
Chapter 2
The Linear Phenotypic Selection Index
Theory

Abstract The main distinction in the linear phenotypic selection index (LPSI)
theory is between the net genetic merit and the LPSI. The net genetic merit is a
linear combination of the true unobservable breeding values of the traits weighted by
their respective economic values, whereas the LPSI is a linear combination of several
observable and optimally weighted phenotypic trait values. It is assumed that the net
genetic merit and the LPSI have bivariate normal distribution; thus, the regression of
the net genetic merit on the LPSI is linear. The aims of the LPSI theory are to predict
the net genetic merit, maximize the selection response and the expected genetic gains
per trait (or multi-trait selection response), and provide the breeder with an objective
rule for evaluating and selecting parents for the next selection cycle based on several
traits. The selection response is the mean of the progeny of the selected parents,
whereas the expected genetic gain per trait, or multi-trait selection response, is the
population means of each trait under selection of the progeny of the selected parents.
The LPSI allows extra merit in one trait to offset slight defects in another; thus, with
its use, individuals with very high merit in one trait are saved for breeding even when
they are slightly inferior in other traits. This chapter describes the LPSI theory and
practice. We illustrate the theoretical results of the LPSI using real and
simulated data. We end this chapter with a brief description of the quadratic selection
index and its relationship with the LPSI.

2.1 Bases for Construction of the Linear Phenotypic
Selection Index

The study of quantitative traits (QTs) in plants and animals is based on the mean and
variance of phenotypic values of QTs. Quantitative traits are phenotypic expressions
of plant and animal characteristics that show continuous variability and are the result
of many gene effects interacting among them and with the environment. That is, QTs
are the result of unobservable gene effects distributed across plant or animal
genomes that interact among themselves and with the environment to produce the
observable characteristic plant and animal phenotypes (Mather and Jinks 1971;
Falconer and Mackay 1996).
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The QTs are the traits that concern plant and animal breeders the most. They are
particularly difficult to analyze because heritable variations of QTs are masked by
larger nonheritable variations that make it difficult to determine the genotypic values
of individual plants or animals (Smith 1936). However, as QTs usually have normal
distribution (Fig. 2.1), it is possible to apply normal distribution theory when
analyzing this type of data.

Any phenotypic value of QTs ( y) can be divided into two main parts: one related
to the genes and the interactions (g) among them (called genotype), and the other
related to the environmental conditions (e) that affect genetic expression (called
environment effects). Thus, the genotype is the particular assemblage of genes
possessed by the plant or animal, whereas the environment consists of all the
nongenetic circumstances that influence the phenotypic value of the plant or animal
(Cochran 1951; Bulmer 1980; Falconer and Mackay 1996). In the context of only
one environment, the phenotypic value of QTs (y) can be written as

y ¼ gþ e, ð2:1Þ
where g denotes the genotypic values that include all types of gene and interaction
values, and e denotes the deviations from the mean of g values. For two or more
environments, Eq. (2.1) can be written as y ¼ g + e + ge, where ge denotes the
interaction between genotype and environment. Assumptions regarding Eq. (2.1)
are:
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Fig. 2.1 Distribution of 252 phenotypic means of two maize (Zea mays) F2 population traits: plant
height (PHT, cm; a) and ear height (EHT, cm; b), evaluated in one environment, and of 599 -
phenotypic means of the grain yield (GY1 and GY2, ton ha�1; c and d respectively) of one double
haploid wheat (Triticum aestivum L.) population evaluated in two environments
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1. The expectation of e is zero, E(e) ¼ 0.
2. Across several environments, the expectation of y is equal to the expectation of g,

i.e., E(g) ¼ μg ¼ E(y) ¼ μy.
3. The covariance between g and e is equal to 0.

The g value can be partitioned into three additional components: additive genetic
(a) effects (or intra-locus additive allelic interaction), dominant genetic (d ) effects
(or intra-locus dominance allelic interaction), and epistasis (ι) effects (or inter-loci
allelic interaction) such that g¼ a + d + ι. In this book, we have assumed that g ¼ a.

According to Kempthorne and Nordskog (1959), the following four theoretical
conditions are necessary to construct a valid LPSI:

1. The phenotypic value (Eq. 2.1) shall be additively made up of two parts: a
genotypic value (g) (defined as the average of the phenotypic values possible
across a population of environments), and an environmental contribution (e).

2. The genotypic value g is composed entirely of the additive effects of genes and is
thus the individual breeding value.

3. The genotypic economic value of an individual is its net genetic merit.
4. The phenotypic values and the net genetic merit are such that the regression of the

net genetic merit on any linear function of the phenotypic values is linear.

Under assumptions 1 to 4, the offspring of a mating will have a genotypic value
equal to the average of the breeding values of the parents (Kempthorne and
Nordskog 1959). Additional conditions for practical objectives are:

5. Selection is practiced at only one stage of the life cycle.
6. The generations do not overlap.
7. All individuals below a certain level of desirability are culled without exception.
8. Selected individuals have equal opportunity to have offspring (Hazel and Lush

1942).
9. The LPSI values in the ith selection cycle and the LPSI values in the (i + 1)th

selection cycle do not correlate.
10. The correlation between the LPSI and the net genetic merit should be at its

maximum in each selection cycle.

Conditions 5 to 10 indicate that the LPSI is applying in a single stage context.

2.2 The Net Genetic Merit and the LPSI

Not all the individual traits under selection are equally important from an economic
perspective; thus, the economic value of a trait determines how important that trait is
for selection. Economic value is defined as the increase in profit achieved by
improving a particular trait by one unit (Tomar 1983; Cartuche et al. 2014). This
means that for several traits, the total economic value is a linear combination of the
breeding values of the traits weighted by their respective economic values (Smith
1936; Hazel and Lush 1942; Hazel 1943; Kempthorne and Nordskog 1959); this is
called the net genetic merit of one individual and can be written as
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H ¼ w0g, ð2:2Þ
where g0 ¼ [g1 g2 . . . gt] is a vector of true unobservable breeding values and
w0 ¼ w1 w2 . . . wt½ � is a vector of known and fixed economic weights.
Equation (2.2) has several names, e.g., linear aggregate genotype (Hazel 1943),
genotypic economic value (Kempthorne and Nordskog 1959), net genetic merit
(Akbar et al. 1984; Cotterill and Jackson 1985), breeding objective (Mac Neil et al.
1997), and total economic merit (Cunningham and Tauebert 2009), among others.
In this book, we call Eq. (2.2) net genetic merit only. The values of H ¼ w0g are
unobservable but they can be simulated for specific studies, as is seen in the
examples included in this chapter and in Chap. 10, where four indices have been
simulated for many selection cycles.

In practice, the net genetic merit of an individual is not observable; thus, to select
an individual as parent of the next generation, it is necessary to consider its overall
merit based on several observable traits; that is, we need to construct an LPSI of
observable phenotypic values such that the correlation between the LPSI and
H ¼ w0g is at a maximum. The LPSI should be a good predictor of H ¼ w0g and
should be useful for ranking and selecting among individuals with different net
genetic merits. The LPSI for one individual can be written as

I ¼ b0y, ð2:3Þ
where b0 ¼ b1 b2 � � � bt½ � is the I vector of coefficients, t is the number of traits
on I, and y0 ¼ y1 y2 � � � yt½ � is a vector of observable trait phenotypic values
usually centered with respect to its mean. The LPSI allows extra merit in one trait to
offset slight defects in another. With its use, individuals with very high merit in some
traits are saved for breeding, even when they are slightly inferior in other traits
(Hazel and Lush 1942). Only one combination of b values allows the correlation of
the LPSI with H ¼ w0g for a particular set of traits to be maximized.

