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Abstract. Indoor context information such as user positions and activi-
ties is essential to implement a variety of context-aware applications such
as a home automation system and a surveillance system for an indepen-
dently living elderly person. Due to the recent development of wireless
communication technologies, indoor context recognition using Wi-Fi sig-
nals has been attracting attention. This paper introduces our studies
on recognition of indoor context information based on Wi-Fi signals: (1)
easy-to-install indoor positioning, (2) accurate state estimation of indoor
objects, and (3) position-independent gesture recognition.
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1 Introduction

1.1 Background

In the ubicomp research community, estimation of indoor context such as user
indoor locations and activities and conditions of an indoor environment is one of
the most important research tasks. Figure 1 shows examples of context informa-
tion that many ubicomp studies focus on, and an example application based on
the context information. The context information that the ubicomp researchers
focus on are roughly categorized into environmental conditions and user con-
text. Moreover, the user context are roughly categorized into user positions,
user activities and user conditions. These context information enables us to pro-
vide context-aware services such as a home automation system, which adaptively
controls home appliances according to the activities of a user or changes in the
environment, and a surveillance system for an independently living elderly per-
son, which observes activities of the elderly person or detects dangerous actions
such as falling. In Fig. 1, a context recognition system obtains an environmen-
tal condition such as an opened state of a window and user context such as a
running activity of the user at coordinates (z’,y’), and then a home automation
system asks an air-conditioner to direct airflow to (z/,y’).
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Fig. 1. Example of context information and applications

Typical existing approaches of indoor context recognition employ sensing
devices including special devices emitting signals such as RF signals and ultra-
sound [12], acceleration sensor devices attached to the wrist of a user [6] or
indoor everyday objects [14] and a surveillance camera [5]. However, these meth-
ods have the following problems: (1) the special devices are expensive in many
cases, (2) the user should always wear the sensor devices, (3) the installation
and the maintenance costs for the sensing system are high, and (4) capturing
camera images invades privacy and makes the user uncomfortable. Owing to the
widespread of the wireless communications, indoor context recognition using Wi-
Fi signals is now attracting attention. Wi-Fi devices are now very popular with
the price reduction of these devices and Wi-Fi devices have been already installed
in many indoor environments. Therefore, an indoor context recognition system
using Wi-Fi signals can be installed inexpensively. Indoor context recognition
using Wi-Fi signals employs signals transmitted and received by a smartphone
carried by a user or computers and access points installed in the indoor environ-
ment. Because the propagation of Wi-Fi signals is affected by human movements
and environmental changes, the context information can be estimated from the
changes in the propagation information of Wi-Fi signals.

One of the propagation information used by many studies on indoor context
recognition based on Wi-Fi signals is received signal strength indicator (RSSI).
RSSI is the signal strength observed by a receiver, and RSSI is obtained as a real
value for each Wi-Fi packet. Furthermore, due to the recent development of the
wireless communication technologies, channel state information (CSI) has been
available as the propagation information of Wi-Fi signals. The Wi-Fi communica-
tions standardized in IEEE 802.11n employ two characteristic techniques: multiple
input and multiple output (MIMO), which uses multiple antennas for transmitting
and receiving signals, and orthogonal frequency division multiplexing (OFDM),
which uses multiple subcarriers whose frequencies are different from each other.
CSI describes attenuation and phase information of Wi-Fi signals for each subcar-
rier in OFDM as well as for each transmit and receive antenna in MIMO.

As mentioned above, context information studied in indoor context recog-
nition using Wi-Fi signals is roughly categorized into user positions and user
activities. Some researchers proposed methods for fall detection [16], gesture
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recognition [3] and detection of vital sign such as respiration [1] and heart
beats [2] as well as activity recognition [15] using Wi-Fi signals. The methods for
indoor localization and activity recognition using Wi-Fi signals are categorized
into device-bound methods and device-free passive methods. The device-bound
methods require a user to carry a Wi-Fi device such as a smartphone. In con-
trast, the device-free passive methods employ only computers and access points
installed in an environment, and does not require a user to wear any devices. A
typical application of the device-bound methods for indoor localization is indoor
navigation because a user is assumed to carry a device such as a smartphone,
which can be installed with a navigation app. The device-bound methods for
activity recognition that attempt to detect slight human movements such as
respiration and heart beats, assume that a Wi-Fi device is located close to the
human body, resulting in the significant effects on Wi-Fi propagation by the
human movements. The device-free passive methods for indoor localization and
activity recognition can be useful to implement a home automation system and
a surveillance system such as intrusion detection and dangerous action detection
because of their ability of transparent sensing.

