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Abstract. New languages like Open QASM and SDKs like QISKit open new
horizons for the research and development in the new paradigm of quantum
computing. Despite that, they present an evident learning curve that could be
hard for regular developers and newcomers in the field of quantum computing.
On the other hand, currently there are many ways to build intelligent systems
that can learn from humans and processes to build a knowledge corpus and
provide a different kind of help to humans in tasks like aiding in decision
making processes, recommending multimedia resources, building conversa-
tional agents, etc. In this paper we describe a work-in-progress project devel-
oped by the IBM Q team that implements an intelligent system based on a deep
learning approach that learns how people code using the Open QASM language
to later offer help and guidance to the coders by recommending different code
sequences, logical steps or even small pieces of code. During the paper, we
describe our current approach and first results. They include the use of seq2seq
neural networks that effectively learn quantum-code sequences, and which will
be tested in real context in the near future to improve the user experience in
IBM Q Experience products.
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1 Introduction

Quantum computing programming is not currently an easy task. New languages like
Open QASM [1] and SDKs like QISKit [2, 3] open new horizons for the research and
development in the new paradigm of quantum computing [4, 5]. Despite that, they
present a non-easy learning curve for regular developers and newcomers in the field of
quantum computing. On the other hand, there are nowadays many ways to build
intelligent systems that can learn from humans and build a knowledge corpus on their
own. These knowledge corpuses could be used to provide a different kind of help to
humans in tasks like aiding in decision making processes, recommending multimedia
resources, building conversational agents, etc.
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Related to the aforementioned intelligent systems, we find in the literature and new
media buzzwords like Artificial Intelligence (AI) [6], Machine Learning (ML) [7, 8],
Deep Learning (DL) [9, 10], etc. Many modern applications include these kind of
concepts and keywords to look trendy; others involve them to deal with problems that
are difficult to solve in other traditional ways. Apart of the trendiness of the terms, it is a
fact that these research fields are increasingly present: many enterprises are spending a
lot of effort and money to be AI-driven; including AI in applications, decision systems,
etc. In this sense and related to the concept of aid provided by AI or intelligent systems,
we present our core-concept of User Experience (UX). The UX is commonly defined as
“a person’s perceptions and responses that result from the use or anticipated use of a
product, system or service” [11]. Related to the ISO definition, UX includes all the
users’ emotions, beliefs, preferences, perceptions, physical and psychological respon-
ses, behaviors and accomplishments that occur during, before and after the usage.
According to this ISO, there are three factors that influence user experience: system,
user and the context of use. Considering these three factors, and related to the new
wave related to AI, we can think that it is possible to interfere on the system or the
context of use [12] by applying AI to existing systems. Thinking in the AI application,
we can help to improve the UX, since the AI could learn from users’ and previous
usage to change or adapt the system or specific features to the current user’s needs,
desires and behaviors.

Many times, the UX is merely considered in the context of visual applications
(visual UIs) or related to common products designed for regular users. In the case of
our work-in-progress research, we try to improve the user experience in the context of
programming under the quantum computing paradigm. Learning how people code
using the products developed by IBM Research [13], we think is possible to distill
knowledge to later use it in guiding and helping other quantum-programmers in
common tasks related to the code. In our experience, currently there are many common
issues on coding quantum programs (definition of qubits to use, measurement opera-
tions, etc.) based on some common rules and patterns, that could represent general (and
simple) cases where the users could initially be helped. This help could positively affect
the users by fulfilling their desires and expectations to achieve success with their code
and experiments or on creating more positive experiences through being helped by an
intelligent system that could provide real-time feedback on their code [14, 15].

