the covariance matrix between y and m, and
between g and m. The size of matrices P and C is t � t, but the sizes of matrices
M and W are m � m and m � t respectively.

From a theoretical point of view, Crossa and Cerón-Rojas (2011) showed that
matrix M can be written as

M ¼
1 1� 2δ11ð Þ � � � 1� 2δ1Nð Þ

1� 2δ21ð Þ 1 � � � 1� 2δ2Nð Þ
⋮ ⋮ ⋱ ⋮

1� 2δN1ð Þ 1� 2δN2ð Þ � � � 1

2664
3775, ð4:23bÞ

where (1 � 2δij) is the covariance (or correlation) and δij the recombination fre-
quency between the ith and jth marker (i, j ¼ 1, 2, . . ., m ¼ number of markers).
According to Crossa and Cerón-Rojas (2011), matrix W can be written as

W ¼
1� 2r11ð Þα11 1� 2r11ð Þα12 � � � 1� 2r1Nð Þα1NQ

1� 2r21ð Þα21 1� 2r22ð Þα22 � � � 1� 2r2Nð Þα2NQ

⋮ ⋮ ⋱ ⋮
1� 2rt1ð Þαt1 1� 2rN2ð Þαt2 � � � 1� 2rNNð ÞαtNQ

2664
3775, ð4:23cÞ

where (1 � 2rik)αqk (i ¼ 1, 2, . . ., m, k ¼ 1, 2, . . ., NQ ¼ number of QTL, q ¼ 1,
2, . . ., t) is the covariance between the qth trait and the ith marker; rik is the
recombination frequency between the ith marker and the kth QTL; and αqk is the
effect of the kth QTL over the qth trait.

The GW-LMSI expected genetic gain per trait can be written as

ELW ¼ kI
Ψβffiffiffiffiffiffiffiffiffiffiffi
β0Φβ

p : ð4:24Þ

All parameters in Eq. (4.24) were previously defined.
Matrix Φ could be singular, i.e., its inverse (Φ�1) could not exist because matrix

W is singular. Suppose that matrices Φ and Ψ are known; then, according to the
LPSI theory, the GW-LMSI vector of coefficients (βW) that maximizes ρIWH can be
written as
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βW ¼ Φ�ΨaW , ð4:25aÞ
where matrixΦ� denotes a generalized inverse ofΦ. By Eq. (4.25a), the maximized
GW-LMSI selection response is

RW ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WΦβW

q
: ð4:25bÞ

Equations (4.25a) and (4.25b) show that the GW-LMSI is a direct application of
the LPSI to MAS. By Eq. (4.25a), the maximized correlation between H and IW is

ρIWH ¼ σIW
σH

, ð4:25cÞ

where σIW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WΦβW

q
is the standard deviation of the variance of IW and σH

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0WΨaW

p
is the standard deviation of the variance of H.

4.2.2 Relationship Between the GW-LMSI and the LPSI

Matrix Φ� can be written as

Φ� ¼ L� �L�W0M�

�M�WL� M� þM�WL�W0M�

� �
, ð4:26Þ

where L� is a generalized inverse of matrix L ¼ P � W
0
M�W, and M� is a

generalized inverse of matrix M. In matrix Φ�, the inverse of matrix W is not
required and the standard inverse of matrixM (M�1) may exist. In the latter case, the
standard inverse of matrix L (L�1) exists and can be written as L�1 ¼ (P �W

0
M�1

W)�1 ¼ P�1 + P�1W
0
[M � WP�1W

0
]�1WP�1 (Searle et al. 2006).

By Eq. (4.26) and because w0
2 ¼ 01 � � � 0N½ �, the vector components of

β0W ¼ β0y β0m
� �

, or βW ¼ Φ�ΨaW, can be written as

βy ¼ L�C� L�W0M�W½ �w ð4:27Þ

and

βm ¼ M� þM�WL�W0M�ð ÞW�M�WL�C½ �w, ð4:28Þ
where w is the vector of economic weights. Suppose that there is no marker
information; then, matrices M and W are null and Eq. (4.27) is equal to βy ¼ P�1

Cw ¼ b (the LPSI vector of coefficients), whereas βm ¼ 0 and

RW ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0WΦβW

q
¼ kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ RI , the LPSI selection response. Now suppose

that the markers explain all the genetic variability; in this case, βy ¼ 0 and βm ¼ (X
0

X)�X
0
Y, the matrix of linear regression coefficients in the multivariate context,
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where (X
0
X)� is a generalized inverse matrix of X

0
X and Y is a matrix of phenotypic

observations.

4.2.3 Statistical Properties of GW-LMSI

Assume thatH and IW have bivariate joint normal distribution, βW¼Φ�ΨaW, and P,
C,M,W, andw are known; then, the statistical GW-LMSI properties are the same as
the LMSI properties. That is,

1. σ2IW ¼ σHIW , i.e., the variance of IW (σ2IW ) and the covariance between H and IW (
σHIW ) are the same.

2. The maximized correlation between H and IW, or IW accuracy, is ρHIW ¼ σIW
σH
.

3. The variance of the predicted error, Var H � IWð Þ ¼ 1� ρ2HIW

� �
σ2H , is minimal.

4. The total variance of H explained by IW is σ2IW ¼ ρ2HIWσ
2
H .

According to Lange and Whittaker (2001), GW-LMSI efficiency should be
greater than LMSI efficiency. However, this would be true only if matrices P, C,
M, and W are known and trait heritability is very low.