1.2 Motivation

In the existing methods for context recognition, the burden of the system instal-
lation and daily use of the system is large because the system employs expensive
special devices or the system requires to attach sensor devices to the user wrist or
target objects. Nowadays, because smartphones and inexpensive Wi-Fi devices
have been widely available, we can reduce the burden on the user in the following
context recognition methods using these devices.

Indoor Localization. Many existing indoor localization methods employ cam-
era images [5] or special devices which emit signals such as ultrasound [12]. How-
ever, capturing camera images invades privacy of a user and the special devices
are typically expensive, making it difficult to install these localization systems
into a home environment. In contrast, because Wi-Fi devices are inexpensive
and some Wi-Fi devices have been already installed in the environment in many
cases, we can construct an inexpensive and privacy-aware indoor localization
system using Wi-Fi signals.

However, in the prior studies on indoor localization using Wi-Fi signals, the
user should collect training data corresponding to the propagation information
of Wi-Fi signals while recording his/her position, i.e., ground truth. In addition,
these methods require a lot of training data collected in the environment, result-
ing in the high installation cost of the localization system. Therefore, this study
tries to reduce the burden of collecting training data in the environment by
transferring training data collected in other environments for device-free passive
localization.

Activity Recognition. In the existing methods for activity recognition, sensor
devices such as a smartwatch attached to the wrist of a user place a burden
on the user. In contrast, because activity recognition methods based on Wi-Fi
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signals employ a smartphone carried by a person or Wi-Fi devices installed in
the environment, the user does not feel burdensome.

Prior studies on activity recognition using Wi-Fi signals employ frequency
analysis of the propagation information to recognize activities with periodic
movements such as walking or employ anomaly detection techniques to detect
falling. Meanwhile, many prior studies on gesture recognition using Wi-Fi sig-
nals require training data (i.e. Wi-Fi signals while gestures are performed) where
gestures are performed at each position and then compare the shapes of the col-
lected signal waveforms to classify the gestures. Because the propagation infor-
mation of Wi-Fi signals greatly changes when the position of the user changes,
the accuracy of the gesture recognition methods significantly degrades, when
a test gesture is performed at a position different from the training positions.
Therefore, this study investigates gesture recognition methods independent of
the user positions.

Estimating States of Indoor Everyday Objects. In many of the existing
methods for estimating states of indoor everyday objects such as estimation
of door open/close states, sensor devices are assumed to be attached to each
objects [14]. However, the deployment and the maintenance costs of these dis-
tributed sensing approaches are high due to the burdens related to replacing
batteries of the devices and the faulty devices. In contrast, because Wi-Fi devices
have been already installed in the environment and state estimation using Wi-
Fi signals can be performed with few devices, the deployment and maintenance
costs of the Wi-Fi devices are considered to be low.

While, the effects on Wi-Fi signal propagations caused by the movement
of indoor everyday objects differ from object to object, similar objects may be
installed in the same environment. Accordingly, it is difficult to estimate states
of the objects by simple frequency analysis or comparing the shapes of the wave-
forms of propagation information. Furthermore, because the propagation infor-
mation of Wi-Fi signals (i.e. CSI) describes the combined multipath effects such
as reflection and path loss, it is difficult to intuitively design classification fea-
tures to be extracted from the CSI data and verify their validity. Therefore, this
study tries to estimate the states of the indoor everyday objects precisely using
deep learning techniques. The deep learning techniques enable us to automati-
cally extract meaningful features even if the effects of Wi-Fi signals caused by
each object are confusing.