Figure 2.2 indicates that the regression of the net genetic merit on the LPSI is
lineal and that the correlation between the LPSI and the net genetic merit is maximal
in each selection cycle. Also, note that the true correlations between the LPSI and the
net genetic merit, and the true regression coefficients of the net genetic merit over the
LPSI are the same, but the estimated correlation values between the LPSI and the net
genetic merit are lower than the true correlation (Fig. 2.2). Table 2.1 indicates that
the LPSI in the ith selection cycle and the LPSI in the (i + 1)th selection cycle do not
correlate. However, in practice, the correlation values between any pair of LPSIs
could be different from zero in successive selection cycles.

One fundamental assumption of the LPSI is that I ¼ b0y has normal distribution.
This assumption is illustrated in Fig. 2.3 for two real datasets: a maize (Zea mays) F2
population with 252 lines and three traits—grain yield (ton ha�1); plant height
(cm) and ear height (cm)—evaluated in one environment; and a double haploid
wheat (Triticum aestivum L.) population with 599 lines and one trait—grain yield
(ton ha�1)—evaluated in three environments. Figure 2.3 indicates that, in effect, the
LPSI values approach normal distribution when the number of lines is very large.
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2.3 Fundamental Parameters of the LPSI

There are two fundamental parameters associated with the LPSI theory: the selection
response (R) and the expected genetic gain per trait (E). In general terms, the
selection response is the difference between the mean phenotypic values of the
offspring (μO) of the selected parents and the mean of the entire parental generation
(μP) before selection, i.e., R¼ μO� μP (Hazel and Lush 1942; Falconer and Mackay
1996). The expected genetic gain per trait (or multi-trait selection response) is the
covariance between the breeding value vector and the LPSI (I ) values weighted by
the standard deviation of the variance of I(σI), i.e.,

Cov I;gð Þ
σI

¼ Gb
σI
, multiplied by the
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Fig. 2.2 True correlation (TC) and estimated correlation (ECO) values between the linear pheno-
typic selection index (LPSI) and the net genetic merit for seven selection cycles, and true regression
coefficient (TRC) of the net genetic merit over the LPSI for four traits and 500 genotypes in one
environment simulated for seven selection cycles

Table 2.1 Estimated
correlation values between the
linear phenotypic selection
index (LPSI) values in seven
simulated selection cycles

1 2 3 4 5 6 7

1.000 0.199 0.256 0.220 0.168 0.225 0.123

0.199 1.000 0.225 0.252 0.284 0.292 0.362

0.256 0.225 1.000 0.198 0.276 0.267 0.213

0.220 0.252 0.198 1.000 0.258 0.224 0.240

0.168 0.284 0.276 0.258 1.000 0.269 0.195

0.225 0.292 0.267 0.224 0.269 1.000 0.325

0.123 0.362 0.213 0.240 0.195 0.325 1.000
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selection intensity. This is one form of the LPSI multi-trait selection response. In the
univariate context, the expected genetic gain per trait is the same as the selection
response.

One additional way of defining the selection response is based on the selection
differential (D). The selection differential is the mean phenotypic value of the
individuals selected as parents (μS) expressed as a deviation from the population
mean (μP) or parental generation before the selection was made (Falconer and
Mackay 1996); that is, D ¼ μS � μP. Thus, another way of defining R is as the
part of the expected differential of selection (D ¼ μS � μP) that is gained when
selection is applied (Kempthorne and Nordskog 1959); that is

R ¼ Cov g; yð Þ
σ2y

D ¼ kσyh
2, ð2:4Þ

whereCov g; yð Þ ¼ σ2g is the covariance between g and y, g is the individual breeding
value associated with trait y, σ2y is the variance of y, k ¼ D

σy
is the standardized
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Fig. 2.3 Maize LPSI (Fig. 2.3a) is the distribution of 252 values of the LPSI constructed with the
phenotypic means of three maize (Zea mays) F2 population traits: grain yield (ton ha�1), PHT (cm)
and EHT (cm), evaluated in one environment. Wheat LPSI (Fig. 2.3b) is the distribution of
599 LPSI values constructed with the phenotypic means of the grain yield (ton ha�1) of a double
haploid wheat (Triticum aestivum L.) population evaluated in three environments
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selection differential or selection intensity, and h2 ¼ σ2g
σ2y

is the heritability of trait y in

the base population. Heritability (h2) appears in Eq. (2.4) as a measure of the
accuracy with which animals or plants having the highest genetic values can be
chosen by selecting directly for phenotype (Hazel and Lush 1942).

The selection response (Eq. 2.4) is the mean of the progeny of the selected parents
or the future population mean of the trait under selection (Cochran 1951). Thus, the
selection response enables breeders to estimate the expected progress of the selection
before carrying it out. This information gives improvement programs a clearer
orientation and helps to predict the success of the selection method adopted and
choose the option that is technically most effective on a scientific base (Costa et al.
2008). Equation (2.4) is very powerful but its application requires strong assump-
tions. For example, Eq. (2.4) assumes that the trait of interest does not correlate with
other traits having causal effects on fitness and, in its multivariate form the validity of
predicted change rests on the assumption that all such correlated traits have been
measured and incorporated into the analysis (Morrissey et al. 2010).

2.3.1 The LPSI Selection Response

The univariate selection response (Eq. 2.4) can also be rewritten as

R ¼ kσyh
2 ¼ kσgρgy, ð2:5Þ

where σgwas defined in Eq. (2.4) and ρgy is the correlation between g and y. Thus, as
H ¼ w0g and I ¼ b0y are univariate random variables, the selection response of the
LPSI (RI) can be written in a similar form as Eq. (2.5), i.e.,

RI ¼ kIσHρHI , ð2:6Þ
where σH and σI are the standard deviation and ρHI the correlation between H ¼ w0g
and I ¼ b0y respectively; kI ¼ μIA�μIB

σI
is the standardized selection differential or the

selection intensity associated with the LPSI; μIA and μIB are the means of the LPSI
values after and before selection respectively. The second part of Eq. (2.6) (kIσHρHI)
indicates that the genetic change due to selection is proportional to kI, σH, and ρHI
(Kempthorne and Nordskog 1959). Thus, the genetic gain that can be achieved by
selecting for several traits simultaneously within a population of animals or plants is
the product of the selection differential (kI), the standard deviation of H ¼ w0g (σH),
and the correlation between H ¼ w0g and I ¼ b0p (ρHI). Selection intensity kI is
limited by the rate of reproduction of each species, whereas σH is relatively beyond
man’s control; hence, the greatest opportunity for increasing selection progress is by
ensuring that ρHI is as large as possible (Hazel 1943). In general, it is assumed that kI
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and σH are fixed and w known and fixed; hence, RI is maximized when ρHI is
maximized only with respect to the LPSI vector of coefficients b.