4.3 Estimating the LMSI Parameters

When covariance matrices P, C, and S, and the vector of economic weights (w) are
known, there is no error in the estimation of the LMSI parameters (selection
response, expected genetic gain, etc.); the same is true for the GW-LMSI when, in
addition to P, C, and w, the covariance matricesM andW are known. In such cases,
the relative efficiency of the LMSI (GW-LMSI) depends only on the heritability of
the traits and on the portion of phenotypic variation associated with markers. Using
simulated data, Lange and Whittaker (2001) found that GW-LMSI efficiency was
higher than LMSI efficiency when trait heritability was 0.2 and matrices P, C, M,
and W were known. When P, C, S, M, and W are unknown, it is necessary to
estimate them; then, the LMSI and GW-LMSI vector of coefficients and the effects
associated with markers are estimated with some error. This error leads to lower
LMSI and GW-LMSI efficiency than expected under the assumption that the
parameters are known; however, in the latter case, Lange and Whittaker (2001)
also found that GW-LMSI efficiency was greater than that of the LMSI when trait
heritability was 0.05. Moreover, in the LMSI there is additional bias in the estima-
tion of the parameters because only markers with significant effects are included in
the index (Moreau et al. 1998).

In Chap. 2, we described the restricted maximum likelihood (REML) method for
estimating matrices P and C. Some authors (Lande and Thompson 1990; Charcosset
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and Gallais 1996; Hospital et al. 1997; Moreau et al. 1998, 2007) have described
methods for estimating marker scores, the variance of the marker scores, the LMSI
vector of coefficients, etc., in the context of one trait; however, up to now there have
been no reports on the estimation of matrix S in the multi-trait case. Lange and
Whittaker (2001) only indicated that matrix S can be estimated as bS ¼ Var

	bs
,
where bs is a vector of estimated marker scores associated with several individual
traits.

The main problems associated with the estimated LMSI parameters are:

1. The estimated values of the covariance matrix S (bS ) tend to overestimate the
genetic covariance matrix (C).

2. The estimated variances of the marker scores can be negative.

When the first point is true, the estimated LMSI selection response and efficiency

could be negative because the estimated matrix bTM ¼ bP bSbS bS
� �

is not positive

definite (all eigenvalues positive) and the estimated matrix bZM ¼ bG bSbS bS
� �

is not

positive semi-definite (no negative eigenvalues). In addition, the results can lead to
all weights being placed on the molecular score and the weights on the phenotype
values can be negative (Moreau et al. 2007). When the second point is true, the
variance of the marker scores is not useful. The two problems indicated above could
be caused by using the same data set to select markers and to estimate marker effects,
and there is no simple way of solving them. Lande and Thompson (1990) proposed
that the markers used to obtain bS be selected a priori as those with the most highly
significant partial regression coefficients from among all the markers in the linkage
group analyzed in the previous generation. Zhang and Smith (1992, 1993) proposed
using two independent sets of markers: one to estimate marker effects and the other
to select markers. Additional solutions to these problems were described by Moreau
et al. (2007).

In this subsection, we describe methods (in the univariate and multivariate
context) for estimating molecular marker effects, marker scores, and their variance
and covariance, and for estimating the LMSI and GW-LMSI vector of coefficients,
selection response, expected genetic gain, and accuracy. This subsection is only for
illustration; we use the same data set to select markers, and to estimate marker effects
and the variance of marker scores.

4.3.1 Estimating the Marker Score

According to Eqs. (4.11) and (4.17b), when the vector of economic weights is equal
to a0 ¼ 1 0½ �, the LMSI for the ith trait yi (i ¼ 1, 2, � � �, t; t ¼ number of traits)
value can be written as IMli ¼ si þ βyi yi � sið Þ (l ¼ 1, 2, � � �, n; n ¼ number of
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individuals or genotypes), where βyi ¼
σ2gi � σ2si
σ2yi � σ2si

¼ h2i 1� qið Þ
1� qih

2
i

is the LMSI coeffi-

cient, h2i ¼
σ2gi
σ2yi

is the heritability of the ith trait, and qi ¼
σ2si
σ2gi

is the proportion of

genetic variance explained by the QTL or markers associated with the ith trait; si

¼
XM
j¼1

θ jx j ( j ¼ 1, 2, � � �, M; M ¼ number of selected markers) is the ith

individual trait marker score; and σ2yi , σ2gi , and σ2si are the ith variances of the

phenotypic, genetic, and marker score values respectively.
The simplest way of estimating the ith marker score si is to perform a multiple

linear regression of phenotypic values (yi) on the coded values of the markers (xj) and
then select the markers statistically linked to the ith QTL that explain most of the
variability in the regression model and use them to construct si ¼

P
j2M

θ jx j.