1.3 Research Content

The goal of this study is to develop a practical context recognition system utiliz-
ing Wi-Fi signals. We propose methods to solve the problems of the prior studies
on context recognition of three types of important context information: indoor
position, states of indoor everyday objects and hand motion gesture. Informa-
tion about indoor positions of a user and states of indoor everyday objects are
useful for a home automation system which controls illuminations, HAVC and
home appliances. Moreover, a gesture recognition system enables us to achieve
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easy and intuitive control of networked appliances. In this paper, we introduce
our three studies on practical recognition of the context information mentioned
above.

1. Transferring Positioning Model for Device-free Passive Indoor
Localization
Recent studies on device-free passive indoor localization using Wi-Fi signals
rely on the fact that the variance value of RSSI increases when a user passes
between a signal transmitter and a receiver [11]. This study transfers train-
ing data (i.e. the variance values of RSSIT with the known user coordinates)
collected in other environments (source environments) to a target environ-
ment [8]. By doing so, we can reduce the burden related to collecting training
data in the target environment.

2. Detecting State Changes of Indoor Everyday Objects
CSI is more fine-grained information than RSSI since it includes the multipath
effects such as reflection and path loss of Wi-Fi signals. However, because Wi-
Fi signals are reflected by various objects in an environment, it is difficult to
manually model the effects of CSI caused by each object. Therefore, this
study tries to precisely detect state changes of indoor everyday objects such
as open/close events of a door and a window by modeling the effects of CSI
caused by each object automatically using deep learning techniques [9].

3. Position Independent Gesture Recognition
The propagation information of Wi-Fi signals such as CSI changes depending
on the positions of a user and a transmitter. Many prior studies on gesture
recognition using Wi-Fi signals assume that training data are collected in
the same situation as the test data [3]. This study tries to extract features
independent of user positions from CSI obtained at few training positions, and
then recognize gestures performed at any positions in an environment [10].

2 Transferring Positioning Model for Device-Free Passive
Indoor Localization

2.1 Background

The device-free passive indoor localization relies on the fact that Wi-Fi signals
are affected by a human body. When multiple Wi-Fi devices are installed in an
environment, the set of RSSI obtained by each receiver depend on a position of a
person. Therefore, the set of RSSI is considered to be a fingerprint of the position.
However, because raw RSSI values change according to various environmental
factors such as humidity and temperature, and the positions of house furnishings,
the recent device-free passive localization method [11] employs the variance value
of RSSI. When a person passes between a transmitter and a receiver, the variance
value of RSSI increases. Therefore, we employ a variance value of RSSI for each
position of a user as a fingerprint.

Because the fingerprinting approach relies on machine learning techniques,
the procedure consists of a training phase and a test phase. In the training phase,
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we obtain fingerprints (i.e. the sets of variance values of RSSI when a user is at
known coordinates), and then the obtained fingerprints are used as training data
to learn an indoor positioning model. The positioning model estimates the user
coordinates by using RSSI observed by the receivers. However, in order to learn
the indoor positioning model, we should collect labeled training data at many
positions in the environment. Collecting such training data in a user house is very
costly and impractical because the user has to input his/her coordinates at many
training points. In this study, we try to construct an indoor positioning model
for a target environment without using any labeled training data obtained at
the target environment, by transferring training data from other environments
(source environments) to the target environment. By doing so, we can easily
construct a positioning model for any environments by reusing labeled training
data obtained from several source environments in advance.

2.2 Proposed Method

We assume that one transmitter and multiple receivers are installed in the source
and target environments, and the floor plans of the environments including the
device positions are given. First, we learn a variance model that shows the rela-
tionship between a RSSI variance value and a position on a line segment connect-
ing the transmitter and the receiver that a person passes for each transmitter
and receiver pair in a source environments. And then the variance model is trans-
ferred to a pair in the target environment whose characteristics of RSSI seem
to be similar to the pair in the source environment. Finally, we learn a model
for detecting a person who passes between a transmitter and receiver, and also
learn models for estimating the coordinates of the user on the line segment. By
using the outputs of the models, we track a person in the target environment
based on a particle filter.