Equation (2.6) is the mean of H ¼ w0g, whereas σ2Hρ
2
HI 1� vð Þ is its variance and

ρ∗HI ¼ ρHI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

1� vρ2HI

s
the correlation between H ¼ w0g and I ¼ b0p after selection

was carried out (Cochran 1951), where v ¼ kI(kI � τ) and τ is the truncation point.
For example, if the selection intensity is 5%, kI ¼ 2.063, τ ¼ 1.645, and v ¼ 0.862
(Falconer and Mackay 1996, Table A). In R (in this case R denotes a platform for
data analysis, see Kabakoff 2011 for details), the truncation point and selection
intensity can be obtained as v <� qnorm(1 � q) and k <� dnorm(v)/q, respectively,
where q is the proportion retained. Both the variance and the correlation (ρ∗HI ) are
reduced by selection. If H ¼ w0g could be selected directly, the gain in H ¼ w0g
would be kI. Thus, the gain due to indirect selection using I¼ b0p is a fraction ρHI of
that due to direct selection using H ¼ w0g. As kI increases, RI increases (Eq. 2.6),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2Hρ
2
HI 1� vð Þ

q
and ρ∗HI decrease, and the effects are in the same direction as ρ∗HI

increases (Cochran 1951). These results should be valid for all selection indices
described in this book.

Smith (1936) gave an additional method to obtain Eq. (2.6). Suppose that we have a
large number of plant lines and we select one proportion q for further propagation. In
addition, assume that the values of I for each line are normally distributed with variance
σ2I ¼ b0Pb; let I be transformed into a variable u, with unit variance and mean at zero,
that is, u ¼ I�μI

σI
, where μI is the mean of I. Assume that all I values higher than I0 value

are selected; then the value of u0 ¼ I 0�μI
σI

corresponding to any given value of qmay be

ascertained from a table of the standard normal probability integral (Fig. 2.4).
Assuming that the expectations of H and I are E(H ) ¼ 0 and E(I ) ¼ μI, the

conditional expectation of H given I can be written as
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Fig. 2.4 Graph of standardized LPSI values showing how a population can be separated sharply at
a given point (u0) into a selected fraction (q), denoted by the red area, and a remainder that is culled,
denoted by the white area
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E H=Ið Þ ¼ σHI
σ2I

I � μI½ � ¼ σHI
σ2I

σIu ¼ BσIu, whereB ¼ σHI
σ2I

, σHI ¼w0Gb is the covari-

ance between H and I, and σ2I ¼ b0Pb is the variance of I. Therefore, if σ2I and σHI are
fixed, the LPSI selection response (RI) can be obtained as the expectation of the
selected population, which has univariate left truncated normal distribution. A
truncated distribution is a conditional distribution resulting when the domain of
the parent distribution is restricted to a smaller region (Hattaway 2010). In the LPSI
context, a truncation distribution occurs when a sample of individuals from the
parent distribution is selected as parents for the next selection cycle, thus creating a
new population of individuals that follow a truncated normal distribution. Thus, we
need to find E[E(H/I )] ¼ q�1BσIE(u), or, using integral calculus,

E E H=Ið Þ½ � ¼ BσI
q

Z 1

u¼u0

uffiffiffiffiffi
2π

p exp �1
2
u2

� �
du ¼ z

q
σHρHI , ð2:7Þ

where z ¼ exp �0:5u02f gffiffiffiffi
2π

p is the height of the ordinate of the normal curve at the lowest

value of u0 retained and q is the proportion of the population of animal or plant lines
that is selected (Fig. 2.4). The proportion q that must be saved depends on the
reproductive rate and longevity of the species under consideration and on whether
the population is expanding, stationary or declining in numbers. The ordinate (z) of
the normal curve is determined by the proportion selected (q) (Fig. 2.4). The
amount of progress is expected to be larger as q becomes smaller; that is, as
selection becomes more intense (Hazel and Lush 1942). Kempthorne and
Nordskog (1959) showed that z

q ¼ kI . Thus, Eqs. (2.6) and (2.7) are the same,

that is, E[E(H/I )] ¼ RI.

2.3.2 The Maximized Selection Response

The main objective of the LPSI is to maximize the mean of H ¼ w0g (Eq. 2.7).
Assuming that P, G, w, and kI are known, to maximize RI we can either maximize
ρHI or minimize the mean squared difference between I and H, E[(H � I )2] ¼
w0Gw + b0Pb � 2w0Gb with respect to b, that is,
∂
∂bE H � Ið Þ2

h i
¼ 2Pb� 2Gw ¼ 0, from where

b ¼ P�1Gw ð2:8Þ
is the vector that simultaneously minimizes E[(H� I )2] and maximizes ρHI, and then
RI ¼ kIσHρHI.

By Eq. (2.8), the maximized LPSI selection response can be written as
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RI ¼ kI
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
: ð2:9Þ

The maximized LPSI selection response predicts the mean improvement in H due
to indirect selection on I only when b¼ P�1Gw (Harris 1964) and is proportional to
the standard deviation of the LPSI variance (σI) and the standardized selection
differential or the selection intensity (kI).

The maximized LPSI selection response (Eq. 2.9) it related to the Cauchy–
Schwarz inequality (Rao 2002; Cerón-Rojas et al. 2006), which establishes that
for any pair of vectors u and v, if A is a positive definite matrix, then the inequality
(u0v)2 � (v0Av)(u0A�1u) holds. Kempthorne and Nordskog (1959) proved that

maximizing ρ2HI ¼
w0Gbð Þ2

w0Gwð Þ b0Pbð Þ also maximizes RI. According to Eqs. (2.6) and

(2.7),R2
I can be written asR

2
I ¼ k2I

w0Gbð Þ2
b0Pbð Þ , such that maximizingR2

I is equivalent to

maximizing w0Gbð Þ2
b0Pbð Þ . Let Gw ¼ u, b ¼ v, and A ¼ P, by the Cauchy–Schwarz

inequality w0Gbð Þ2
b0Pbð Þ � w0GP�1Gw. This implies that the maximum is reached when

w0Gbð Þ2
b0Pbð Þ ¼ w0GP�1Gw, at which point RI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

p
. This latter result is the

same as Eq. (2.9) when b ¼ P�1Gw.
Result RI ¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

p
obtained using the Cauchy–Schwarz inequality

corroborates that b ¼ P�1Gw (Eq. 2.8) is a global minimum when the mean squared
difference between I and H (E[(H� I )2]) is minimized, and a global maximum when
the correlation ρHI between I and H is maximized because
RI ¼ kI

ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
¼ kI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

p
only when b ¼ P�1Gw.