We can fit the model y∗i ¼
X
j2M

θ jx j þ e, where y∗i ¼ yi � �yi and �yi are the average

values of the ith trait, by maximum likelihood or least squares. When estimating θj,
the main problem is to choose the set of markers M based on criteria for declaring
markers as significant and then use the estimated values of θj (bθ j) to estimate the ith
marker score si asbsi ¼ X

j2M
bθ jx j. The values ofbsi may increase or decrease according

to the number of markers (xj) included in the model, and bsi affects LMSI selection
response and efficiency by means of the estimated variance of bsi (bσ2bsi) (Figs. 4.1 and

4.2).
According to the least squares method of estimation, bθ ¼ X0Xð Þ�1X0y∗ is an

estimator of the vector of regression coefficients θ0 ¼ θ1 θ2 � � � θm½ �, where
m (m < n) is the number of markers, X is a matrix n � m of coded marker values
(e.g., 1, 0 and �1 for marker genotypes AA, Aa, and aa respectively) and y∗ is a
vector n � 1 of phenotypic values centered based on its average values. Only a
subset M(M < m) of the m markers is statistically linked to the QTL and then only a

subset M of the estimated vector bθ values is selected to estimate si as bsi ¼ XM
j¼1

bθ jx j.

To illustrate how to obtain bsi ¼ X
j2M

bθ jx j, we use a real maize (Zea mays) F2

population with 247 genotypes (each one with two repetitions), 195 molecular
markers, and four traits – grain yield (GY, ton ha�1); plant height (PHT, cm), ear
height (EHT, cm), and anthesis day (AD, days) – evaluated in one environment. In
an F2 population, the marker homozygous loci for the allele from the first parental
line can be coded by 1, whereas the marker homozygous loci for the allele from the
second parental line can be coded by �1, and the marker heterozygous loci by 0.
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For this example, we used trait PHT. Only seven markers were statistically linked
to the PHT. The estimated vector of regression coefficients for these seven markers

was bθ0 ¼ 5:46 �4:54 0:98 7:39 �7:75 �1:91 �3:53½ �. Table 4.1 pre-
sents the first 20 genotypes, the coded values of the seven selected markers, and
the first 20 estimated bsPHT values of the 247 genotypes in the maize (Zea mays) F2
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Fig. 4.1 Efficiency of the linear molecular selection index with respect to phenotypic selection for
the one-trait case for different values of the variance of the marker score when the phenotypic and
genetic variances are fixed
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Fig. 4.2 Selection response values of the linear molecular selection index for the one-trait case for
different values of the variance of the marker score when the phenotypic and genetic variances are
fixed
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population. According to bθ0 and the coded values of the seven markers, the first
estimated bsPHT value was obtained as bsPHT1 ¼ �1:91 1ð Þ þ �3:53 �1ð Þ ¼ 1:62 ;
the second estimated bsPHT value was obtained as bsPHT2 ¼ 5:46 �1ð Þþ
�4:54 �1ð Þ � 1:91 �1ð Þ ¼ 0:99, etc. The 20th estimated bsPHT value was obtained
as bsPHT20 ¼ �3:53 �1ð Þ ¼ 3:53. This estimation procedure is valid for any number
of genotypes and markers.

Figure 4.3 shows the distribution of the 247 estimated marker scores associated
with traits PHT and EHT of the maize F2 population. Note that the estimated marker
score values approach normal distribution.

4.3.2 Estimating the Variance of the Marker Score

There are many methods of estimating the variance of the marker score associated
with the ith trait (σ2si ); the first one was proposed by Lande and Thompson (1990).
According to these authors, σ2si can be estimated as

Table 4.1 Number of selected genotypes, coded values of seven selected markers, and estimated
marker score values obtained from a maize (Zea mays) F2 population with 247 genotypes and
195 molecular markers

Number of genotypes

Coded values of the selected markers

Marker scoreM1 M2 M3 M4 M5 M6 M7

1 0 0 0 0 0 1 �1 1.62

2 �1 �1 0 0 0 �1 0 0.99

3 0 0 0 0 0 0 1 �3.53

4 1 1 0 0 0 �1 �1 6.37

5 1 1 0 �1 �1 �1 �1 6.72

6 0 0 1 0 0 0 0 0.98

7 1 1 0 1 1 0 0 0.57

8 0 0 0 0 0 0 0 0

9 0 0 1 0 0 1 0 �0.93

10 0 0 1 1 0 0 1 4.84

11 0 0 0 0 0 0 0 0

12 �1 �1 0 0 0 0 0 �0.92

13 0 0 0 0 0 0 0 0

14 1 1 0 �1 �1 0 �1 4.81

15 0 0 1 �1 �1 0 0 1.34

16 0 0 0 0 0 0 0 0

17 �1 �1 0 0 0 0 1 �4.46

18 �1 �1 0 0 0 0 1 �4.46

19 �1 �1 1 0 0 �1 1 �1.56

20 0 0 0 0 0 0 �1 3.53
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bσ2bsi ¼ bθ0iMi
bθi �Mbσ2

ei

n
, ð4:29Þ

where bθi is the estimated vector of regression coefficients of the selected markers,

Mi ¼ 2
n
X0

iXi is the covariance matrix M � M of the selected markers that are

statistically linked to the ith trait marker loci; bσ2
ei
¼ y0 I�Hð Þy

n�M � 1
is the unbiased

estimated variance of the residuals, H ¼ I� Xi X0
iXi

	 
�1
X0

i, I is an identity matrix
n� n,M is the number of selected markers statistically linked to the QTL, andXi is a
matrix n�Mwith the coded values of the selected markers. According to Lande and
Thompson (1990), Eq. (4.29) is an unbiased estimator of σ2si and its variance can be
written as

Var
	bσ2bsi
 ¼ 4σ2siσ

2
ei

n
þ
2M σ2ei

� �2

n2
þ
2M2 σ2ei

� �2

n2 n�Mð Þ , ð4:30Þ

which tends to zero when n, the number of genotypes or individuals, is very high.

