
Chapter 12
Do the Best Design Ideas (Really) Come
from Conceptually Distant Sources
of Inspiration?

Joel Chan, Steven P. Dow and Christian D. Schunn

Where do creative design ideas come from? Cognitive scientists have discovered that
people inevitably build new ideas from their prior knowledge and experiences (Marsh
et al. 1999; Ward 1994). While these prior experiences can serve as sources of inspi-
ration (Eckert and Stacey 1998) and drive sustained creation of ideas that are both new
and have high potential for impact (Helms et al. 2009; Hargadon and Sutton 1997), they
can also lead designers astray: for instance, designers sometimes incorporate undesir-
able features from existing solutions (Jansson and Smith 1991; Linsey et al. 2010), and
prior knowledge can make it difficult to think of alternative approaches (German and
Barrett 2005; Wiley 1998). This raises the question: what features of potential inspi-
rational sources canpredict their value (and/or potential harmful effects)? In this chapter,
we examine how the conceptual distance of sources relates to their inspirational value.

12.1 Background

12.1.1 Research Base

What do we mean by conceptual distance? Consider the problem of e-waste
accumulation: the world generates 20–50 million metric tons of e-waste every year,
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yielding environmentally hazardous additions to landfills. A designer might
approach this problem by building on near sources like smaller scale electronics
reuse/recycle efforts, or by drawing inspiration from a far source like edible food
packaging technology (e.g., to design reusable electronics parts). What are the
relative benefits of different levels of source conceptual distance along a continuum
from near to far?

Many authors, principally those studying the role of analogy in creative problem
solving, have proposed that conceptually far sources—structurally similar ideas
with many surface (or object) dissimilarities—are the best sources of inspiration for
creative breakthroughs (Gentner and Markman 1997; Holyoak and Thagard 1996;
Poze 1983; Ward 1998). This proposal—here called the Conceptual Leap
Hypothesis—is consistent with many anecdotal accounts of creative breakthroughs,
from Kekule’s discovery of the structure of benzene by visual analogy to a snake
biting its tail (Findlay 1965), to George Mestral’s invention of Velcro by analogy to
burdock root seeds (Freeman and Golden 1997), to more recent case studies
(Enkel and Gassmann 2010; Kalogerakis et al. 2010).

However, empirical support for this proposal is mixed. Some studies have shown
an advantage of far over near sources for novelty, quality, and flexibility of ideation
(Chan et al. 2011; Chiu and Shu 2012; Dahl and Moreau 2002; Gonçalves et al.
2013; Hender et al. 2002); but, some in vivo studies of creative cognition have not
found strong connections between far sources and creative mental leaps (Chan and
Schunn 2014; Dunbar 1997), and other experiments have demonstrated equivalent
benefits of far and near sources (Enkel and Gassman 2010; Malaga 2000). Relatedly,
Tseng et al. (2008) showed that far sources were more impactful after ideation
had already begun (vs. before ideation), providing more functionally distinct ideas
than near or control, but both far and near sources led to similar levels of novelty.
Similarly, Wilson et al. (2010) showed no advantage of far over near sources for
novelty of ideas (although near but not far sources decreased variety of ideas).
Fu et al. (2013) even found that far sources led to lower novelty and quality of ideas
than near sources. Thus, more empirical work is needed to determine whether the
Conceptual Leap Hypothesis is well supported. Further, Fu et al. (2013) argue there
is an inverted U-shape function in which moderate distance is best, suggesting the
importance of conceptualizing and measuring distance along a continuum.

12.1.2 Impetus for the Current Work

Key methodological shortcomings in prior work further motivate more and better
empirical work. Prior studies may be too short (typically 30 min to 1 h) to convert
far sources into viable concepts. To successfully use far sources, designers must
spend considerable cognitive effort to ignore irrelevant surface details, attend to
potentially insightful structural similarities, and adapt the source to the target
context. Additionally, many far sources may yield shallow or unusable inferences
(e.g., due to non-alignable differences in structural or surface features;
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Perkins 1997); thus, designers might have to sift through many samples of far
sources to find “hidden gems.” These higher processing costs for far sources might
partially explain why some studies show a negative impact of far sources on the
number of ideas generated (Chan et al. 2011; Hender et al. 2002). In the context of a
short task, these processing costs might take up valuable time and resources that
could be used for other important aspects of ideation (e.g., iteration, idea selection);
in contrast, in real-world design contexts, designers typically have days, weeks, or
even months (not an hour) to consider and process far sources.

A second issue is a lack of statistical power. Most existing experimental studies
have N � 12 per treatment cell (Chiu and Shu 2012; Hender et al. 2002; Malaga
2000); only four studies had N � 18 (Chan et al. 2011; Fu et al. 2013; Gonçalves
et al. 2013; Tseng et al. 2008), and they are evenly split in support/opposition for
the benefits of far sources. Among the few correlational studies, only Dahl and
Moreau (2002) had a well powered study design in this regard, with 119 partici-
pants and a reasonable range of conceptual distance. Enkel and Gassmann (2010)
only examined 25 cases, all of which were cases of cross-industry transfer (thus
restricting the range of conceptual distance being considered). This lack of
statistical power may have led to a proliferation of false negatives (potentially
exacerbated by small or potentially zero effects at short time scales), but possibly
also severely overestimated effect sizes or false positives (Button et al. 2013); more
adequately powered studies are needed for more precise estimates of the effects of
conceptual distance.

A final methodological issue is problem variation. Many experimental studies
focused on a single design problem. The inconsistent outcomes in these studies may
be partially due to some design problems having unique characteristics, e.g.,
coincidentally having good solutions that overlap with concepts in far sources.
Indeed, Chiu and Shu (2012), who examined multiple design problems, observed
inconsistent effects across problems. Other investigations of design stimuli have
also observed problem variation for effects (Goldschmidt and Smolkov 2006;
Liikkanen and Perttula 2008).

This paper contributes to theories of design inspiration by (1) reporting the
results of a study that addresses these methodological issues to yield clearer
evidence, and (2) (to foreshadow our results) reexamining theories of design
inspiration and conceptual distance in light of accumulating preponderance of
evidence against the Conceptual Leap Hypothesis.