2.3.3 The LPSI Expected Genetic Gain Per Trait

Whereas R ¼ Cov g; yð Þ
σ2y

D (Eq. 2.4) denotes the selection response in the

univariate case, E ¼ Cov I;gð Þ
σI

denotes the LPSI expected genetic gain per trait. Also,

except by D
σy
, Cov g;yð Þ

σy
and Cov I;gð Þ

σI
are mathematically equivalent and whereas Cov g;yð Þ

σy

is the covariance between g and y weighted by the standard deviation of the variance
of y, Cov I;gð Þ

σI
is the covariance between the breeding value vector and the LPSI

values weighted by the standard deviation of the variance of LPSI. This means that
in effect, E is the LPSI multi-trait selection response and can be written as

E ¼ kI
Gb
σI

, ð2:10Þ
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where G, σI and kI were defined earlier. As Eq. (2.10) is the covariance between

I ¼ b0p and g0 ¼ g1 g2 . . . gt½ � divided by σI, considering gj and I ¼
Xt

j¼1

b jy j,

the genetic gain in the jth index trait due to selection on I will be

kI
σI

Cov I; g j

� � ¼ kI
σI

b1σ1 j þ b2σ2 j þ � � � þ b jσ
2
j þ � � � þ btσtj

h i
¼ kI

b0σ j

σI
, ð2:11Þ

where σ0
j ¼ σ1 j � � � σ2j � � � σtj

h i
is a vector of genotypic covariances of the jth index

trait with all the index traits (Lin 1978; Brascamp 1984).
If Eq. (2.11) is multiplied by its economic weight, we obtain a measure of the

economic value of each trait included in the net genetic merit (Cunningham and
Tauebert 2009). In percentage terms, the economic value attributable to genetic
change in the jth trait can be written as

wj
b0σ j

σ2I
100: ð2:12Þ

In addition, the percentage reduction in the net genetic merit of overall genetic
gain if the jth trait is omitted from the LPSI (Cunningham and Tauebert 2009) is

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2j

σ2Iφ
�2
j

s" #
100, ð2:13Þ

where φ�2
j is the jth diagonal element of the inverse of the phenotypic covariance

matrix P�1 and b2j the square of the jth coefficient of the LPSI. Equations (2.12) and
(2.13) are measures of the importance of each trait included in the LPSI when makes
selection.

2.3.4 Heritability of the LPSI

As the variance of I¼ b0y is equal to σ2I ¼ b0Pb ¼ b0Gbþ b0Rb, where P¼G + R,
G and R are the phenotypic, genetic, and residual covariance matrices respectively,
then the LPSI heritability (Lin and Allaire 1977; Nordskog 1978) can be written as

h2I ¼
b0Gb
b0Pb

: ð2:14Þ

When selecting a trait, the correlation between the phenotypic and genotypic
values is equal to the square root of the trait’s heritability (ρgy ¼ h); however, in the
LPSI context, when b ¼ P�1Gw, the maximized correlation between H and I is

ρHI ¼
ffiffiffiffiffiffiffiffiffi
b0Pb
w0Gw

q
¼ σI

σH
, whereas hI ¼

ffiffiffiffiffiffiffiffi
b0Gb
b0Pb

q
is the square root of I heritability; that is,
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from a mathematical point of view, ρHI 6¼ hI. In practice, h2I and ρ2HI give similar
results (Fig. 2.5).

2.4 Statistical LPSI Properties

Assuming that H and I have joint bivariate normal distribution, b ¼ P�1Gw, and P,
G and w are known, the statistical LPSI properties (Henderson 1963) are the
following:

1. The variance of I (σ2I ) and the covariance between H and I (σHI) are equal, i.e.,
σ2I ¼ σHI . We can demonstrate this property noting that as b ¼ P�1Gw,
σ2I ¼ b0Pb, and σHI ¼ w0Gb, then σ2I ¼ w0GP�1

� �
PP�1Gw ¼ w0GP�1Gw, and

σHI ¼ w0GP�1Gw; i.e., σ2I ¼ σHI . This last result implies that when μI ¼ 0, E
(H/I ) ¼ I.

2. The maximized correlation between H and I is equal to ρHI ¼ σI
σH
. That is,

ρHI ¼ w0Gbffiffiffiffiffiffiffiffiffi
w0Gw

p ffiffiffiffiffiffiffi
b0Pb

p ¼ w0GP�1Gwffiffiffiffiffiffiffiffiffi
w0Gw

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gw

w0Gw

q
¼ σI

σH
, thus, ρHI ¼ σI

σH
.
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Fig. 2.5 Estimated values of the square correlation between the LPSI and the net genetic merit
(H ¼ w0g) and the LPSI heritability for four traits and 500 genotypes in one environment simulated
for seven selection cycles
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3. The variance of the predicted error,Var H � Ið Þ ¼ 1� ρ2HI
� �

σ2H , is minimal. Note

that Var H � Ið Þ ¼ E H � Ið Þ2
h i

¼ σ2I þ σ2H � 2σHI , and when b ¼ P�1Gw,

σ2I ¼ σHI , from whereVar H � Ið Þ ¼ σ2H � σ2I ¼ 1� ρ2HI
� �

σ2H is minimal because

by Eq. (2.8), b¼ P�1GwminimizesVar H � Ið Þ ¼ 1� ρ2HI
� �

σ2H . Thus, the larger
ρHI, the smaller E[(H � I )2] and the more similar I and H are. If ρHI > 0, I and
H tend to be positively related; if ρHI < 0, they tend to be negatively related; and if
ρHI ¼ 0, I and H are independent (Anderson 2003).

4. The total variance of H explained by I is σ2I ¼ ρ2HIσ
2
H . It is evident that if ρHI ¼ 1,

σ2I ¼ σ2H , and if ρHI ¼ 0, σ2I ¼ 0. That is, the variance of H explained by I is
proportional to ρHI, and when ρHI is close to 1, σ

2
I is close to σ

2
H , and if ρHI is close

to 0, σ2I is close to 0.

2.5 Particular Cases of the LPSI

2.5.1 The Base LPSI

To derive the LPSI theory, we assumed that the phenotypic (P) and the genotypic
(G) covariance matrix, and the vector of economic values (w) are known. However,
P, G, and w are generally unknown and it is necessary to estimate them. There are
many methods for estimating P andG (Lynch and Walsh 1998) and w (Cotterill and
Jackson 1985; Magnussen 1990). However, when the estimator of P( bP ) is not
positive definite (all eigenvalues positive) or the estimator of G( bG) is not positive
semidefinite (no negative eigenvalues), the estimator of b ¼ P�1Gw (bb ¼ bP�1 bGw)
could be biased. In this case, the base linear phenotypic selection index (BLPSI):

IB ¼ w0y ð2:15Þ

may be a better predictor of H ¼ w0g than the estimated LPSI bI ¼ bb0y (Williams
1962a; Lin 1978) if the vector of economic values w is indeed known. Many authors
(Williams 1962b; Harris 1964; Hayes and Hill 1980, 1981) have investigated the
influence of parameter estimation errors on LPSI accuracy and concluded that those

errors affect the accuracy of bI ¼ bb0y when the accuracy of bP and bG is low. If vector
w values are known, the BLPSI has certain advantages because of its simplicity and
its freedom from parameter estimation errors (Lin 1978). Williams (1962a) pointed

out that the BLPSI is superior tobI ¼ bb0yunless a large amount of data is available for
estimating P and G.

There are some problems associated with the BLPSI. For example, what is the
BLPSI selection response and the BLPSI expected genetic gains per trait when no
data are available for estimating P andG? The BLPSI is a better selection index than
the standard LPSI only if the correlation between the BLPSI and the net genetic merit
is higher than that between the LPSI and the net genetic merit (Hazel 1943).
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However, if estimations of P and G are not available, how can the correlation
between the base index and the net genetic merit be obtained? Williams (1962b)
pointed out that the correlation between the BLPSI and H ¼ w0g can be written as

ρHIB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
w0Gw
w0Pw

r
ð2:16Þ

and indicated that the ratio ρHIB=ρHI can be used to compare LPSI efficiency versus
BLPSI efficiency; however, in the latter case, at least the estimates of P andG, i.e., bP
and bG, need to be known.