Gathering all these ideas and core concepts, in this paper we describe a
work-in-progress (WIP) project developed by the IBM Q team that implements an
intelligent system based on a deep learning approach that learns how people code using
the Open QASM language to offer help by recommending different code sequences,
logical steps or even small pieces of code. To present this work, section two introduces
the core concepts of the seq2seq approach and the importance of the natural language
processing (NLP) in our context. The third section presents our proposal, describing
how our WIP project is developed in terms of technology, details on datasets, etc. as
well as our first results achieved. The fourth and fifth sections depict the future work to
be done and a brief conclusion on our proposal.
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2 Seq2seq and the Importance of NLP Approaches

What is source code? In fact, and with no intention of providing a deep definition, the
code is a human-readable set of words or alphanumerical characters (instructions)
previously defined that could be accompanied by other characters like punctuation, etc.,
and follows a logical structure and some kind of grammar [16, 17]. Following this
consideration (and the programming languages idea) we find that the foundations of
coding are not so far from those that define the human languages.

In the natural language processing area (NLP) many researchers work using arti-
ficial intelligence to analyze human language and design conversational systems, to
summarize automatically texts, to learn and replicate communicative styles, etc. In this
sense we are using concepts from NLP to teach neural networks how to code using
quantum computing languages and libraries (mainly using Open QASM [1]) like the
human programmers. That is, we are feeding recurrent neural networks (RNN), as we
will explain below, the code entered by programmers when they use the IBM Q
Experience [18] to enable them to learn how the code is composed in the context of
quantum programming.

Regarding the approach we are following under the NLP umbrella, it is the
sequence-to-sequence (seq2seq) neural network model [19–21]. This model consists of
two RNN’s: “one RNN encodes a sequence of symbols into a fixed-length vector
representation, and the other decodes the representation into another sequence of
symbols. The encoder and decoder of the proposed model are jointly trained to max-
imize the conditional probability of a target sequence given a source sequence” [20].
That is, using this method is possible to train a system that produces sequences of
symbols using an input sequence of symbols (Fig. 1).

This approach has been used recently with success in the tasks of performing
translations between different languages [22, 23] (Fig. 1), since its ability of learn
semantically and syntactically meaningful representation of linguistic phrases [20].

In our case, the seq2seq neural network is not employed to translate languages, but
it is used similarly to translate some sequences to other ones. In our approach, the input
sequence will be the one typed by the user in the tools for developing quantum code,

Fig. 1. Overview of a sequence to sequence network using different networks as encoders and
decoders. Image taken from [24]
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and the target sequence will be next logical sentence(s) proposed by the neural
net-works. This will be explained further in the following section.

3 Proposal and First Results

Based on previous experiences by the authors [25] and other researchers [14, 26], the
main idea of this paper is that intelligent systems could enhance the user experience.
Furthermore, they could enhance the experience of developers while they code new
programs in challenging environments like ours. As previously stated, our goal is to
provide real-time feedback to IBM Q users by proposing code to them in the different
quantum programming environments developed by IBM Research and IBM Q Expe-
rience team [18]. In order to provide the recommendations to the users, we are
developing a neural network based on a seq2seq approach that learns the sequences
from the code composed by the users to develop quantum programs in both ways:
learning what kind of sentences are used (and relevant for quantum computing) and
also the logical sequences they follow to build a quantum program.

To pursue this, there are some important factors to keep in mind: how to develop
the seq2seq network and its different utilities and how to train it using the data available
in our platforms.

First of all, regarding to the technological issues, we use PyTorch [27] as our deep
learning framework, supported by the PyTorch-seq2seq [28] library from IBM, which
is used to build our seq2seq network. We selected PyTorch due its features related to
the creation of dynamic neural networks and its performance on building deep learning
models using GPUs. Also, we use the seq2seq library for PyTorch developed by our
colleagues at IBM to work from a tested approach in terms of the seq2seq models and
to avoid starting from scratch for our WIP. This library encloses different functional-
ities related to the RNN that encodes the input sequences and the decoder RNN that
produces the output (target) sequences. Apart of the functionalities it has, we have
developed a variation (available in https://github.com/IBM/pytorch-seq2seq/pull/116)
on the prediction method used to produce the target sequences. This variation on the
prediction method not only produces a unique prediction based on the most probable
output sequence (as in the original implementation) but also includes a beam search
strategy [19, 29] to produce several possible outputs (target sequences) with variations
given an input sequence. In fact, with this change we are replacing the default RNN
decoder to use a TopKDecoder RNN.