12.2 Methods

12.2.1 Overview of Research Context

The current work is conducted in the context of OpenIDEO (www.openideo.com),
a Web-based crowdsourced innovation platform that addresses a range of social and
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environmental problems (e.g., managing e-waste, increasing accessibility in elec-
tions). The OpenIDEO designers, with expertise in design processes, guide con-
tributors to the platform through a structured design process to produce concepts
that are ultimately implemented for real-world impact (“Impact Stories,” n.d.). For
this study, we focus on three crucial early stages in the process: first, in the
inspiration phase (lasting between 1.5 and 4 weeks, M = 3.1), contributors post
inspirations (e.g., descriptions of solutions to analogous problems and case studies
of stakeholders), which help to define the problem space and identify promising
solution approaches; then, in the concepting phase (lasting the next 2–6 weeks,
m = 3.4), contributors post concepts, i.e., specific solutions to the problem.
Figure 12.1 shows an example concept; it is representative of the typical length and
level of detail in concepts, i.e., *150 words on average, more detail than one or
two words/sentences/sketches, but less detail than a full-fledged design report/
presentation or patent application. Finally, a subset of these concepts is shortlisted
by an expert panel (composed of the OpenIDEO designers and a set of domain

Fig. 12.1 Example concept illustrating the typical amount of detail per concept
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experts/stakeholders) for further refinement, based on their creative potential. In
later stages, these concepts are refined and evaluated in more detail, and then a
subset of them is selected for implementation. We focus on the first three stages
given our focus on creative ideation (the later stages involve many other design
processes, such as prototyping).

The OpenIDEO platform has many desirable properties as a research context for
our work, including the existence of multiple design problems, thousands of con-
cepts and inspirations, substantive written descriptions of ideas to enable efficient
text-based analyses, and records of feedback received for each idea, another critical
factor in design success. A central property for our research question is the explicit
nature of sources of inspiration in the OpenIDEO workflow. The site encourages
contributors to build on others’ ideas. Importantly, when posting concepts or
inspirations, contributors are prompted to cite any concepts or inspirations that
serve as sources of inspiration for their idea. Also, when browsing other concepts/
inspirations, they are also able to see concepts/inspirations the given concept/
inspiration “built upon” (i.e., cited as explicit sources of inspiration; see Fig. 12.2).
This culture of citing sources is particularly advantageous, given that people gen-
erally forget to monitor or cite their sources of inspiration (Brown and Murphy
1989; Marsh et al. 1997), and our goal is to study the effects of source use. While
users might still forget to cite sources, these platform features help ensure higher
rates of source monitoring than other naturalistic ideation contexts. We note that
this operationalization of sources as self-identified citations precludes consideration
of implicit stimulation; however, the Conceptual Leap Hypothesis may be more
applicable to conscious inspiration processes (e.g., analogy, for which conscious
processing is arguably an important defining feature; Schunn and Dunbar 1996).

Fig. 12.2 Depiction of OpenIDEO citation workflow. When posting concepts/inspirations, users
are prompted to cite concepts/inspirations they “build upon” by dragging bookmarked concepts/
inspirations (middle panel) to the citation area (left panel). Users can also search for related
concepts/inspirations at this step (middle panel). These cited sources then show up as metadata for
the concept/inspiration (right panel)
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12.2.2 Sample and Initial Data Collection

The full dataset for this study consists of 2341 concepts posted for 12 completed
challenges by 1190 unique contributors, citing 4557 unique inspirations; 241 (10%)
of these concepts are shortlisted for further refinement. See Table 12.2 for a
description of the 12 challenges (with some basic metadata on each challenge).
Figure 12.3 shows the full-text design brief for two challenges.

With administrator permission, we downloaded all inspirations and concepts
(which exist as individual webpages) and used an HTML parser to extract the
following data and metadata:

(1) Concept/inspiration author (who posted the concept/inspiration)
(2) Number of comments (before the refinement phase)
(3) Shortlist status (yes/no)
(4) List of cited sources of inspiration
(5) Full-text of concept/inspiration.

Fig. 12.3 Full-text of challenge briefs from two OpenIDEO challenges
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Not all concepts cited inspirations as sources. Of the 2341 concepts, 707 (posted
by 357 authors) cited at least one inspiration, collectively citing 2245 unique
inspirations. 110 of these concepts (*16%) were shortlisted (see Table 12.1 for a
breakdown by challenge). This set of 707 concepts is the primary sample for this
study; the others serve as a contrast to examine the value of explicit building at all
on prior sources, and to aid in interpretation of any negative or positive effects of
variations in distance. Because we only collected publicly available data, we do not
have complete information on the expertise of all contributors: however, based on
their public profiles on OpenIDEO, at least 1/3 of the authors in this sample are
professionals in design-related disciplines (e.g., user experience/interaction design,
communication design, architecture, product/industrial design, entrepreneurs and
social innovators, etc.) and/or domain experts or stakeholders (e.g., urban devel-
opment researcher contributing to the vibrant-cities challenge, education policy
researcher contributing to the youth-employment challenge, medical professional
contributing to the bone marrow challenge). Collectively, these authors accounted
for approximately half of the 707 concepts in this study.

Table 12.1 Descriptions and number of posts for OpenIDEO challenges in final analysis sample

Name/description # of
inspirations

# of concepts
(shortlisted)

How might we increase the number of registered bone
marrow donors to help save more lives?

186 71 (7)

How might we inspire and enable communities to take
more initiative in making their local environments better?

160 44 (11)

How can we manage e-waste and discarded electronics to
safeguard human health and protect our environment?

60 26 (8)

How might we better connect food production and
consumption?

266 147 (10)

How can technology help people working to uphold human
rights in the face of unlawful detention?

248 62 (7)

How might we identify and celebrate businesses that
innovate for world benefit and inspire other companies to
do the same?

122 24 (13)

How might we use social business to improve health in
low-income communities?

131 46 (11)

How might we increase social impact with OpenIDEO over
the next year?

67 40 (12)

How might we restore vibrancy in cities and regions facing
economic decline?