In addition, Eq. (2.15) is only an assumption, not a result, and implies that P and
G are the same. That is, b¼ P�1Gw¼ w only when P¼G, which indicates that the
BLPSI is a special case of the LPSI. Thus, to obtain the selection response and the
expected genetic gains per trait of the BLPSI, we need some information about P and
G. Assuming that the BLPSI is indeed a particular case of the LPSI, the BLPSI
selection response and the BLPSI expected genetic gains per trait could be written as

RB ¼ kI
ffiffiffiffiffiffiffiffiffiffiffi
w0Pw

p
, ð2:17Þ

and

EB ¼ kI
Gwffiffiffiffiffiffiffiffiffiffiffi
w0Pw

p , ð2:18Þ

respectively. The parameters of Eqs. (2.17) and (2.18) were defined earlier.
There are additional implications if b¼ P�1Gw¼w. For example, if P¼G, then

ρHIB ¼
ffiffiffiffiffiffiffiffiffi
w0Gw
w0Pw

q
and BLPSI heritability h2IB ¼

w0Gw
w0Pw

are equal to 1. However, in

practice, the estimated values of the ρHIB(bρHIB) are usually lower than the estimated
values of the ρHI(bρHI ) (Fig. 2.6).

2.5.2 The LPSI for Independent Traits

Suppose that the traits under selection are independent, then P and G are diagonal
matrices and b ¼ P�1Gw is a vector of single-trait heritabilities multiplied by the
economic weights, because P�1G is the matrix of multi-trait heritabilities (Xu and
Muir 1992). Based on this result, Hazel and Lush (1942) and Smith et al. (1981) used
trait heritabilities multiplied by the economic weights (or heritabilities only) as
coefficients of the LPSI. Thus, when the traits are independent and the economic
weights are known, the LPSI can be constructed as
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I ¼
Xt

i¼1

wih
2
i yi, ð2:19Þ

and when the economic weights are unknown, the LPSI can be constructed as

I ¼
Xt

i¼1

h2i yi: ð2:20Þ

The selection response of Eq. (2.19) and (2.20) can be seen in Hazel and Lush
(1942).

2.6 Criteria for Comparing LPSI Efficiency

Assuming that the intensity of selection is the same in both indices, we can compare
BLPSI (IB¼w0y) efficiency versus LPSI efficiency to predict the net genetic merit in
percentage terms as
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Fig. 2.6 Values of the true correlation between the LPSI and the net genetic merit (H¼w0g) (True-
C), the estimated correlation between the LPSI and H (LPSI-C), and the estimated correlation
between the base index and H (Base-C) for four traits and 500 genotypes in one environment
simulated for seven selection cycles
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p ¼ 100 λ� 1ð Þ, ð2:21Þ
where λ ¼ ρHI

ρHIB
(Williams 1962b; Bulmer 1980). Therefore, when p ¼ 0, the

efficiency of both indices is the same; when p > 0, the efficiency of the LPSI is
higher than the base index efficiency, and when p < 0, the base index efficiency is
higher than LPSI efficiency (Fig. 2.6). Equation (2.21) is useful for comparing the
efficiency of any linear selection index, as we shall see in this book.

2.7 Estimating Matrices G and P

To derive the LPSI theory we assumed that matrices P andG are known. In practice,
we have to estimate them. Matrices P andG can be estimated by analysis of variance
(ANOVA), maximum likelihood or restricted maximum likelihood (REML) (Baker
1986; Lynch and Walsh 1998; Searle et al. 2006; Hallauer et al. 2010). Equation
(2.1) is the simplest model because we only need to estimate two variance compo-
nents: the genotypic variance (σ2g ) and the residual variance (σ2e ), from where the
phenotypic variance for trait y is the sum of σ2g and σ2e , that is, σ2y ¼ σ2g þ σ2e .
However, to construct matrices P and G, we also need the covariance between any
two traits. Thus, if yi and yj (i, j ¼ 1, 2, � � �, t) are any two traits, then the covariance
between yi and yj (σyij) can be written as σyij ¼ σgij þ σeij , where σgij and σeij denote the
genotypic and residual covariance respectively of traits yi and yj.

Several authors (Baker 1986; Lynch and Walsh 1998; Hallauer et al. 2010) have
described ANOVA methods for estimating matrix G using specific design data, for
example, half-sib, full-sib, etc., when the sample sizes are well balanced. In the
ANOVA method, observed mean squares are equal to their expected values; the
expected values are linear functions of the unknown variance components; thus the
resulting equations are a set of simultaneous linear equations in the variance
components. The expected values of mean squares in the ANOVA method do not
need assumptions of normality because the variance component estimators do not
depend on normality assumptions (Lynch and Walsh 1998; Hallauer et al. 2010).

In cases where the sample sizes are not well balanced, Lynch and Walsh (1998)
and Fry (2004) proposed using the REML method to estimate matrix G. The REML
estimation method does not require a specific design or balanced data and can be
used to estimate genetic and residual variance and covariance in any arbitrary
pedigree of individuals. The REML method is based on projecting the data in a
subspace free of fixed effects and maximizing the likelihood function in this
subspace, and has the advantage of producing the same results as the ANOVA in
balanced designs (Blasco 2001).

In the context of the linear mixed model, Lynch and Walsh (1998) have given
formulas for estimating variances σ2g and σ2e that can be adapted to estimate
covariances σgij and σeij . Suppose that we want to estimate σ2g and σ2e for the qth
trait (q ¼ 1, 2� � �, t ¼ number of traits) in the absence of dominance and epistatic
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effects using the model yq ¼ 1μq + Zgq + eq, where the vector of averages yq~NMV
(1μq,Vq) is g � 1 (g ¼ number of genotypes in the population) and has multivariate
normal distribution; 1 is a g� 1 vector of ones, μq is the mean of the qth trait, Z is an
identity matrix g � g, gq~NMV(0, Aσ2gq ) is a vector of true breeding values, and
eq~NMV(0, Iσ2eq ) is a g � 1 vector of residuals, where NMV stands for normal

multivariate distribution. Matrix A denotes the numerical relationship matrix
between individuals (Lynch and Walsh 1998; Mrode 2005) and Vq ¼ Aσ2gq þ Iσ2eq .

The expectation–maximization algorithm allows the REML to be computed for
the variance components σ2gq and σ2eq by iterating the following equations:

σ2 nþ1ð Þ
gq

¼ σ2 nð Þ
gq

þ
σ2 nð Þ
gq

� �2

g
y0q T nð ÞAT nð Þ
� �

yq � tr T nð ÞA
� �h i

ð2:22Þ

and

σ2 nþ1ð Þ
eq

¼ σ2 nð Þ
eq

þ
σ2 nð Þ
eq

� �2

g
y0q T nð ÞT nð Þ
� �

yq � tr T nð Þ
� �h i

, ð2:23Þ

where, after n iterations, σ2 nþ1ð Þ
gq

and σ2 nþ1ð Þ
eq

are the estimated variance components of

σ2gq and σ2eq respectively; tr(.) denotes the trace of the matrices within brackets; T

¼ V�1
q � V�1

q 1 10V�1
q 1

� �
10V�1

q and V�1
q is the inverse of matrix Vq ¼ Aσ2gq þ Iσ2eq .