Learning Variance Model. Because we found that a signal characteristics
change significantly for each region separated by walls, a variance model is con-
structed at each separated region (sub-line segment). We employ a mixture of
two Gaussian functions as the variance model. The peaks of the model (i.e. the
mean of each Gaussian function) correspond to the end points the sub-line seg-
ment corresponding to the positions of the transmitter and the receiver (or the
walls). The other model parameters (i.e. variance and weight of each Gaussian
function) are computed based on the least square approximation by using the
position on the sub-line segment that the person passes and corresponding vari-
ance values of RSSI.

Transferring Variance Model. We first select sub-line segments in source
environments whose characteristics are similar to the sub-line segment in the
target environment. The selection is performed based on the following criteria:
(1) the length of the sub-line segment, (2) distribution of RSSI when there is
no person in the environment and (3) distribution of variance values of RSSI
when a person walk randomly. And then, we transfer the variance model to the
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sub-line segment in the target environment by weighted-averaging parameters
based on above criteria.

Constructing Positioning Model. We construct passing detection models
and positioning models for the target environment based on transferred variance
models. A passing detection model for a sub-line segment detects whether or
not a user passes the sub-line segment at a certain time by using variance values
based on SVM. A positioning model for a sub-line segment estimates a passing
point of a person based on its transferred variance model when the passing
detection model detects a passing.
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2.3 Evaluation

Data Set. A participant walked for 20 min in each of four environments where
one transmitter and 10 receivers are installed (Fig. 2). We evaluated our method
based on one-environment-out cross validation where three environments are
source environments and one environment is a target environment.

Evaluation Methodology. A method trained on labeled sensor data obtained
in the same environment (Supervised) and a method that selects a variance
model in source environments at random in the transfer phase are compared
with our method.

Accuracy of Tracking. Mean distance errors are shown in Fig. 3. Our method
achieved an average positioning error of 1.71 m and the difference between the
error of Supervised and that of our method was only about 0.08 m. Furthermore,
we could reduce the error about 0.64 m compared to Random. From this result,
the effectiveness of proposed method was confirmed.

3 Detecting State Changes of Indoor Everyday Objects

3.1 Background

To detect state changes of indoor everyday objects such as door open/close
events, many existing methods assume a sensor device to be attached to each
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indoor object. However, this distributed sensing approach is expensive to deploy
because we should attach a sensor device to each indoor object and maintain
these sensor devices, e.g., replacing device batteries and faulty sensor devices.
Therefore, this study proposes a method for estimating states of indoor everyday
objects without using distributed sensors attached to the objects. We employ a
commodity Wi-Fi access point as a transmitter of Wi-Fi signals and a com-
puter equipped with a commodity Wi-Fi module as a receiver installed in the
environment.

Owing to the recent development of the wireless communication techniques,
we can obtain CSI which is one of propagation information of Wi-Fi signals from
some advanced Wi-Fi network interface cards (NIC) such as the Intel 5300 Wi-Fi
NIC. CSIis a Ny X N, x Ng-dimensional complex matrix, where Ny, N,. and N are
the number of transmit antennas, receive antennas and subcarriers, respectively.
The absolute values and angles of CSI elements describe the attenuation and the
phase shift of Wi-Fi signals, respectively.

However, because CSI describes the combined multipath effects, it is diffi-
cult to intuitively design the features extracted from CSI. Therefore, we apply
feature learning approaches based on deep neural networks (DNNs). Specifi-
cally, we design a novel DNN architecture consisting of convolutional layers and
long short-term memory (LSTM) layers. The convolutional layers learn mean-
ingful features considering the correlation of CSI in each channel. In addition,
LSTM layers learn the temporal dynamics of the event. Furthermore, because we
attempt to recognize the events of multiple indoor objects, CSI consists of the
mixed effects caused by the objects. To separate the mixed effects, we employ
independent component analysis (ICA). Moreover, to further improve the event
recognition accuracy, we harness knowledge about the event/state transitions of
an object (e.g. door open event occurs only when the door is in a closed state)
using hidden Markov models (HMMs).