Fig. 4.3 Distribution of the marker scores associated with traits (a) plant height and (b) ear height
of a maize (Zea mays) F2 population. Note that the distribution of frequencies of the marker score
values approaches normal distribution

86 4 Linear Marker and Genome-Wide Selection Indices



From Eq. (4.29), it is possible to obtain an estimator of the covariance between
the ith and jth marker scores when the number of selected markers statistically linked
to the QTL is the same in the ith and jth traits. Thus, by Eq. (4.29), the covariance
between the ith and jth marker scores can be estimated as

bσbsij ¼ bθ0iMij
bθj �Mbσeij

n
, ð4:31Þ

where bθi and bθj are the estimated vectors of regression coefficients of the selected

markers associated with the ith and jth trait loci respectively; Mij ¼ 2
n
X0

iX j is the

covariance matrix M � M of the markers statistically linked to the ith and jth trait
marker loci; Xi and Xj are n � M matrices with the coded values of the selected

markers associated with the ith and jth trait loci respectively; bσeij ¼
y0i I�Hij

	 

y j

n�M � 1
is

the estimated covariance of the residuals between the ith (yi) and jth (yj) trait values,
Hij ¼ I� Xi X0

iX j

	 
�1
X0

j, I is an identity matrix n � n, and M is the number of
selected markers statistically linked to the QTL.

According to the PHT values described in Sect. 4.3.1 of this chapter, M ¼ 7,
n ¼ 247, bσ2

ei
¼ 180:80 and bσ2bsPHT ¼ 48:23 (Eq. 4.29). Note that bσ2bsPHT � bσ2

gPHT
, wherebσ2

gPHT
¼ 83:0 is an estimate of the genetic variance of PHT. The estimated portion of

the genetic variance attributable to bσ2bsPHT ¼ 48:23 was bqPHT ¼ 48:23
83

¼ 0:5811; that

is, the seven markers explain 58.11% of the genetic variance associated with PHT.
Charcosset and Gallais (1996) considered two possible methods of estimating

σ2si based on the coefficient of multiple determination or squared multiple
correlation R2 (note that in this case R2 is not the square of the selection response).
The coefficient R2 gives the portion of the total variation in the phenotypic values
that is “explained” by, or attributable to, the markers and can be written as

R2 ¼
bθX0y� n�y2

y0y� n�y2
¼ bσ2

sbσ2
y

, ð4:32aÞ

where bθX0y� n�y2 is the overall regression sum of squares adjusted for the intercept
and y0y� n�y2 is the total sum of squares adjusted for the mean. The coefficient R2 is
equal to 1 if the fitted equation yi ¼ θ0 þ

P
j2M

θ jx j þ ei passes through all the data

points, so that all residuals are null; then, the markers explain all the phenotypic
variance. At the other extreme, R2 is zero if �yi ¼ bθ0 and the estimated regression
coefficients are null, i.e., bθ1 ¼ bθ2 ¼ � � � ¼ bθM ¼ 0. In the latter case, markers do not
affect the phenotypic observations and the variance of the marker score values is
zero. Thus, the R2 values are between 0 and 1, i.e., 0� R2 � 1.0. Equation (4.32a) is

useful for estimating σ2si as bσ2
yi

XM
j¼1

R2
j ¼ bσ2

s , where R
2
j is the estimated value of the jth
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marker and bσ2
y is the phenotypic variance of the ith trait; however, this is a biased

estimator of σ2si (Hospital et al. 1997).
Charcosset and Gallais (1996) and Hospital et al. (1997) proposed an unbiased

estimator of σ2si based on all the selected markers using the adjusted coefficient of
multiple determination, i.e.,

R2
Adj ¼ 1� n� 1

n�M � 1
1� R2
	 
 ¼ bσ2

sbσ2
y

, ð4:32bÞ

whence we can obtain a unbiased estimator of σ2si as bσ2
yR

2
Adj ¼ bσ2bsi by jointly using all

the markers that affect the phenotypic values. The problem with Eq. (4.32b) is that
theR2

Adj values could be negative; in that case, the estimated value ofσ2si would also be
negative. One additional problem with Eq. (4.32b) is that theR2

Adj values can producebσ2
s values that are higher than those of the estimated variance of the breeding valuesbσ2
g.
Using Eqs. (4.32a) and (4.32b), we can estimate σ2si , but from them it is not clear

how we can estimate the covariance between two different estimated marker score
values.

Consider the case of the PHT values described in Sect. 4.3.1 of this chapter,
where M ¼ 7, n ¼ 247, and the estimated variance of PHT was bσ2

PHT ¼ 191:81. The
estimated values of R2 for each of the seven markers were 0.0038, 0.0005, 0.006,
0.0013, 0.0036, 0.0114, and 0.0298, whence, by multiplying each estimated R2

value by bσ2
PHT ¼ 191:81 and summing the results, we found that the estimated

value of σ2sPHT was bσ2bsPHT ¼ 9:78. In this case, the estimated portion of the genetic

variance attributable to bσ2bsPHT ¼ 9:78 was bqPHT ¼ 9:78
83

¼ 0:1178; thus, when we

estimatedσ2sPHT according to Eq. (4.32a), the seven markers explained only 11.78% of
the genetic variance associated with PHT.