In T(n), V�1 nð Þ
q is the inverse of matrix V nð Þ

q ¼ Aσ2 nð Þ
γq þ Iσ2 nð Þ

eq
.

The additive genetic and residual covariances between the observations of the qth
and ith traits, yq and yi (σgq, i and σeq, i , q, i ¼ 1, 2, . . ., t), can be estimated using
REML by adapting Eqs. (2.22) and (2.23). Note that the variance of the sum of yq
and yi can be written as Var(yi + yq)¼ Vi + Vq + 2Ciq, whereVi ¼ Aσ2gi þ Iσ2ei is the
variance of yi and Vq ¼ Aσ2gq þ Iσ2eq is the variance of yq; in addition,

2Ciq ¼ 2Aσgiq + 2Iσeiq ¼ 2Cov(yi, yq) is the covariance of yq and yi, and σgiq and
σeiq are the additive and residual covariances respectively associated with the
covariance of yq and yi. Thus, one way of estimating σgiq and σeiq is by using the
following equation:

0:5Var yi þ yq
� �� 0:5Var yið Þ � 0:5Var yq

� �
, ð2:24Þ

for which Eqs. (2.22) and (2.23) can be used. Equations (2.22) to (2.24) are used to
estimate P and G in the illustrative examples of this book.
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2.8 Numerical Examples

2.8.1 Simulated Data

This data set was simulated by Ceron-Rojas et al. (2015) and can be obtained at
http://hdl.handle.net/11529/10199. The data were simulated for eight phenotypic
selection cycles (C0 to C7), each with four traits (T1, T2, T3 and T4), 500 genotypes,
and four replicates for each genotype (Fig. 2.7). The LPSI economic weights for T1,
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Fig. 2.7 Schematic illustration of the steps followed to generate data sets 1 and 2 for the seven
selection cycles using the linear phenotypic selection index and the linear genomic selection index.
Dotted lines indicate the process used to simulate the phenotypic data (according to Ceron-Rojas
et al. 2015)
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T2, T3 and T4 were 1, �1, 1, and 1 respectively. Each of the four traits was affected
by a different number of quantitative trait loci (QTLs): 300, 100, 60, and 40, respec-
tively. The common QTLs affecting the traits generated genotypic correlations of
�0.5, 0.4, 0.3, �0.3, �0.2, and 0.1 between T1 and T2, T1 and T3, T1 and T4, T2 and
T3, T2 and T4, and T3 and T4 respectively. The genotypic value of each plant was
generated based on its haplotypes and the QTL effects for each trait.

Simulated data were generated using QU-GENE software (Podlich and Cooper
1998; Wang et al. 2003). A total of 2500 molecular markers were distributed
uniformly across 10 chromosomes, whereas 315 QTLs were randomly allocated
over the ten chromosomes to simulate one maize (Zea mays L.) population. Each
QTL and molecular marker was biallelic and the QTL additive values ranged from
0 to 0.5. As QU-GENE uses recombination fraction rather than map distance to
calculate the probability of crossover events, recombination between adjacent pairs
of markers was set at 0.0906; for two flanking markers, the QTL was either on the
first (recombination between the first marker and QTL was equal to 0.0) or the
second (recombination between the first marker and QTL was equal to 0.0906)
marker; excluding the recombination fraction between 15 random QTLs and their
flanking markers, which was set at 0.5, i.e., complete independence (Haldane 1919),
to simulate linkage equilibrium between 5% of the QTLs and their flanking markers.
In addition, in every case, two adjacent QTLs were in complete linkage. For each
trait, the phenotypic value for each of four replications of each plant was obtained
from QU-GENE by setting the per-plot heritability of T1, T2, T3, and T4 at 0.4, 0.6,
0.6, and 0.8 respectively.

2.8.2 Estimated Matrices, LPSI, and Its Parameters

For this example, we used only cycle C1 data and traits T1, T2, and T3. The
phenotypic and genotypic estimated covariance matrices for traits T1, T2, and T3

were bP ¼
62:50 �12:74 8:53
�12:74 17:52 �3:38
8:53 �3:38 12:31

24 35 and bG ¼
36:21 �12:93 8:35
�12:93 13:04 �3:40
8:35 �3:40 9:96

24 35
respectively, whereas the inverse of matrix bP was

bP�1 ¼
0:01997 0:01251 �0:01040
0:01251 0:06809 0:01005
�0:01040 0:01005 0:09123

24 35. The estimated heritabilities for T1,

T2, and T3 were bh21 ¼ 0:579, bh22 ¼ 0:744, and bh22 ¼ 0:809 respectively.
According to matrices bP�1 and bG, and because w0 ¼ 1 �1 1½ �, the estimated

vector of coefficients was bb0 ¼ w0 cGP�1 ¼ 0:555 �1:063 1:087½ �, from which
the estimated LPSI can be written as bI ¼ 0:555T1 � 1:063T2 þ 1:087T3. Table 2.2
presents the first 20 genotypes, the means of the three traits (T1, T2 and T3) and the
first 20 estimated unranked LPSI values of the 500 simulated genotypes for cycle C1.
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According to the means of the three traits, the first estimated LPSI value was
obtained as

bI 1 ¼ 0:555 164:46ð Þ � 1:063 39:63ð Þ þ 1:087 34:66ð Þ ¼ 86:81;

the second estimated LPSI value was obtained as

bI 2 ¼ 0:555 144:39ð Þ � 1:063 144:39ð Þ þ 1:087 34:65ð Þ ¼ 63:82, etc:;

and the 20th estimated LPSI value was obtained as

bI 20 ¼ 0:555 161:80ð Þ � 1:063 46:58ð Þ þ 1:087 37:33ð Þ ¼ 80:84:

This estimation procedure is valid for any number of genotypes. Table 2.3 pre-
sents the 20 genotypes ranked by the estimated LPSI values. Note that if we use 20%
selection intensity for Table 2.2 data, we should select genotypes 12, 18, 1, 6, and
10, because their estimated LPSI values are higher than the remaining LPSI values
for that set of genotypes. Using the idea described in Fig. 2.4, genotypes 12, 18, 1, 6,
and 10 should be in the red zone, whereas the rest of the genotypes are in the white
zone and should be culled. Here, the proportion selected is q ¼ 0.2 and

Table 2.2 Number of genotypes, means of the trait (T1, T2 and T3) values, and unranked values of
the LPSI for part of a simulated data set

Number of genotypes

Means of the trait values Unranked

T1 T2 T3 LPSI values

1 164.46 39.63 34.66 86.81

2 144.39 50.77 34.65 63.82

3 157.48 48.04 37.9 77.52

4 167.30 47.98 30.49 74.97

5 164.11 49.89 32.03 72.85

6 166.26 40.44 29.93 81.81

7 154.59 52.22 30.31 63.22

8 160.00 42.91 31.23 77.12

9 158.51 46.32 34.52 76.25

10 163.63 45.43 35.73 81.35

11 156.16 46.75 35.58 75.62

12 171.38 41.17 35.13 89.52

13 153.17 54.18 36.23 66.79

14 149.89 52.33 31.13 61.39

15 159.63 49.01 31.72 70.96

16 160.70 42.51 32.99 79.85

17 157.07 45.49 28.4 69.68

18 167.50 41.69 36.73 88.55

19 159.17 50.6 36.25 73.93

20 161.80 46.58 37.33 80.84
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z ¼ exp �0:5u02f gffiffiffiffi
2π

p ¼ 0:31, where u0 ¼ 81:35�75:64
8:11 ¼ 0:704, 81.35 is the estimated LPSI

value or the genotype number 10, 75.64 is the mean of the 20 LPSI values, and 8.11
is the standard deviation of the estimated LPSI values of the 20 genotypes presented
in Tables 2.2 and 2.3.