558 119 (13)

How might we design an accessible election experience for
everyone?

241 47 (8)

How might we support web entrepreneurs in launching and
growing sustainable global businesses?

88 49 (7)

How can we equip young people with the skills,
information and opportunities to succeed in the world of
work?

118 32 (3)
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We analyze the impact of the distance of inspirations (and not cited concepts)
given our focus on ideation processes during “original” or nonroutine design, where
designers often start with a problem and only “inspirations” (e.g., information about
the problem or potentially related designs) rather than routine design (e.g.,
configuration or parametric design), where designers might be modifying or iter-
ating on existing solutions rather than generating novel ones (Chakrabarti 2006;
Dym 1994; Gero 2000; Ullman 2002). The Conceptual Leap Hypothesis maps most
clearly to nonroutine design.

12.2.3 Measures

12.2.3.1 Creativity of Concepts

We operationalize concept creativity as whether a concept gets shortlisted.
Shortlisting is done by a panel of expert judges, including the original challenge
sponsors, who have spent significant time searching for and learning about existing
approaches, and the OpenIDEO designers, who are experts in the general domain of
creative design, and who have spent considerable time upfront with challenge
sponsors learning about and defining the problem space for each challenge.

An expert panel is widely considered a “gold standard” for measuring the
creativity of ideas (Amabile 1982; Baer and McKool 2009; Brown 1989; Sawyer
2012). Further, we know from conversations with the OpenIDEO team that the
panel’s judgments combine consideration of both novelty and usefulness/
appropriateness (here operationalized as potential for impact; A. Jablow, personal
communication, May 1, 2014), the standard definition of creativity (Sawyer 2012).
Since OpenIDEO challenges are novel and unsolved, successful concepts are dif-
ferent from (and, perhaps more importantly, significantly better than) the existing
unsatisfactory solutions. We use shortlist (rather than win status) given our focus on
the ideation phase in design (vs. convergence/refinement, which happens after
concepts are shortlisted, and can strongly influence which shortlisted concepts get
selected as “winners” for implementation).

12.2.3.2 Conceptual Distance

Measurement Approach

Measuring conceptual distance is a major methodological challenge, especially
when studying large samples of ideation processes (e.g., many designs across many
design problems). The complex and multifaceted nature of typical design problems
can make it difficult to distinguish “within” and “between” domain sources in a
consistent and principled manner. Further, using only a binary scale risks losing
variance information that could be critical for converging on a more precise
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understanding of the effects of conceptual distance (e.g., curvilinear effects across
the continuum of distance). Continuous distance measures are an attractive alter-
native, but can be extremely costly to obtain at this scale, especially for naturalistic
sources (e.g., relatively developed text descriptions vs. simple sketches or
one-to-two sentence descriptions). Human raters may suffer from high levels of
fatigue, resulting in poor reliability or drift of standards.

We address this methodological challenge with probabilistic topic modeling
(Blei 2012; Steyvers and Griffiths 2007), a major computational approach for
understanding large collections of unstructured text. They are similar to other
unsupervised machine learning methods—e.g., K-means clustering, and Latent
Semantic Analysis (Deerwester et al. 1990)—but distinct in that they emphasize
human understanding of not just the relationship between documents in a collec-
tion, but the “reasons” for the hypothesized relationships (e.g., the “meaning” of
particular dimensions of variation), largely because the algorithms underlying these
models tend to produce dimensions in terms of clusters of tightly co-occurring
words. Thus, they have been used most prominently in applications where under-
standing of a corpus, not just information retrieval performance, is a high priority
goal, e.g., knowledge discovery and information retrieval in repositories of scien-
tific papers (Griffiths and Steyvers 2004), describing the structure and evolution of
scientific fields (Blei and Lafferty 2006, 2007), and discovering topical dynamics in
social media use (Schwartz et al. 2013).

We use Latent Dirichlet Allocation (LDA; Blei et al. 2003), the simplest topic
model. LDA assumes that documents are composed of a mixture of latent “topics”
(occurring with different “weights” in the mixture), which in turn generate the
words in the documents. LDA defines topics as probability distributions over
words: for example, a “genetics” topic can be thought of as a probability distri-
bution over the words {phenotype, population, transcription, cameras, quarter-
backs}, such that words closely related to the topic {phenotype, population,
transcription} have a high probability in that topic, and words not closely related to
the topic {cameras, quarterbacks} have a very low probability. Using Bayesian
statistical learning algorithms, LDA infers the latent topical structure of the corpus
from the co-occurrence patterns of words across documents. This topical structure
includes 1) the topics in the corpus, i.e., the sets of probability distributions over
words, and 2) the topic mixtures for each document, i.e., a vector of weights for
each of the corpus topics for that document. We can derive conceptual similarity
between any pair of documents by computing the cosine between their topic-weight
vectors. In essence, documents that share dominant topics in similar relative pro-
portions are the most similar.

Here, we used the open-source MAchine Learning for LanguagE Toolkit
(MALLET; McCallum 2002) to train an LDA model with 400 topics for all doc-
uments in the full dataset, i.e., 2341 concepts, 4557 inspirations, and 12 challenge
briefs (6910 total documents). Additional technical details on the model-building
procedure are available in Appendix 1. Resulting cosines between inspirations and
the challenge brief ranged from 0.01 to 0.91 (M = 0.21, SD = 0.18), a fairly typical
range for large-scale information retrieval applications (Jessup and Martin 2001).
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Validation

Since we use LDA’s measures of conceptual distance as a substitute for human
judgments, we validate the adequacy of our topic model using measures of fit with
human similarity judgments on a subset of the data by trained human raters.