Secondly, we developed datasets to train our models in the task of predicting the
proper code sequence that would be result in adding the next logical sentence to the
given code sequence. We built our datasets using the following rule n − > n + 1:
given a code sequence ‘n’, the predicted sequence would be ‘n + 1’, where ‘n’ is the set
of instructions that compose the input sequence, and the ‘+1’ is the following
instruction that could be used after the last instruction in the set ‘n’.

The dataset development consisted of two main phases: (1) designing the code
sequences to represent inputs and outputs (given and target sequences) and (2) building
simpler representations of the code sequences to facilitate the training. On the
designing of the code sequences, we augmented the original dataset of quantum
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programs sent to the IBM Q backends by dividing the quantum program into all the
possible parts that followed the rule n − > n + 1 (input –> output sequence). To
reduce the complexity of the training phase, we replaced each unique instruction using
a unique key, thereby mapping the instructions used in the code developed by the users
to simpler representations. This unique key (composed by 1–3 alphanumerical char-
acters typically), will be used in the datasets to train the encoder and decoder RNN. To
build the mapping, we parsed all the defined Open QASM statements and their possible
arguments. The list of these Open QASM statements is available in the Fig. 2.

To provide an example of how we are building the dataset main (later separated
into train/test/dev datasets) using our n − > n + 1 rule and the statements mapping, we
will use an Open QASM implementation of Deutsch–Jozsa algorithm [31] using two
qubits (as it appears in [30]).

Fig. 2. Open QASM language statements (version 2.0). Figure from [1, 30]
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include "qelib1.inc";
qreg q[5];
creg c[5];
x q[4];
h q[3];
h q[4];
cx q[3],q[4];
h q[3];
measure q[3] -> c[3];

OPENQASM 2.0;

After mapping the code to the simpler keys, we would get the following code (we
have removed the line feed between the different lines, making the code a single line):

O; I; Q5; C5; X4; H3; H4; CX34; H3; M33;

Later, we augment for the dataset the mapped code in different lines, where each
line follows the n − > n + 1 rule, and a line below another represents n = n −1. So,
using the mapped code, we will get the following logical code sequences (Table 1).

Using this technique, we think we will be able to teach the seq2seq network what
are the logical steps in terms of Open QASM statements (and their arguments) used to
code a quantum program, in a similar mode to the seq2seq training to translate between
different languages.

To test this approach, we built some small datasets (typically including several
thousands of code sequences) to train our seq2seq networks and validate our main idea.
In the case of these first tests, we used a mapping algorithm that discards the arguments
that accompanied the statements in the original code. This could be useful to validate if
the seq2seq networks are learning the code grammar properly (which could be easier to

Table 1. All the possible logical code sequences for the mapped Deutsch–Jozsa algorithm
following our augmentation rules

Input sequence (given one) Output sequence (target)

O; I; Q5; C5; X4; H3; H4; CX34; H3; O; I; Q5; C5; X4; H3; H4; CX34; H3; M33;
O; I; Q5; C5; X4; H3; H4; CX34; O; I; Q5; C5; X4; H3; H4; CX34; H3;
O; I; Q5; C5; X4; H3; H4; O; I; Q5; C5; X4; H3; H4; CX34;
O; I; Q5; C5; X4; H3; O; I; Q5; C5; X4; H3; H4;
O; I; Q5; C5; X4; O; I; Q5; C5; X4; H3;
O; I; Q5; C5; O; I; Q5; C5; X4;
O; I; Q5; O; I; Q5; C5;
O; I; O; I; Q5;
O; O; I;
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discover considering the small size of the initial datasets tested). For example, in a
typical quantum program, after defining a register of qubits we defined a register of
classical bits. In our tests, we do not mind if the number of qubits is the same as the
number of bits or other details. We just want to validate if the neural network has
learned that a declaration of a register of classical bits should follow a declaration of a
register of qubits. The initial results with the training, using the simpler mapping, show
that our seq2seq network achieves a prediction accuracy of 88–92% by comparing the
training and test datasets (using the default decoder predictor of just one statement
more in the target sequence per each sequence input). In our case, we also introduced a
quantitative testing of the results provided by the dataset. In this qualitative testing we
tried to verify if the results provided by the default predictor and the predictor based on
beam search are comprehensive and logical in the context of quantum programming.
This qualitative testing is currently ongoing, and it involves some IBM Q team
members with expertise in quantum coding who will provide their impressions on the
results achieved.