The estimated value of R2
Adj for the seven markers jointly was 0.06, whence bσ2

sPHT

¼ 191:81ð Þ 0:06ð Þ ¼ 11:50 is an estimate of σ2sPHT . In the latter case, the estimated
portion of the genetic variance attributable to bσ2

sPHT
¼ 11:50 wasbqPHT ¼ 11:5

83
¼ 0:1385; that is, according to Eq. (4.32b), the seven markers explain

13.85% of the genetic variance associated with PHT.
One additional way of estimating the variance of the marker score σ2si was

proposed by Lange and Whittaker (2001) as

1
n� 1

Xn
i¼1

	bsi � bμsi


2
, ð4:33Þ
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where bsi ¼ XM
j¼1

bθ jx j and bμsi is the mean of bsi values. The covariance between the ith

and jth marker scores can be estimated as the cross products of the marker score
values divided by n � 1. Note that in this case, the number of markers associated
with the ith and jth traits may be different.

For the PHT values described in Sect. 4.3.1 of this chapter, where n ¼ 247, the
estimated value of σ2si was bσ2

sPHT
¼ 15:75 and the estimated portion of the genetic

variance attributable to bσ2
sPHT

¼ 15:75 was bqPHT ¼ 15:75
83

¼ 0:1897. That is, the

seven markers jointly explain 18.97% of the genetic variance associated with PHT
according to Eq. (4.33).

4.3.3 Estimating LMSI Selection Response and Efficiency

With the estimated phenotypic variances (bσ2
PHT ¼ 191:81), the estimated genetic

variance (bσ2
gPHT

¼ 83:0) and the estimated marker score variances: bσ2bsPHT ¼ 48:23

(Eq. 4.29), bσ2bsPHT ¼ 9:78 (Eq. 4.32a), bσ2
sPHT

¼ 11:50 (Eq. 4.32b), and bσ2
sPHT

¼ 15:75

(Eq. 4.33), we can estimate the LMSI coefficient, selection response, and efficiency.
Using the estimated value bσ2bsPHT ¼ 48:23 obtained with Eq. (4.29), it is possible to

estimate the LMSI weight as bβPHT ¼ bσ2
gPHT

� bσ2
sPHTbσ2

PHT � bσ2
sPHT

¼ 83:0� 48:23
191:81� 48:23

¼ 0:242,

whereas for bσ2bsPHT ¼ 9:78, bσ2
sPHT

¼ 11:50, and bσ2
sPHT

¼ 15:75, the estimated values

of βPHT were 0.402, 0.40, and 0.382 respectively. The latter results indicate that the
estimated values of βPHT associated with the phenotypic values tend to decrease when
the estimated values of the variance of the marker score increase. This means that at the
limit, when all the genetic variance is explained by the markers, the estimated values of
βPHT are zero and the estimated LMSI is equal to bIM ¼ bs. Thus, for trait PHT, when
the estimated values of βPHT are not zero, the estimated LMSI can be written asbIMPHT ¼ bsPHT þ bβPHT

	
PHTi �bsPHT
. The bIMPHT values are used to predict, rank, and

select the net genetic merit value of each individual candidate for selection.
Based on the result bσ2bsPHT ¼ 48:23 obtained with Eq. (4.29) and using a selection

intensity of 10% (kI¼ 1.755), the estimated LMSI selection response can be
obtained as
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bRM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2
g

	bσ2
g � bσ2

s


þ bσ2
s

	bσ2
y � bσ2

g



bσ2
y � bσ2

s

s

¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
83 83� 48:23ð Þ þ 48:23 191:81� 83ð Þ

191:81� 48:23

r
¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffi
56:65

p
¼ 13:21:

In a similar manner, using the result bσ2
sPHT

¼ 15:75, the estimated selection

response was bRM ¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
83 83� 15:75ð Þ þ 15:75 191:81� 83ð Þ

191:81� 15:75

r
¼ 1:755

ffiffiffiffiffiffiffiffiffiffiffi
41:44

p

¼ 11:30: With bσ2bsPHT ¼ 9:78 and bσ2
sPHT

¼ 11:50, the estimated values of the LMSI

selection responses were 10.99 and 11.10 respectively. The latter results indicate that
the estimated values of the LMSI selection responses tend to increase when the
estimated values of the variance of the marker score increase.

We can estimate LMSI versus phenotypic efficiency for one trait as

bλM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibqbh2 þ
	
1� bq
2
1� bqbh2

vuut , where bh2 is the estimated trait heritability and bq ¼ bσ2
sbσ2
g

is

the estimated portion of additive genetic variance explained by the markers. Whenbσ2bsPHT ¼ 48:23, bqPHT ¼ 48:23
83

¼ 0:5811, and bh2 ¼ 0:433, the estimated LMSI effi-

ciency was bλM ¼
ffiffiffiffiffiffiffiffiffi
1:58

p
¼ 1:25. For bσ2

sPHT
¼ 15:75, bσ2bsPHT ¼ 9:78, andbσ2

sPHT
¼ 11:50, the estimated portions of the additive genetic variance explained by

the markers were bqPHT ¼ 15:75
83

¼ 0:1897, bqPHT ¼ 9:78
83

¼ 0:1178, and

bqPHT ¼ 11:5
83

¼ 0:1385 respectively, whence the estimated LMSI efficiencies were

1.1, 1.04, and 1.05 respectively. The latter results indicate that the estimated values
of LMSI efficiency tend to increase when the estimated values of the variance of the
marker score increase (Fig. 4.1).