Five trained raters used a Likert-type scale to rate 199 inspirations from one
OpenIDEO challenge for similarity to their challenge brief, from 1 (very dissimilar)
to 6 (extremely similar). Raters were given the intuition that the rating would
approximately track the proportion of “topical overlap” between each inspiration
and the challenge brief, or the extent to which they are “about the same thing.” The
design challenge context was explicitly deemphasized, so as to reduce the influence
of individual differences on perceptions of the “relevance” of sources of inspiration.
Thus, the raters were instructed to treat all the documents as “documents” (e.g., an
article about some topics, vs. “problem solution”) and consciously avoid judging
the “value” of the inspirations, simply focusing on semantic similarity. Raters listed
major topics in the challenge brief and evaluated each inspiration against those
major topics. To ensure internal consistency, the raters also sorted the inspirations
by similarity after every 15–20 judgments. They then inspected the rank ordering
and composition of inspirations at each point in the scale, and made adjustments if
necessary (e.g., if an inspiration previously rated as “1” now, in light of newly
encountered inspirations, seemed more like a “2” or “3”). Although the task was
difficult, the mean ratings across raters had an acceptable aggregate consistency
intra-class correlation coefficient [ICC(2,5)] of 0.74 (mean inter-coder correla-
tion = 0.36). LDA cosines correlated highly, at r = 0.51, 95% CI = [0.40, 0.60],
with the continuous human similarity judgments (see Fig. 12.4A). We note that this
correlation is better than the highest correlation between human raters (r = 0.48),
reinforcing the value of automatic coding methods for this difficult task.

For comparability with prior work, we also measure fit with binary (within- vs.
between-domain) distance ratings. Two raters also classified 345 inspirations from a
different challenge as either within- or between-domain. Raters first collaboratively
defined the problem domain, focusing on the question, “What is the problem to be
solved?” before rating inspirations. Within-domain inspirations were information
about the problem (e.g., stakeholders, constraints) and existing prior solutions for
very similar problems, while between-domain inspirations were information/
solutions for analogous or different problems. Reliability for this measure was
acceptable, with an overall average kappa of 0.78 (89% agreement). All dis-
agreements were resolved by discussion. Similar to the continuous similarity
judgments, the point biserial correlation between the LDA-derived cosine and the
binary judgments was also high, at 0.50, 95% CI = [0.42, 0.58]. The mean cosine
to the challenge brief was also higher for within-domain (M = 0.49, SD = 0.25,
N = 181) vs. between-domain inspirations (M = 0.23, SD = 0.20, N = 164),
d = 1.16, 95% CI = [1.13, 1.19] (see Fig. 12.4b), further validating the LDA
approach to measuring distance. Figure 12.5 shows examples of a near and far
inspiration (from the e-waste challenge), along with the top 3 LDA topics (repre-
sented by the top 5 words for that latent topic), computed cosine vs. its challenge
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brief, and human similarity rating. The top 3 topics for the challenge brief are
{waste, e, recycling, electronics, electronic}, {waste, materials, recycling, recycled,
material}, and {devices, electronics, electronic, device, products}, distinguishing
e-waste, general recycling, and electronics products topics. These examples illus-
trate how LDA is able to effectively extract the latent topical mixture of the
inspirations from their text (inspirations with media also include textual descrip-
tions of the media, mitigating concerns about loss of semantic information due to
using only text as input to LDA) and also capture intuitions about variations in
conceptual distance among inspirations: a document about different ways of
assigning value to possessions is intuitively conceptually more distant from the
domain of e-waste than a document about a prior effort to address e-waste.

The near and far examples depicted in Fig. 12.5 also represent the range of
conceptual distance measured in this dataset, with the near inspiration’s cosine of
0.64 representing approximately the 90th percentile of similarity to the challenge
domain, and the far inspiration’s cosine of 0.01 representing approximately the 10th
percentile of similarity to the challenge domain. Thus, the range of conceptual
distance of inspirations in this data spans approximately from sources that are very
clearly within the domain (e.g., an actual solution for the problem of electronic waste
involving recycling of materials) to sources that are quite distant, but not obviously
random (e.g., an observation of how people assign emotional value to relationships
and artifacts). This range most likely excludes the “too far” example designs studied
in Fu et al. (2013) or the “opposite stimuli” used in Chiu and Shu (2012).

Final Distance Measures

The challenge briefs varied in length and specificity across challenges, as did mean
raw cosines for inspirations. But, these differences in mean similarity were much
larger, d = 1.90, 95% CI = [1.85–1.92] (for 80 inspirations from 4 challenges with
maximally different mean cosines), than for human similarity judgments (coded

Fig. 12.4 a Scatterplot of LDA cosines vs. averaged human continuous similarity judgments for
inspirations in the e-waste challenge. b Mean cosine against the challenge brief for within—versus
between-domain inspirations
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separately but with the same methodology as before), d = 0.18, 95% CI = [–0.05 to
0.43]. This suggested that between-challenge differences were more an artifact of
variance in challenge brief length/specificity. Thus, to ensure meaningful compa-
rability across challenges, we normalized the cosines by computing the z-score for
each inspiration’s cosine relative to other inspirations from the same challenge
before analyzing the results in the full dataset. However, similar results are found
using raw cosines, but with more uncertainty in the statistical coefficient estimates.

We then subtracted the cosine z-score from zero such that larger values meant
more distant. From these “reversed” cosine z-scores, two different distance mea-
sures were computed to tease apart possibly distinct effects of source distance:
(1) max distance (DISTMAX), i.e., the distance of a concept’s furthest source from the
problem domain and (2) mean distance (DISTMEAN) of the concept’s sources.
DISTMAX estimates “upper bounds” for the benefits of distance: do the best ideas
really come from the furthest sources? DISTMEAN capitalizes on the fact that many
concepts relied on multiple inspirations and estimates the impact of the relative
balance of relying on near vs. far sources (e.g., more near than far sources, or vice
versa).

12.2.3.3 Control Measures

Given our correlational approach, it is important to identify and rule out or adjust
for other important factors that may influence the creativity of concepts (particularly

Fig. 12.5 Topics found by LDA within examples of near and far inspirations for the e-waste
challenge
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in the later stages, where prototyping and feedback are especially important) and
may be correlated with the predictor variables.

Feedback. Given the collaborative nature of OpenIDEO, we reasoned that
feedback in the form of comments (labeled here as FEEDBACK) influences suc-
cess. Comments can offer encouragement, raise issues/questions, or provide specific
suggestions for improvement, all potentially significantly enhancing the quality of
the concept. Further, feedback may be an alternate pathway to success via source
distance, in that concepts that build on far sources may attract more attention and
therefore higher levels of feedback, which then improve the quality of the concept.