3.2 Proposed Method

We assume that a transmitter and a receiver are installed in a room. First, we
decompose the amplitude and phase information of the CSI data using ICA.
Next, the original amplitude, original phase, decomposed amplitude and decom-
posed phase time-series data are fed into a DNN to extract the meaningful
features. Finally, the meaningful features are input into HMMs to smooth the
classification result and to harness the knowledge about the event/state tran-
sitions of an object. Our method estimate whether the state of each object is
“open” event, “close” event, “opened” state or “closed” state at each time slice.

Decomposition Using ICA. We decompose N;N,-dimensional time-series
data (i.e. the amplitude or phase information of the CSI data for each sub-
carrier) using ICA to separate the effects on the CSI data caused by each object.
To capture minute changes in signals caused by an object of interest, we con-
struct an unmixing matrix tailored to the object. From labeled training data, we
extract time-segments while events of the object occur and use only the extracted
time-segments to compute the unmixing matrix tailored to the object.
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Feature Extraction Using DNN. Our network consists of three convolu-
tional layers and two LSTM layers. The inputs of the network are a time-series
of amplitude (or phase) values within a time-window whose width is Wr (i.e.
NN, Ns; x Wp-dimensional matrix). In training phase, the outputs of LSTM
layer input to the softmax layer to output class probabilities.

Classification Using HMM. We prepare left-to-right HMMs for each
event/state of the objects to estimate the events/states of the objects from DNN
outputs. In HMM decoding, we use the knowledge about the event/state tran-
sitions to prohibit impossible transitions such that a door “open”? event occurs
when the door is in a “opened”? state.
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3.3 Evaluation

Data Set. We collected data in real three environments where six indoor every-
day objects are installed as shown in Fig.4. We installed a access point as a
transmitter and a PC with the Intel 5300 NIC as a receiver in each environment
as shown in Fig.4. A modified NIC driver developed by Halperin et al. [4] was
installed on the PC to collect CSI data. The transmitter has two antennas and
the receiver has three antennas, i.e., Ny = 2 and N,. = 3. In addition, the number
of subcarriers is 30, i.e., Ny = 30. We sent udp packets at a rate of approximately
1,000 Hz to obtain CSI. In each environment, a participant conducted 150 ses-
sions of data collection. Throughout a session, the participant used all objects so
that each event of the objects occurred once in an arbitrary order. We randomly
selected 90% of the sessions as training sessions and used the remaining sessions
as test sessions.

Evaluation Methodology. We estimated the states of each objects every 0.1s
to evaluate the performance of our method. We prepared the following methods
to investigate the effectiveness of the ICA, the knowledge of the objects, and
HMMs.

— w/o ICA: This method does not use time-series data obtained by ICA. It
simply uses amplitude and phase time-series data extracted from the raw CSI
data.
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— w/o knowledge: This method does not use a knowledge of each object.
— w/o HMM: This method does not use HMMs. We simply use the classification
results of the softmax layer.

Classification Accuracy. Figure5 shows the classification accuracy for each
method in the three environments. As shown in the results, when we do not use
ICA, the F-measures decrease by about 1%-5%. Moreover, when we do not use
the knowledge of the objects, the F-measures decrease by about 8%-15%, and
when we do not use HMMSs, the F-measures greatly decrease by about 10%—
20%. Therefore, we could confirm that the ICA, the knowledge of the objects,
and HMMs are effective to estimate the states of the objects.

4 Position Independent Gesture Recognition

4.1 Background

Existing gesture recognition methods employ a depth camera such as Microsoft
Kinect [13] or a wearable acceleration sensor such as a smart watch attached
to the wrist of a user [6]. However, the depth camera approach has a problem
of limited sensing area and the wearable approach requires a user to wear a
wristwatch device.