Figure 4.1 presents the change in LMSI efficiency with respect to phenotypic
selection for different values of the variance of the marker score when the pheno-
typic (191.81) and genetic (83) variances are fixed. In a similar manner, Fig. 4.2
presents the change in the LMSI selection response for different values of the
variance of the marker score when the phenotypic (191.81) and genetic (83) vari-
ances are fixed. In effect, LMSI efficiency and the selection response depend on the
genetic variance explained by the markers.
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4.3.4 Estimating the Variance of the Marker Score
in the Multi-Trait Case

Equation (4.33) can be used in the multi-trait context when the numbers of markers
associated with the ith and jth traits are different. Also, it is possible to adapt
Eqs. (4.32a) and (4.32b) to the multi-trait case. However, in the latter case, in
addition to the markers linked to the QTL that affect one specific trait, we need to
find markers that affect more than one trait, which may be very difficult. For this
reason, in the multi-trait context, Eqs. (4.32a) and (4.32b) could be used to estimate
the variance of the marker score (S) without preselecting the markers that affect the
phenotypic traits, only when the number of genotypes is higher than the number of
markers.

Let y1, y2, . . ., yr be r independent multivariate normal vectors of observations,

each with n observations, such that Y ¼
y11 y12 � � � y1t
y21 y22 � � � y2t
⋮ ⋮ � � � ⋮
yn1 yn2 � � � ynt

2664
3775 is a matrix n � t of

observations for t traits; then, the multivariate linear regression model can be written
as Y ¼ XB + U, where X is a matrix n � m (m¼ number of markers and m < n) of
known coded marker values, B is a matrix m � n of regression coefficients, and U is
a matrix n � t of unobserved random disturbance whose rows for given X are
uncorrelated, each with mean 0 and common covariance matrix E (Mardia et al.
1982; Rencher 2002). According to the least squares method of estimation, bB ¼
X0Xð Þ�1X0Y is an estimator of B and bE ¼

	
Y� bBX
0	Y� bBX


n� m� 1
is an estimator of

the residual covariance matrix E assuming that n > m (Johnson and Wichern 2007).

Note that 1� R2 ¼ be0be
y0y

, where be is a vector of estimated residual values of the

model yi ¼ θ0 þ
P
j2M

θ jx j þ ei and R2 is the coefficient of multiple determination

(Eq. 4.32a). In addition, as in the multi-trait context the estimated matrix of residuals
is bU ¼ Y� bBX, 1 � R2 can be written as D ¼ Y0Yð Þ�1bU0bU (Mardia et al. 1982),
whence R2 in the multivariate context can written as

R2 ¼ I� D ¼ bP�1bS, ð4:34aÞ
whereas R2

Adj (Eq. 4.32b) can be written as

R2
Adj ¼ I� n� 1

n� m� 1
D ¼ bP�1bS, ð4:34bÞ

where I is an identity matrix t � t, bP�1 is the inverse of the estimated covariance
matrix of phenotypic values (bP), and bS is the estimated covariance matrix of marker
score values. From Eq. (4.34b),
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bPR2
Adj ¼ bS ð4:34cÞ

is an unbiased estimator of matrix bS, whereas bPR2 ¼ bS (Eq. 4.34a) is a biased
estimator of matrix bS. The main problem of Eq. (4.34c) is that the diagonal elements
of bS could be negative.

From the maize F2 population including 247 genotypes (each one with two
repetitions) and 195 molecular markers described in Sect. 4.3.1, we used two
traits—PHT (cm) and EHT (cm)—to illustrate the multivariate method of estimating
the LMSI parameters. The estimated phenotypic and genetic covariance matrices

were bP ¼ 191:81 106:89
106:89 167:93

� �
and bC ¼ 83:00 57:44

57:44 59:80

� �
, whereas the estimated

covariance matrix of marker scores, using Eq. (4.33), was bS ¼ 15:750 0:983
0:983 28:083

� �
.

When we used Eq. (4.34a) and Eq. (4.34c), we obtained estimated values of the
variance and covariance of the marker scores that were higher than the genetic values
(data not presented). Equations (4.29) and (4.31) are used later to compare LMSI
efficiency versus GW-LMSI efficiency using the simulated data described in Chap. 2,
Sect. 2.8.1.

With matrices bP, bC, and bS, and the vector of economic weights a0 ¼ w0 00½ �,
where w0 ¼ �1 �1½ � and 00 ¼ 0 0½ �, we obtained the estimated matrices bT
¼ bP bSbS bS

� �
and Z ¼ bC bSbS bS

� �
, whence the estimated LMSI vector of coefficients

was bβ0 ¼ a0bZM
bT�1
M ¼ �0:59 �0:18 �0:41 �0:82½ �. Using a selection inten-

sity of 10% (kI ¼ 1.755), the estimated LMSI selection response and the expected

genetic gains per trait were bRM ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0 bTM
bβq
¼ 20:41 and bE0

M ¼ kI
bβ0 bZMffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ0 bTM

bβq ¼

�10:09 �10:31 �2:53 �4:39½ � respectively, whereas the estimated LMSI

accuracy was bρHÎ M
¼ bσ IMbσH

¼ 0:72.