Quality of cited sources. Concepts that build on existing high-quality concepts
(e.g., those who end up being shortlisted or chosen as winners) have a particular
advantage of being able to learn from the mistakes and shortcomings, good ideas,
and feedback in these high-quality concepts. Thus, as a proxy measure of quality,
the number of shortlisted concepts a given concept builds upon (labeled
SOURCESHORT) could be a large determinant of a concept’s success.

12.2.4 Analytic Approach

We are interested in predicting the creative outcomes of 707 concepts, posted by
357 authors for 12 different design challenges. Authors are not cleanly nested
within challenges, nor vice versa; our data are cross-classified, with concepts
cross-classified within both authors and challenges (see Fig. 12.6). This cross-
classified structure violates assumptions of uniform independence between
concepts: concepts posted by the same author or within the same challenge may be
more similar to each other. Failing to account for this nonindependence could lead
to overestimates of the statistical significance of model estimates (i.e., make
unwarranted claims of statistically significant effects). This issue is exacerbated

Fig. 12.6 Illustrated cross-classified structure of the data
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when testing for small effects. Additionally, modeling between-author effects
allows us to separate author effects (e.g., higher/lower creativity) from the impact of
sources on individual concepts. Thus, we employ generalized linear mixed models
(also called hierarchical generalized linear models) to model both fixed effects
(of our independent and control variables) and random effects (potential variation of
the outcome variable attributable to author- or challenge-nesting and also potential
between-challenge variation in the effect of distance) on shortlist status (a binary
variable, which requires logistic, rather than linear, regression).

An initial model predicting the outcome with only the intercept and
between-challenge and -author variation confirms the presence of significant non-
independence, with between-author and between-challenge variation in shortlist
outcomes estimated at 0.44, and 0.50, respectively. The intra-class correlations for
author-level and challenge-level variance in the intercept are *0.11 and 0.13,
respectively, well above the cutoff recommended by Raudenbush and Bryk (2002).1

12.3 Results

12.3.1 Descriptive Statistics

On average, 16% of concepts in the sample get shortlisted (see Table 12.2).
DISTMEAN is centered approximately at 0, reflecting our normalization procedure.
Both DISTMAX and DISTMEAN have a fair degree of negative skew. SOURCESHORT
and FEEDBACK have strong positive skew (most concepts either have few com-
ments or cite 0 or 1 shortlisted concepts).

There is a strong positive relationship between DISTMAX and DISTMEAN (see
Table 12.3). All variables have significant bivariate correlations with SHORTLIST
except for DISTMAX; however, since it is a substantive variable of interest, we will
model it nonetheless. Controlling for other variables might enable us to detect
subtle effects.

12.3.2 Statistical Models

We estimated separate models for the effects of DISTMAX and DISTMEAN, each con-
trolling for challenge-and author-nesting, FEEDBACK, and SHORTSOURCE.

1Although concept-level variance is not estimated in mixed logistic regressions, we follow Zeger
et al. (1988) suggestion of (15/16)p3/3 as a reasonable approximation for residual level-1 variance
(the concept level in our case).
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12.3.2.1 Max Distance

Our model estimated an inverse relationship between DISTMAX and Pr (shortlist),
such that a 1-unit increase in DISTMAX predicted a 0.33 decrease in the log-odds of
being shortlisted, after accounting for the effects of FEEDBACK, SHORTSOURCE,
and challenge- and author-level nesting, p < .05 (see Appendix 2 for technical
details on the statistical models). However, this coefficient was estimated with
considerable uncertainty, as indicated by the large confidence intervals (coefficient
could be as small as −0.06 or as large as −0.60); considering also the small
bivariate correlation with SHORTLIST, we are fairly certain that the “true” coeffi-
cient is not positive (contra the Conceptual Leap Hypothesis), but we are quite
uncertain about its magnitude.

Figure 12.7 visually displays the estimated relationship between DISTMAX and Pr
(shortlist), evaluated at mean values of feedback and shortlisted sources. To aid
interpretation, we also plot the predicted Pr (shortlist) for concepts that cite no
sources using a horizontal gray bar (bar width indicates uncertainty in estimate of Pr
(shortlist)): concepts with approximately equivalent amounts of feedback (i.e., mean
of 8.43) have a predicted Pr (shortlist = 0.09, 95% CI = [0.07 to 0.11]; using a
logistic model, the coefficient for “any citation” (controlling for feedback) is 0.31,
95% CI = [0.01 to 0.62]). This bar serves as an approximate “control” group,
allowing us to interpret the effect not just in terms of the effects of far sources
relative to near sources, but also in comparison with using no sources. Comparing
the fitted curve with this bar highlights how the advantage of citing versus not citing
inspirations seems to be driven mostly by citing relatively near inspirations: Pr
(shortlist) for concepts that cite far inspirations converges on that of no-citation

Table 12.2 Descriptive statistics

Variable Valid N Min Max Mean Median SD

SHORTLIST 707 0.00 1.00 0.16 0.00 0.36

DISTMAX 707 −3.85 1.90 0.45 0.76 0.85

DISTMEAN 707 –3.85 1.67 –0.10 0.01 0.85

SOURCESHORT 707 0 11 0.51 0 0.96

FEEDBACK 707 0 67 8.43 6 9.45

Table 12.3 Bivariate correlations

Variable DISTMAX DISTMEAN SOURCESHORT FEEDBACK

SHORTLIST –0.05 –0.10* 0.11** 0.33***

DISTMAX 0.77*** 0.05 0.07 m

DISTMEAN –0.05 0.01

SOURCESHORT 0.12**
mp < .10, *p < .05, **p < .01, ***p < .001
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concepts. We emphasize again that despite the uncertainty in the degree of the
negative relationship between DISTMAX and Pr (shortlist), the data do not support an
inference that the best ideas are coming from the farthest inspirations: rather,
relying on nearer rather than farther sources seems to lead to more creative design
ideas. Importantly, this pattern of results was robust across challenges on the
platform: the model estimated essentially zero between-challenge variation in the
slope of DISTMAX. v

2(2) = 0.05, p = 0.49 (see Fig. 12.8).