Table 2.4 presents 25 genotypes and the means of the three traits obtained from
the 500 simulated genotypes for cycle C1 and ranked by the estimated LPSI values.
In this case, we used 5% selection intensity (kI ¼ 2.063). Also, the last four rows in
Table 2.4 give:

1. The means of traits T1, T2, and T3 (175.46, 39.26, and 38.83 respectively) of the
selected individuals and the mean of the selected LPSI values (97.84).

2. The means of the three traits in the base population (161.88, 45.19, and 34.39)
and the mean of the LPSI values in the base population (79.18)

3. The selection differentials for the three traits (13.58, �5.92, and 4.44) and the
selection differential for the LPSI (18.66)

4. The LPSI expected genetic gain per trait (9.51, �5.48, and 4.22) and the LPSI
selection response (19.21).

The variance of the estimated selection index for the 500 genotypes wasbV �bI� ¼ bb0bPbb ¼ 86:72, from which the standard deviation of bI was 9.312. The

Table 2.3 Number of genotypes, means of the trait (T1, T2 and T3) values and ranked values of the
LPSI for part of a simulated data set

Number of genotypes

Means of the trait values Ranked

T1 T2 T3 LPSI values

12 171.38 41.17 35.13 89.52

18 167.50 41.69 36.73 88.55

1 164.46 39.63 34.66 86.81

6 166.26 40.44 29.93 81.81

10 163.63 45.43 35.73 81.35

20 161.80 46.58 37.33 80.84

16 160.70 42.51 32.99 79.85

3 157.48 48.04 37.9 77.52

8 160.00 42.91 31.23 77.12

9 158.51 46.32 34.52 76.25

11 156.16 46.75 35.58 75.62

4 167.30 47.98 30.49 74.97

19 159.17 50.6 36.25 73.93

5 164.11 49.89 32.03 72.85

15 159.63 49.01 31.72 70.96

17 157.07 45.49 28.4 69.68

13 153.17 54.18 36.23 66.79

2 144.39 50.77 34.65 63.82

7 154.59 52.22 30.31 63.22

14 149.89 52.33 31.13 61.39
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estimated standardized selection differentials for the LPSI can be obtained from
Table A in Falconer and Mackay (1996), where, for 5% selection intensity,
kI ¼ 2.063. This means that the estimated LPSI selection response wasbR ¼ 2:063 9:312ð Þ ¼ 19:21, whereas the expected genetic gain per trait, or multi-

trait selection response, was bE0 ¼ 2:063
bb0 bG
9:312

" #
¼ 9:51 �5:48 4:22½ �:

Table 2.4 Number of selected genotypes, selected means of the trait (T1, T2 and T3) values and
ranked selected values of the LPSI from one simulated set of 500 genotypes with four repetitions

Number of genotypes

Means of the trait values Ranked

T1 T2 T3 LPSI values

353 189.68 38.16 36.13 103.97

370 178.27 34.38 37.79 103.45

480 174.84 42.72 45.12 100.66

300 177.38 39.15 40.34 100.65

273 181.18 35.94 35.14 100.52

275 167.94 36.82 42.2 99.92

148 173.37 37.07 39.62 99.86

137 185.48 46.48 42.55 99.77

351 173.79 38.38 40.52 99.68

236 182.85 37.88 34.96 99.2

217 175.13 38.48 39.16 98.84

356 171.09 39.6 41.98 98.47

167 175.39 38.73 37.73 97.17

230 169.73 37.1 38.69 96.8

243 171.9 41.53 41.45 96.29

55 170.02 36.92 37.76 96.15

68 172.56 37.18 36.7 96.13

36 175.8 38.86 36.34 95.75

164 173.61 38.37 36.42 95.14

140 170.53 42.52 41.97 95.05

146 177.4 39.64 35.5 94.89

432 174.01 40.73 38.26 94.84

378 176.62 42.69 38.47 94.44

288 172.14 39.31 37.26 94.23

386 175.77 42.89 38.81 94.13

Mean of selected individuals 175.46 39.26 38.83 97.84

Mean of all individuals 161.88 45.19 34.39 79.18

Selection differential 13.58 �5.92 4.44 18.66

Expected genetic gain for 5% 9.51 �5.48 4.22 19.21

The selection intensity was 5%
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2.8.3 LPSI Efficiency Versus Base Index Efficiency

The estimated correlation between the LPSI and the net genetic merit wasbρHI ¼ bσ IbσH
¼ 0:894, whereas the estimated correlation between the base index and

the net genetic merit was bρHIB ¼ 0:875, thus bλ ¼ bρHIbρHIB ¼ 1:0217 and, by Eq. (2.21),

bp ¼ 100
�bλ � 1

� ¼ 2:171. This means that LPSI efficiency was only 2.2% higher
than the base index efficiency for this data set.

Using the same data set described in Sect. 2.8.1 of this chapter, we conducted
seven selection cycles (C1 to C7) for the four traits (T1, T2, T3, and T4) using the
LPSI and the BLPSI. These results are presented in Table 2.5. To compare the LPSI
efficiency versus BLPSI efficiency, we obtained the true selection response of the
simulated data (second column in Table 2.5) and we estimated the LPSI and BLPSI
selection response for each selection cycle (third column in Table 2.5); in addition,
we estimated the LPSI and BLPSI expected genetic gain per trait for each selection
cycle (columns 4 to 7 in Table 2.5). The first part of Table 2.5 shows the true
selection response and the estimated values of the LPSI selection response and
expected genetic gain per trait. In a similar manner, the second part of Table 2.5
shows the true selection response, the estimated values of the BLPSI selection

Table 2.5 The LPSI and BLPSI responses (true and estimated) and estimated expected genetic
gain per trait for seven simulated selection cycles

Cycle

Selection response Estimated expected genetic gain per trait

True Estimated T1 T2 T3 T4

LPSI

1 17.84 17.81 7.90 �4.67 3.33 1.92

2 15.66 15.69 7.06 �3.59 3.17 1.86

3 14.44 14.22 6.67 �3.21 2.82 1.52

4 14.29 14.34 7.53 �3.45 2.07 1.29

5 13.86 13.64 7.14 �2.66 2.51 1.33

6 12.47 12.04 6.23 �2.62 1.98 1.21

7 12.44 11.61 5.38 �2.55 2.47 1.22

Average 14.43 14.19 6.85 �3.25 2.62 1.48

BLPSI

1 17.84 22.15 8.38 �4.40 3.04 1.64

2 15.66 20.49 7.74 �3.33 2.82 1.53

3 14.44 19.33 7.29 �3.00 2.44 1.22

4 14.29 19.49 8.05 �3.17 1.89 1.05

5 13.86 18.93 7.64 �2.53 2.19 1.07

6 12.47 17.72 6.81 �2.40 1.72 0.93

7 12.44 17.28 5.89 �2.35 2.11 0.93

Average 14.43 19.34 7.40 �3.02 2.32 1.19

The selection intensity was 10% (kI ¼ 1.755)
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response, and the expected genetic gain per trait. The average value of the true
selection response was equal to 14.43, whereas the average values of the estimated
LPSI and BLPSI selection response were 14.19 and 19.34 respectively. Note that
14.43–14.19 ¼ 0.24, but 19.34–14.43 ¼ 4.91. According to this result, the BLPSI
over-estimated the true selection response of the simulated data by 34.7%. Thus,
based on the Table 2.5 results and those presented in Fig. 2.6, we can conclude that
the LPSI was more efficient than the BLPSI for this data set.