The estimated LPSI parameters (see Chap. 2 for details) using the phenotypic
information from the maize F2 population for traits PHT and EHT are as follows.

The estimated LPSI vector of coefficients was bb0 ¼ w0bCbP�1 ¼ �0:53 �0:36½ �,
and, with a selection intensity of 10% (kI ¼ 1.755), the estimated LPSI selection

response and the expected genetic gains per trait were bRI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffibb0bPbbq
¼ 18:97 andbE0 ¼ kI

bb0bCbσ I
¼ �10:52 �8:45½ � respectively, whereas the estimated LPSI accu-

racy was bρHÎ ¼ bσ IbσH
¼ 0:67.
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We can determine LMSI efficiency versus LPSI efficiency to predict the net
genetic merit using the ratio of estimated accuracy values bρHÎ M

¼ 0:72 and bρHÎ

¼ 0:67 of the LMSI and LPSI respectively, i.e., bλM ¼ 0:72
0:67

¼ 1:075, whence,

according to Eq. (4.19), the estimated LMSI efficiency versus the LPSI efficiency,
in percentage terms, was bpM ¼ 100 1:075� 1ð Þ ¼ 7:5. That is, for these data, the
estimated LMSI efficiency was only 7.5% greater than LPSI efficiency at predicting
the net genetic merit.

4.4 Estimating the GW-LMSI Parameters
in the Asymptotic Context

Lange and Whittaker (2001) proposed the GW-LMSI. However, these authors did
not provide detailed procedures for estimating matrices P, C, W, and M. They
indicated that matrix C can be estimated using the estimated matrix of covariance of
marker scores (bS) and that matrices P, W, and M can be estimated directly by their
empirical variances and covariances, but this assertion does not indicate a clear
method for estimating those covariance matrices. In Chap. 2, we described the
REML method of estimating C and P. Crossa and Cerón-Rojas (2011) described
matrices W and M in a doubled haploid population. In this study, we describe and
estimate matricesW andM for an F2 population in the asymptotic context according
to the Wright and Mowers (1994) approach, which is based on regressing phenotype
values on marker coded values. We used this latter approach to estimate W and M,
because it is a clearer estimation method than that of Lange and Whittaker (2001);
however, the Wright and Mowers (1994) approach is an asymptotic method and
should be regarded with precaution.

Matrix M is the covariance matrix of the molecular marker code values. All
marker information used to construct matrix M is presented in Table 4.2. Based on
this information, we found that the expectations (E(X1) and E(X2)) and the variances
(V(X1) and V(X2)) of the marker coded values X1 and X2 are E(X1) ¼ E(X2) ¼ 0 and
V(X1) ¼ V(X2) ¼ 1, whereas the covariance (Cov(X1,X2)) and correlation (Corr(X1,
X2)), between X1 and X2 were

Cov X1;X2ð Þ ¼ Corr X1;X2ð Þ ¼ 1� 2δ: ð4:35Þ
Thus, as the variances of X1 and X2 are equal to 1, the correlation between X1 and

X2 is Corr X1;X2ð Þ ¼ Cov X1;X2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V X1ð ÞV X2ð Þ

p ¼ 1� 2δ, i.e., the covariance and correlation

between X1 and X2 are the same. Equation (4.35) results indicate that if we perform
the same operation with many markers, we will obtain similar results; they also
indicate that this is the way to construct matrix M.
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Let X be a matrix of coded markers of size n � m, where n � m and
m¼ number of markers; then according to Wright and Mowers (1994), because
all marker information is contained in matrix X

0
X, when the number of observations

(n) tends to infinity, the product x0ix j=n tends to the covariance between markers
ith and jth, whence matrix n�1X

0
X should tend to the covariance matrix between

the markers that conform matrix X with the ijth element equal to (0.5 � δij). Thus,
matrix 2n�1X

0
X should tend to a covariance matrix where the ijth entry is equal to

(1 � 2δij). Based on the latter result, an estimator of matrix M in the asymptotic
context is

bM ¼ 2n�1X0X: ð4:36Þ

Equation (4.36) is an asymptotic result and should be taken with caution. To date,
there has been no clear method for estimating M in the non-asymptotic context; for
this reason, Eq. (4.36) is used to estimate the GW-LMSI parameters.

Assume that a QTL is between the two markers in Table 4.2; then, δ can be
written as δ ¼ r1 + r2 � 2r1r2, where r1 and r2 denote the recombination frequency
between marker 1 and marker 2 respectively, with the QTL between them. When the
number of genotypes or individuals tends to infinity, the covariance between the
phenotypic trait values ( y) and the marker 1 coded values (X1) in an F2 population
can be written as

Cov X1; yð Þ ¼ 1
2
α1 1� 2r1ð Þ, ð4:37Þ

where α1(1 � 2r1) is the portion of the additive effect (α1) of the QTL linked to
marker 1 (Edwards et al. 1987), and r1 is the recombination frequency between the
QTL and marker 1. We can assume that for many markers, the covariance of the
phenotypic values is similar to Eq. (4.37), whence matrix W can be obtained.

Let y be a vector n � 1 of recorded phenotypic values, where n denotes the
number of observation or records, and X is a matrix of coded markers of size n � m.