Fig. 12.7 Model-fitted relationship between DISTMAX and Pr (shortlist), evaluated at mean values
of feedback and source shortlist. Grayed lines are fits with upper and lower limits for 95% CI for
effect of DISTMAX

Fig. 12.8 Overall and by-challenge model-fitted relationship between DISTMAX and Pr (shortlist).
Fitted values evaluated at mean values of feedback and source shortlist. Grayed lines are fits for
each individual challenge
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12.3.2.2 Mean Distance

Similar results were obtained for DISTMEAN. There was a robust inverse relationship
between DISTMEAN and Pr (shortlist), such that a 1-unit increase in DISTMEAN was
associated with a decrease of approximately 0.40 in the log-odds of being short-
listed, p < .05. The estimates of this effect were obtained with similarly low pre-
cision regarding the magnitude of the effect, with 95% CI upper limit of at most
B = −0.09 (but as high as −0.71). As shown in Fig. 12.9, as DISTMEAN increases, Pr
(shortlist) approaches that of non-citing concepts, again suggesting (as with
DISTMAX) that the most beneficial sources appear to be ones that are relatively close
to the challenge domain. Again, as with DISTMAX, this pattern of results did not vary
across challenges: our model estimated essentially zero between-challenge variation
in the slope of DISTMEAN, v

2(2) = 0.07, p = .48 (see Fig. 12.10).

12.4 Discussion

12.4.1 Summary and Interpretation of Findings

This study explored how the inspirational value of sources varies with their con-
ceptual distance from the problem domain along the continuum from near to far.
The study’s findings provide no support for the notion that the best ideas come from
building explicitly on the farthest sources. On the contrary, the benefits of building

Fig. 12.9 Model-fitted relationship between DISTMEAN and Pr (shortlist), evaluated at mean values
of feedback and source shortlist. Grayed lines are fits with upper and lower limits for the 95% CI
for the effect of DISTMEAN
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explicitly on inspirations seem to accrue mainly for concepts that build more on
near than far inspirations. Importantly, these effects were consistently found in all of
the challenges, addressing concerns raised about potential problem variation, at
least among nonroutine social innovation design problems.

12.4.2 Caveats and Limitations

Some caveats should be discussed before addressing the implications of this study.
First, the statistical patterns observed here are conditional: i.e., we find an inverse
relationship between conceptual distance of explicitly cited inspiration sources and
Pr (shortlist). Our data are silent on the effects of distance for concepts that did not
cite sources (where lack of citation could indicate forgetting of sources or lack of
conscious building on sources).

There is a potential concern over range restriction or attrition due to our reliance
on self-identified sources. However, several features of the data help to ameliorate
this concern. First, concepts that did not cite sources were overall of lower quality;
thus, it is unlikely that the inverse effects of distance are solely due to attrition (e.g.,
beneficial far inspirations not being observed). Second, the integration of citations
and building on sources into the overall OpenIDEO workflow and philosophy of
ideation also helps ameliorate concerns about attrition of far sources. Finally, the
dataset included many sources that were quite far away, providing sufficient data to
statistically test the effects of relative reliance on far sources (even if they are
overall underreported). Nevertheless, we should still be cautious about making
inferences about the impact of unconscious sources (since sources in this data are
explicitly cited and therefore consciously built upon). However, as we note in the

Fig. 12.10 Overall and by-challenge model-fitted relationship between DISTMEAN and Pr
(shortlist). Fitted values evaluated at mean values of feedback and source shortlist. Grayed lines
are fits for each individual challenge
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methods, the Conceptual Leap Hypothesis maps most cleanly to conscious inspi-
ration processes (e.g., analogy).

Finally, some may be concerned that we have not measured novelty here.
Conceivably, the benefits of distance may only be best observed for the novelty of
ideas, and not necessarily quality, consistent with some recent work (Franke et al.
2013). However, novelty per se does not produce creativity; we contend that to
fully understand the effects of distance on design creativity, we must consider its
impacts on both novelty and quality together (as our shortlist measure does).

12.4.3 Implications and Future Directions

Overall, our results consistently stand in opposition to the Conceptual Leap
Hypothesis. In tandem with prior opposing findings (reviewed in the introduction),
our work lends strength to alternative theories of inspiration by theorists like
Perkins (1983), who argues that conceptual distance does not matter, and Weisberg
(2009, 2011), who argues that within-domain expertise is a primary driver of
creative cognition. We should be clear that our findings do not imply that no
creative ideas come from far sources (indeed, in our data, some creative ideas did
come from far sources); rather, our data suggest that the most creative design ideas
are more likely to come from relying on a preponderance of nearer rather than
farther sources. However, our data do suggest that highly creative ideas can often
come from relying almost not at all on far sources (as evidenced by the analyses
with maximum distance of sources). These good ideas may arise from iterative,
deep search, a mechanism for creative breakthroughs that may be often overlooked
but potentially at least as important as singular creative leaps (Chan and Schunn
2014; Dow et al. 2009; Mecca and Mumford 2013; Rietzschel et al. 2007; Sawyer
2012; Weisberg 2011). In light of this and our findings, it may be fruitful to
deemphasize the privileged role of far sources and mental leaps in theories of design
inspiration and creative cognition.

How might this proposed theoretical revision be reconciled with the relatively
robust finding that problem-solvers from outside the problem domain can often
produce the most creative ideas (Hargadon and Sutton 1997; Franke et al. 2013;
Jeppesen 2010)? Returning to our reflections on the potential costs of processing far
sources, one way to reconcile the two sets of findings might be to hypothesize that
expertise in the distant source domain enables the impact of distant ideas by
bypassing the cognitive costs of deeply understanding the far domain, and filters out
shallow inferences that are not likely to lead to deep insights. Hargadon and Sutton
(1997) findings from their in-depth ethnographic study of the consistently inno-
vative IDEO design firm are consistent with an expertise-mediation claim: the
firm’s cross-domain-inspired innovations appeared to flow at the day-to-day process
level mainly from deep immersion of its designers in multiple disciplines, and
“division of expertise” within the firm, with brainstorms acting as crucial catalysts
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for involving experts from different domains on projects. However, studies directly
testing expertise-mediation are scarce or nonexistent.