Also, as part of our initial results, we have designed the two main approaches to
deploy our intelligent system in real contexts to integrate the assistant in the IBM Q
products. These two approaches are the following:

1. Build an API to serve the results of the predictions and submit new codes to
continue training our seq2seq network. In this case, we follow a deep learning as a
service approach. The neural network and the different features are available in the
cloud through using a REST API (currently implemented using Flask in our case).
Using this solution, the different products that will include the intelligent code
recommender solution only need to submit the contents of the quantum program
being written by the user to obtain what would be the next statement to use.

2. Embed the trained model within the products itself. Considering that the training
model is saved into a.pt file of about 3 MB, we can embed the file within a website
or a program and use it by employing ONNX [32] or introducing our code related to
the predictions.

As stated, of these two approaches, we have built only the deployment with the
REST API. It will be used in the full validation of the system. In the other case of the
embedded code, implementing it will depend on the final success of our full tests.

4 Next Steps and Future Work

The next steps that we will take will be the following:

1. Finalize the internal validation of the simpler version of the Open QASM recom-
mender. This will help us to understand whether the predictions fulfill our expec-
tations or if we need to redefine our intelligent system (tuning the seq2seq network,
changing the neural network used, etc.).

2. Build a full dataset to train the neural network. IBM Q has over 2 million records of
code executions. We plan to build an augmented dataset using the n − > n + 1 rule
and include all the code introduced by users to train our future neural networks.
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3. Validate internally at IBM Q the final results of these full trainings. At this phase,
we will validate the results raised by the neural networks using the simple mapping
as well as using a complex mapping (which maps all the statements and their
arguments).

4. If all those validations and trainings are successful, we plan to deploy our code
recommender using the API REST to be used by the other products and explore the
integration of our code into other IBM Q products.

5. Using the deployed version in real products, we will measure different metrics of
real user experiences to assess the effect of the intelligent system. In this case, we
will measure (prospectively) the ratio between the code offered by the system and
those statements employed finally by the users, the time they use to complete their
programs using the helper, and the users’ opinion through questionnaires, focus
groups or other assessment tools typically used in the Human-Computer Interaction
research area.

6. Finally, the intelligent system should be re-trained regularly to adapt its knowledge
to the new code produced by users. In a novel context like quantum programming, it
is possible that the number of users coding as well as the complexity of the code
produced will grow. The system will need to be ready to fulfill the expectations of
different users with different level of coding skills in quantum computing.

5 Conclusions

This paper describes a work-in-progress project that implements an intelligent system
based on a deep learning approach to learn how people code in Open QASM language.
This knowledge acquired by the neural networks will be used to offer help and
guidance to the programmers by recommending different code sequences, logical steps
or even small pieces of code. We intend that this help and guidance during the pro-
gramming will improve the user experience (UX) of quantum-programmers within the
IBM Q products. During the paper we have described our ideas, our current imple-
mentation and the different initial results achieved. Among these initial results, we
highlight that we have developed seq2seq neural networks that are learning quantum
code sequences following custom datasets built on our own specification designed to
predict possible code sequences given the code produced by users previously. We also
provide real examples of how the datasets will be produced and the accuracy achieved
by our system in simple test cases. Finally, we described our next steps and the future
work that we will try to tackle in the near future.
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