Table 4.2 Marker genotypes,
expected frequency, and
coded values (X1 and X2) of
the marker genotypes in an F2
population

Marker genotype Expected frequency X1 X2

A1B1/A1B1 (1�δ)2/4 1 1

A1B1/A1B2 2(δ�δ2)/4 1 0

A1B2/A1B2 δ2/4 1 �1

A1B1/A2B1 2(δ�δ2)/4 0 1

A1B2/A2B1 2(1�2δ + 2δ2)/4 0 0

A1B2/A2B2 2(δ�δ2)/4 0 �1

A2B1/A2B1 δ2/4 �1 1

A2B1/A2B2 2(δ�δ2)/4 �1 0

A2B2/A2B2 (1�δ)2/4 �1 �1
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When n tends to infinity, 2n�1X
0
y tends to be a vector with elements equal to

αi(1 � 2ri), where αi is the additive effect of the ith QTL linked to the ith marker,
and ri is the recombination frequency between the ith QTL and the ith marker. Now

let Y ¼
y11 y12 � � � y1t
y21 y22 � � � y2t
⋮ ⋮ � � � ⋮
yn1 yn2 � � � ynt

2664
3775 be a matrix of observations for t traits; then, an

estimator of matrix W in the asymptotic context is

cW ¼ 2n�1X0Y: ð4:38Þ
Once again, Eq. (4.38) is an asymptotic result and should be accepted with

caution. But to date, there has been no clear method for estimating W in the
non-asymptotic context; for this reason, Eq. (4.38) is used to estimate the
GW-LMSI parameters.

4.5 Comparing LMSI Versus LPSI and GW-LMSI
Efficiency

To compare LMSI efficiency versus GW-LMSI efficiency for predicting the net
genetic merit, we use the simulated data set described in Chap. 2, Sect. 2.8.1.

Figure 4.4 presents the estimated accuracy values of the LPSI (bρHÎ ¼
bσbIbσH

), the

LMSI (bρHÎ M
¼

bσbIMbσH
), and the GW-LMSI (bρHÎ W

¼
bσbIWbσH

) for five simulated selection

cycles. In addition, Table 4.3 presents the estimated LPSI, LMSI, and GW-LMSI
selection responses, the estimated LPSI, LMSI, and GW-LMSI variances of the
predicted error (

	
1� bρ2HÎ


bσ2
H ,

	
1� bρ2HÎ M


bσ2
H and

	
1� bρ2HÎ W


bσ2
H respectively), the

ratios of the estimated LMSI accuracy to the estimated LPSI accuracy and the
estimated LMSI accuracy to the estimated GW-LMSI accuracy, expressed as per-
centages (Eq. 4.19), for five simulated selection cycles.

According to Fig. 4.4, for this data set the estimated LMSI accuracy (bρHÎ M
) was

higher than the estimated LPSI and GW-LMSI accuracy (bρHÎ andbρHÎ W
respectively),

for the five simulated selection cycles, that is, bρHÎ M
> bρHÎ > bρHÎ W

. In a similar

manner, Table 4.3 results indicate that the estimated LMSI selection response (bRM)
was higher than the estimated LPSI and GW-LMSI selection responses (bRI and bRW

respectively): bRM > bRI > bRW .
Note that the estimated LPSI, LMSI, and GW-LMSI variances of the predicted

error, and the estimated LMSI efficiency versus LPSI efficiency and versus
GW-LMSI efficiency (expressed in percentages) are related to the estimated
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Fig. 4.4 Estimated correlation values of the linear phenotypic selection index (LPSI), the linear
molecular selection index (LMSI), and the genome-wide LMSI (GW-LMSI) with the net genetic
merit for four traits, 2500 markers and 500 genotypes (each with four repetitions) in one environ-
ment for five simulated selection cycles

Table 4.3 Estimated linear phenotypic, molecular, and genome-wide selection indices (LPSI,
LMSI, and GW-LMSI respectively), selection responses and variance of the predicted error, and
estimated ratio of LMSI accuracy to LPSI and GW-LMSI accuracy expressed in percentages for
4 traits, 2500 markers and 500 genotypes (each with four repetitions) in one environment for five
simulated selection cycles

Selection response
Variance of the predicted
error

Efficiency of LMSI
versus

Cycle LPSI LMSI GW-LMSI LPSI LMSI GW-LMSI LPSI GW-LMSI

1 17.84 19.60 16.24 22.53 0.07 39.84 10.07 20.67

2 15.66 24.36 13.88 22.66 0.07 40.06 12.14 26.81

3 14.44 14.70 12.13 21.95 1.86 39.86 3.43 21.27

4 14.29 15.29 12.48 22.84 1.46 39.09 6.57 22.50

5 13.86 15.15 11.49 22.13 0.88 39.65 11.11 31.88

Average 15.22 17.82 13.24 22.42 0.87 39.70 8.66 24.63
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LMSI, LPSI, and GW-LMSI accuracies, and that in all five selection cycles,bρHÎ M
> bρHÎ > bρHÎ W

. This implies that the estimated LMSI variance of the predicted
error was lower than the estimated LPSI and GW-LMSI variance of the predicted
error. In a similar manner, because bρHÎ M

> bρHÎ > bρHÎ W
, the estimated LMSI

efficiency was higher than the estimated LPSI efficiency and the estimated
GW-LMSI efficiency.

Based on Fig. 4.4 and Table 4.3 results, we conclude that the LMSI was a better
predictor of the net genetic merit than the LPSI, and that the LPSI is a better predictor
of the net genetic merit than the GW-LMSI for this simulated data set.
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