Further, the weight of the present data, combined with prior studies showing no
advantage of far sources, suggests that considering alternative mechanisms of
outside-domain advantage may be more theoretically fruitful: for instance, perhaps
the advantage of outside-domain problem-solvers arises from the different per-
spectives they bring to the problem—allowing for more flexible and alternative
problem representations, which may lead to breakthrough insights (Knoblich et al.
1999; Kaplan and Simon 1990; Öllinger et al. 2012). Domain outsiders may also
have a looser attachment to the status quo or prior successful solutions by virtue of
being a “newcomer” to the domain (Choi and Levine 2004)—leading to higher
readiness to consider good ideas that challenge existing assumptions within the
domain—rather than knowledge and transfer of different solutions per se.

Finally, it would be interesting to examine potential moderating influences of
source processing strategies. In our data, closer sources were more beneficial, but
good ideas also did come from far sources; however, as we have argued, it can be
more difficult to convert far sources into viable concepts. Are there common
strategies for effective conversion of far sources, and are they different from
strategies for effectively building on near sources? For example, one effective
strategy for building on sources while avoiding fixation is to use a schema-based
strategy (i.e., extract and transfer abstract functional principles rather than concrete
solution features; Ahmed and Christensen 2009; Yu et al. 2014). Are there pro-
cessing strategies that expert creative designers apply uniquely to far sources (e.g.,
to deal with potentially un-alignable differences)? Answering this question can shed
further light on the variety of ways designers can be inspired by sources to produce
creative design ideas.

We close by noting the methodological contribution of this work. While we are
not the first to use topic modeling to explore semantic meaning in a large collection
of documents, we are the first to our knowledge to validate this method in the
context of large-scale study of design ideas. We have shown that the topic model
approach adequately captures human intuitions about the semantics of the design
space, while providing dramatic savings in cost: indeed, such an approach can make
more complex research questions (e.g., exploring pairwise distances between
design idea or, tracing conceptual paths/moves in a design ideation session) much
more feasible without sacrificing too much quality. We believe this approach can be
a potentially valuable way for creativity researchers to study the dynamics of idea
generation at scale, while avoiding the (previously inevitable) tradeoff between
internal validity (e.g., having adequate statistical power) and external validity (e.g.,
using real, complex design problems and ideas instead of toy problems).
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Appendix 1: Topic Model Technical Details

Document Preprocessing

All documents were first tokenized using the TreeBank Tokenizer from the
open-source Natural Language Tool Kit Python library (Bird et al. 2009). To
improve the information content of the document text, we removed a standard list
of stopwords, i.e., highly frequent words that do not carry semantic meaning on
their own (e.g., “the”, “this”). We used the open-source MAchine Learning for
LanguagE Toolkit’s (MALLET; McCallum 2002) stopword list.

Model Parameter Selection

We used MALLET to train our LDA model, with asymmetric priors for the
topic-document and topic-word distributions, which allows for some words to be
more prominent than others and some topics to be more prominent than others,
typically improving model fit and performance (Wallach et al. 2009). Priors were
optimized using MALLET’s in-package optimization option.

LDA requires that K (the number of topics) be prespecified by the modeler.
Model fit typically improves with K, with diminishing returns past a certain point.
Intuitively, higher K leads to finer grained topical distinctions, but too high K may
lead to uninterpretable topics; on the other hand, too low K would yield too general
topics. Further, traditional methods of optimizing K (computing “perplexity”, or the
likelihood of observing the distribution of words in the corpus given a topic model
of the corpus) do not always correlate with human judgments of model quality (e.g.,
domain expert evaluations of topic quality; Chang et al. 2009).

We explored the following settings of K: [12, 25, 50, 100, 200, 300, 400, 500,
600, 700]. Because the optimization algorithm for the prior parameters is nonde-
terministic, models with identical K might produce noticeably different topic model
solutions, e.g., if the optimization search space is rugged, the algorithm might get
trapped in different local maxima. Therefore, we ran 50 models at each K, using
identical settings (i.e., 1000 iterations of the Gibbs sampler, internally optimizing
parameters for the asymmetric priors). Figure 12.11 shows the mean fit (with both
continuous and binary similarity judgments) at each level of K.

Model fit is generally fairly high at all levels of K, with the continuous judg-
ments tending to increase very slightly with K, tapering out past 400. Fit with
binary judgments tended to decrease (also very slightly) with K, probably reflecting
the decreasing utility of increasingly finer grained distinctions for a binary same/
different classification. Since we wanted to optimize for fit with human judgments
of conceptual distance overall, we selected the level of K at which the divergent
lines for fit with continuous and binary judgments first begin to cross (i.e., at
K = 400). Subsequently, we created a combined “fit” measure (sum of the
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correlation coefficients for fit vs. continuous and binary judgments), and selected
the model with K = 400 that had the best overall fit measure. However, as we report
in the next section, the results of our analyses are robust to different settings of K.

Appendix 2: Statistical Modeling Technical Details

Statistical Modeling Approach

All models were fitted using the lme4 package (Bates et al. 2013) in R (R Core
Team 2013), using full maximum likelihood estimation by the Laplace approxi-
mation. The following is the general structure of these models (in mixed model
notation):

gi authorj challengekð Þ ¼ c00 þ
X

q

cq0Xqi þ u0authorj þ u0challengek

where

• gi authorj challengekð Þ is the predicted log-odds of being shortlisted for the ith concept
posted by the jth author in the kth challenge

• c00 is the grand mean log-odds for all concepts
• cq0 is a vector of q predictors (q = 0 for our null model)
• u0authorj and u0challengek are the random effects contribution of variation

between-authors and between-challenges for mean c00 (i.e., how much a given
author or challenge varies from the mean).

A baseline model with only control variables and variance components was first
fitted. Then, for the models for both DISTMAX and DISTMEAN, we first estimated a

Fig. 12.11 Mean fit (with ± 1 SE) versus human judgments for LDA cosines by level of K
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model with a fixed effect of distance, and then a random effect (to test for problem
variation). These random slopes models include the additional parameter u1challengek
that models the between-challenge variance component for the slope of distance.