Finally, additional results can be seen in Chap. 10, where the LPSI was simulated
for many selection cycles. Chapter 11 describes RIndSel: a program that uses R and
the selection index theory to make selection.

2.9 The LPSI and Its Relationship with the Quadratic
Phenotypic Selection Index

In the nonlinear selection index theory, the net genetic merit and the index are both
nonlinear. There are many types of nonlinear indices; Goddard (1983) and Weller et
al. (1996) have reviewed the general theory of nonlinear selection indices. In this
chapter, we describe only the simplest of them: the quadratic index developed
mainly by Wilton et al. (1968), Wilton (1968), and Wilton and Van Vleck (1969),
which is related to the LPSI.

2.9.1 The Quadratic Nonlinear Net Genetic Merit

The most common form of writing the quadratic net genetic merit is

Hq ¼ αþ w0 μþ gð Þ þ μþ gð Þ0A μþ gð Þ, ð2:25Þ
where α is a constant, g is the vector of breeding values, which has normal
distribution with zero mean and covariance matrix G, μ is the vector of population
means, and w is a vector of economic weights. In addition, matrix A can be written

asA ¼
w1 0:5w12 � � � 0:5w1t

0:5w12 w2 � � � 0:5w2t

⋮ ⋮ ⋱ ⋮
0:5w1t 0:5w2t . . . wt

2664
3775, where the diagonal ith values wi (i = 1,2,

. . ., t ) is the relative economic weight of the genetic value of the squared trait i and
wij (i,j = 1,2, . . ., t ) is the economic weight of the cross products between the genetic
values of traits i and j. The main difference between the linear net genetic merit (Eq.
2.2) and the net quadratic merit (Eq. 2.25) is that the latter depends on μ and (μ + g)

0

A(μ + g).
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2.9.2 The Quadratic Index

The quadratic phenotypic selection index is

Iq ¼ β þ b0yþ y0By ð2:26Þ
where β is a constant, y is the vector of phenotypic values that has multivariate normal
distribution with zero mean and covariance matrix P, b0 ¼ b1 b2 � � � bt½ � is a

vector of coefficients, and B ¼
b1 0:5b12 � � � 0:5b1t

0:5b12 b2 � � � 0:5b2t
⋮ ⋮ ⋱ ⋮

0:5b1t 0:5b2t . . . bt

2664
3775. In matrix B, the

diagonal ith values bi (i = 1,2, . . ., t ) is the index weight for the square of the
phenotypic i and bij (i,j = 1,2, . . ., t ) is the index weight for the cross products between
the phenotype of the traits i and j.

2.9.3 The Vector and the Matrix of Coefficients
of the Quadratic Index

As we saw in Sect. 2.3.2 of this chapter, to obtain the vector (b) and the matrix (B) of
coefficients of the quadratic index that maximized the selection response, we can
minimize the expectation of the square difference between the quadratic index (Iq)
and the quadratic net genetic merit (Hq):Φ = E{[Iq� E(Iq)]� [Hq� E(Hq)]}

2, or we

can maximize the correlation between Iq and Hq, i.e., ρHqIq ¼
Cov Hq;Iqð Þffiffiffiffiffiffiffiffiffiffiffiffi

Var Iqð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Hqð Þp ,

where Cov(Hq, Iq) is the covariance between Iq and Hq,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Iq

� �q
is the standard

deviation of the variance of Iq, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Hq

� �q
is the standard deviation of the

variance of Hq. In this context, it is easier to maximize ρHqIq than to minimize Φ.

Vandepitte (1972) minimized Φ, but in this section we shall maximize ρHqIq .

Suppose that μ = 0, since α and β are constants that do not affect ρHqIq , we can

write Iq and Hq as Iq = b0y + y0By and Hq = w0g + g0Ag. Thus, under the assumption
that y and g have multivariate normal distribution with mean 0 and covariance matrix
P and G, respectively, E(Iq) = tr(BP) and E(Hq) = tr(AG) are the expectations of Iq
and Hq, whereas Var(Iq) = b0Pb + 2tr[(BP)2] and Var(Hq) = w0Gw + 2tr[(AG)2] are
the variances of Iq and Hq, respectively. The covariance between Iq and Hq is Cov
(Hq, Iq) = w0Gb + 2tr(BGAG) (Vandepitte 1972), where tr(∘) denotes the trace
function of matrices.

According to the foregoing results, we can maximize the natural logarithm of

ρHqIq [ln ρHqIq

� �
] with respect to vector b and matrix B assuming that w,A,P, and G

are known. Hence, except for two proportional constants that do not affect the
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maximum value of ρHqIq because this is invariant to the scale change, the results of

the derivatives of ln ρHqIq

� �
with respect to b and B are

b ¼ P�1Gw and B ¼ P�1GAGP�1, ð2:27Þ
respectively. In this case, b = P�1Gw is the same as the LPSI vector of coefficients
(see Eq. 2.8 for details); however, when μ 6¼ 0, b = P�1G(w + 2Aμ) = P�1Gw + 2P�1

GAμ. In the latter case, b has the additional term 2P�1GAμ, which is null when μ = 0
or A = 0. Hence, when μ 6¼ 0 the quadratic index vector b shall have two
components: P�1Gw, which is the LPSI vector of coefficients, and 2P�1GAμ,
which is a function of the current population mean μ multiplied by matrix A.
Therefore, when μ 6¼ 0 and A 6¼ 0, the quadratic index vector b will change when
the μ values change. However, μ does not affect matrix B.

2.9.4 The Accuracy and Maximized Selection Response of the
Quadratic Index

According to Eq. (2.27) results, Var(Iq) = Cov(Hq, Iq) = b0Pb + 2tr[(BP)2], which
means that the quadratic index accuracy and the maximized selection response can
be written as:

ρHqIq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gwþ 2tr P�1GAG

� �2h ir
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Gwþ 2tr AGð Þ2

h ir ð2:28Þ

and

Rq ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0GP�1Gwþ 2tr P�1GAG

� �2h ir
, ð2:29Þ

respectively, where k is the selection intensity of the quadratic index. Equations
(2.27) to (2.29) indicate that the LPSI and the quadratic index are related, and the
only difference between them is the quadratic terms. Wilton et al. (1968) wrote Eq.

(2.29) as: Rq ¼ k
ffiffiffiffiffiffiffiffiffiffi
b0Pb

p
þ k2tr BPð Þ2

h i
.
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