In this study, we try to recognize hand gestures using neither a camera device
nor a hand-worn sensor device. We assume that a user carries a commodity
smartphone in, for example, his/her chest pocket and recognize hand gestures
based on CSI transmitted by the smartphone affected by movements of the hand.
We obtain CSI using a computer equipped with a commodity Wi-Fi module that
is installed in an environment and communicates with the smartphone.

In this study, we investigate gesture recognition independent of the user posi-
tion using CSI. The propagation of Wi-Fi signals is greatly affected by the posi-
tion of the user and the direction of the user body because the transmitter
(smartphone) is carried by the user. Therefore, we try to extract the component
corresponding to the velocity of hand movements from CSI based on the Doppler
shift, which can be a feature independent of the user position, and investigate
the effectiveness of the feature for gesture recognition.

However, it is difficult to estimate the Doppler shift from the phase compo-
nents of CSI directly because the transmitter and the receiver are not synchro-
nized precisely and the bandwidth of Wi-Fi signals is much wider than the range
of the Doppler shift caused by human movements. Recent studies [7] try to com-
pute the Doppler velocity corresponding to the velocity of a target object from
CSI using the multiple signal classification (MUSIC) algorithm. The concept of
this method relies on a fact that, when the target moves, the path length of
the signals reflected by the target as well as the phase components also change.
Therefore, the velocity component of the moving target can be computed from
the difference in the phase components over some packets. We attempt to use
this method to extract features corresponding to the hand velocity.
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4.2 Methodology

Our method computes the velocity components of the hand movement from CSI,
and recognize hand motion gestures by HMMs. We use the tethering function
of a smartphone to obtain CSI transmitted from the smartphone. The tethering
function of many smartphone use only one antenna for transmitting and receiving
signals. Therefore, we extract the velocity components from CSI obtained from
the single antenna.

Computing Doppler Velocity. We extract the Doppler velocity corresponding
to the hand velocity from CSI based on the method proposed in [7]. First, we
apply conjugate multiplication between the elements of CSI for each packet.
In [7], the authors multiply between CSI of the two receive antennas. In contrast,
because the tethering function of the smartphone uses only one receive antenna,
we multiply between CSI of adjacent subcarriers. Next, we remove this term by
subtracting the averaged CSI within a certain time window, which is regarded as
the static components. Finally, we estimate the Doppler velocity from some Wi-
Fi packets using the MUSIC algorithm. However, because the whole hand moves
in the hand motion gestures, we obtain many values corresponding the velocities
of the various parts of the hand. Therefore, we make a pseudo spectrogram
from the pseudospectrum computed by MUSIC algorithm for each time sliding
window.

Classification Using HMM. We compute the variance value, the maximum
value and the kurtosis value as classification features from this pseudo spectro-
gram for each time slice, and then classify gestures by a 10-state left-to-right
HMM prepared for each gesture.

4.3 Evaluation

Data set

A PC equipped with the Intel 5300 NIC was installed in our experimental
environment as a receiver, and a smartphone was carried by a participant in
front of the chest. The smartphone was connected to the PC using the tethering
function with 5.2 GHz center frequency, and sent Wi-Fi packets at a rate of
approximately 200 Hz. The participant stood facing toward the computer 2m,
4m and 6m away from the computer, and performed 10 sessions where each
session consists of 6 kinds of hand gestures 10 times: moving hand “up”, “down”,
“left”, “right”, “clockwise” and “anticlockwise”.

Classification Accuracy. We investigated the effects of the velocity compo-
nents on position independent recognition using the leave-one-position out cross-
validation where data collected at two different are used as training data and data
collected at the remaining position are used as test data. The average accuracy
and F-measure are poor and 42.4% and 37.4%, respectively. This may be because
the amplitudes of the spectrograms of the different positions are different from
each other. Therefore, we believe that adjusting the amplitude components for
each position improves the recognition accuracy under the position independent
setting.
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5 Conclusion

In this paper, we introduce our three studies on context recognition using Wi-
Fi signals: indoor localization, state estimation of indoor objects and gesture
recognition. We proposed a indoor localization method with low installation
cost and an accurate state estimation method for indoor objects. In addition,
we introduced our current study on gesture recognition independent of user
positions.
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