Model Selection

Estimates and test statistics for each step in our model-building procedure are
shown in Tables 12.3 and 12.4. We first fitted a model predicting Pr (shortlist) with
our control variables to serve as a baseline for evaluating the predictive power of
our distance measures. The baseline model estimates a strong positive effect of
FEEDBACK, estimated with high precision: each additional comment added 0.10
[0.07, 0.12] to the log-odds of being shortlisted, p < .001. The model also estimated
a positive effect of SHORTSOURCE, B = 0.14 [–0.08, 0.36] but with poor preci-
sion, and falling short of conventional statistical significance, p = 0.21; neverthe-
less, we leave it in the model for theoretical reasons. The baseline model is a good
fit to the data, reducing deviance from the null model (with no control variables) by
a large and statistically significant amount, v2(1) = 74.35, p = .00.

For the fixed slope model for DISTMAZ, adding the coefficient for results in a
significant reduction in deviance from the baseline model, v2(2) = 0.13, p = .47.

Table 12.4 Model estimates and fit statistics for cross-classified multilevel logistic regressions of
Pr (shortlist) on DISTMAX, with comparison to baseline model (controls only)

Baseline model
(controls only)

DISTMAX, fixed slope DISTMAX,
random slope

Fixed effects

c00, intercept –2.66[−3.28, −2.03] –2.57[−3.29, −2.05] –2.57[−3.29, −2.05]

c10, FEEDBACK 0.09***[0.07, 0.12] 0.10***[0.07, 0.12] 0.10***[0.07, 0.12]

c20,
SOURCESHORT

0.14[−0.08, 0.36] 0.15[−0.07, 0.38] 0.15[−0.07, 0.38]

c30, DISTMAX –0.33*[−0.60, −0.06] –0.32*[−0.59,
−0.06]

Random effects

u0authorj for
intercept

0.29 0.31 0.32

u0challengek for
intercept

0.75 0.76 0.74

u3challengek for
DISTMAX

0.00

Model fit statistics

Deviance 511.39 506.04 505.99

AIC 521.39 518.04 521.99
mp < .10, *p < .05, **p < .01, ***p < .001, 95% CI (Wald) = [lower, upper]
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The random slope model did not significantly reduce deviance in comparison with
the simpler fixed slope model, v2(2) = 0.05, p = .49 (p-value is halved, heeding
common warnings that a likelihood ratio test discriminating two models that differ
on only one variance component may be overly conservative, e.g., Pinheiro and
Bates 2000). Also, the Akaike Information Criterion (AIC) increases from the fixed
to random slope model. Thus, we select the fixed slope model (i.e., no problem
variation) as our best estimate of the effects of DISTMAX. This final model has an
overall deviance reduction versus null at v2(3) = 79.71, p = .00.

We used the same procedure for model selection for the DISTMEAN models. The
fixed slope model results in a small but significant reduction in deviance from the
baseline model, v2(1) = 6.27, p = .01. Adding the variance component for the slope
of DISTMEAN increases the AIC, and does not significantly reduce deviance,
v2(2) = 0.07, p = .48 (again, p-value here is halved to correct for overconserva-
tiveness). Thus, again we select the fixed slope model as our final model for the
effects of DISTMEAN. This final model has an overall reduction in deviance from the
null model of about v2(3) = 80.61, p = .00 (Table 12.5).

Robustness and Sensitivity

We tested the robustness of our coefficient estimates by calculating outlier influence
statistics using the influence.measures method in the stats package in R, applied to

Table 12.5 Model estimates and fit statistics for cross-classified multilevel logistic regressions of
Pr (shortlist) on DISTMEAN, with comparison to baseline model (controls only)

Baseline model
(controls only)

DISTMEAN, fixed
slope

DISTMEAN, random
slope

Fixed effects

c00, intercept –2.66[−3.28, −2.03] –2.74[−3.36, −2.11] –2.74[−3.36, −2.11]

c10, FEEDBACK 0.09***[0.07, 0.12] 0.10***[0.07, 0.12] 0.10***[0.07, 0.12]

c20,
SOURCESHORT

0.14[−0.08, 0.36] 0.13[−0.09, 0.35] 0.13[−0.09, 0.35]

c30, DISTMEAN –0.40*[−0.71, −0.09] –0.40*[−0.73, −0.07]

Random effects

u0authorj for intercept 0.29 0.31 0.30

u0challengek for
intercept

0.75 0.73 0.73

u3challengek for
DISTMEAN

0.03

Model fit statistics

Deviance 511.39 505.13 505.06

AIC 521.39 517.13 521.06
mp < .10, *p < .05, **p < .01, ***p < .001, 95% CI (Wald) = [lower, upper]
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logistic regression model variants of both the DISTMEAN and DISTMAX models (i.e.,
without author- and challenge-level variance components; coefficient estimates are
almost identical to the fixed slope multilevel models): DFBETAS and Cook’s
Distance measures were below recommended thresholds for all data points (Fox
2002).

Addressing potential concerns about sensitivity to topic model parameter set-
tings, we also fitted the same fixed slope multilevel models using recomputed
conceptual distance measures for the top 20 (best-fitting) topic models at K = 200,
300, 400, 500, and 600 (total of 100 models). All models produced negative esti-
mates for the effect of both DISTMEAN and DISTMAX, with poorer precision for lower
K. Thus, our results are robust to different settings of K for the topic models.

We also address potential concerns about interactions with expertise by fitting a
model that allowed the slope of distance to vary by authors. In this model,
the overall mean effect of distance remained almost identical (B = –0.46), and the
model’s fit was not significantly better than the fixed slope model, v2(3) = 3.44,
p = .16, indicating a lack of statistically significant between-author variability for
the slope of distance.

Finally, we also fitted models that considered not just immediately cited inspi-
rations, but also indirectly cited inspirations (i.e., inspirations cited by cited
inspirations), and they too yielded almost identical coefficient estimates and con-
fidence intervals.
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