Skip to main content

Refractive Errors in Childhood

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology
  • 56 Accesses

Abstract

The eye is a living optical system, the components of which change throughout life. This optical system focuses images of objects on the retina, which are then transmitted to the visual cortex of the brain to be interpreted as vision. If the optics of the system are flawed, as in errors of refraction, the image is blurred. Symptoms of poor vision and asthenopia result, and in childhood, amblyopia can also occur, making refractive errors in childhood more complex than in adult patients. In addition, children may not be able to participate fully in the examination, leaving diagnosis and treatment up to the objective measurements and experience of the examiner. This chapter will deal with how the eye refracts light to produce images on the retina, the most common errors of refraction in childhood, and how to evaluate and manage these errors, including philosophies of treatment for different age groups and different magnitudes and types of refractive error. In addition, special types of refractive errors which require further work-up will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Gordon RA, Donzis PB. Refractive development of the human eye. Arch Ophthalmol. 1986;103:785–9.

    Article  Google Scholar 

  2. Cook RC, Glasscock RE. Refractive and ocular findings in the newborn. Am J Ophthalmol. 1951;34:1407–13.

    Article  CAS  PubMed  Google Scholar 

  3. Sorsby A, Benjamin B, Sheridan M. Refraction and its components during the growth of the eye from the age of 3 years. In: Medical research council (Great Britain). Special report series no. 301. London: Medical Research Council; 1961. p. 1–67.

    Google Scholar 

  4. Quinn GE, et al. Progression of myopia and high myopia in the early treatment for retinopathy of prematurity study: findings at 4 to 6 years of age. J AAPOS. 2013;17(2):124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abrahamsson M, Fabian G, Andersson AK, Sjostrand J. A longitudinal study of a population based sample of astigmatic children. I. Refraction and amblyopia. Acta Ophthalmol. 1990;68:428–34.

    Article  CAS  Google Scholar 

  6. Abrahamsson M, Fabian G, Sjostrand J. A longitudinal study of a population based sample of astigmatic children. II. The changeability of anisometropia. Acta Ophthalmol. 1990;68:435–40.

    Article  CAS  Google Scholar 

  7. Atkinson J, Braddick OJ, Durden K, et al. Screening for refractive error in 6–9 month old infants by photorefraction. Br J Ophthalomol. 1984;68:105–12.

    Article  CAS  Google Scholar 

  8. Ingram RM. Refraction of 1 year old children after atropine refraction. Br J Ophthalmol. 1979;63:343–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slataper FJ. Age norms of refraction and vision. Arch Ophtahlmol. 1950;43:466–81.

    Article  Google Scholar 

  10. Jacques PF, Chilak LT Jr, Harkinson SE, et al. Long term nutrient intake and early age related lens opacities. Arch Ophthalmol. 2001;119:1009–19.

    Article  CAS  PubMed  Google Scholar 

  11. Zadnik K, Mutti DO, Friedman NE, et al. Ocular predictors of the onset of juvenile myopia. Invest Ophthalmol Vis Sci. 1999;40:1936–43.

    CAS  PubMed  Google Scholar 

  12. Abrahamsson M, Sjostrand J. Natural history of infantile anisometropia. Br J Ophthalmol. 1996;80:860–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raviola E, Wiesel TN. An animal model of myopia. N Engl J Med. 1985;312(25):1615.

    Article  Google Scholar 

  14. Hung LF, Crawford MLJ, Smith EL. Spectacle lenses alter growth and refractive state in young monkeys. Nat Med. 1995;1:761–5.

    Article  CAS  PubMed  Google Scholar 

  15. Drack AV, Sands RS, Smith CO, et al: How often are our patients’ spectacle lenses dispensed as prescribed? American Association for Pediatric Ophthalmology and Strabismus 32nd Annual Meeting. Keystone, CO, March 2006. p 52, Poster #20.

    Google Scholar 

  16. Lambert SR, Lynn M, Sramek J, Hutcheson KA. Clinical features predictive of successfully weaning from spectacles those children with accommodative esotropia. JAAPOS. 2003;7:7–13.

    Google Scholar 

  17. Schoenleber DB, Crouch ER Jr. Bilateral hypermetropic amblyopia. J Pediatr Ophthalmol Strabismus. 1987;24:75–7.

    Article  CAS  PubMed  Google Scholar 

  18. Klimek DL, Cruz OA, Scott WE, Davitt BV. Isoametropic amblyopia due to high hyperopia in children. JAAPOS. 2004;8:310–3.

    Google Scholar 

  19. American Academy of Ophthalmology. Pediatric ophthalmology/strabismus preferred practice pattern® panel. Pediatric eye evaluations preferred practice pattern ®. 2017.

    Google Scholar 

  20. Morgan PB, Efron N, Hill EA, et al. Incidence of keratitis of varying severity among contact lens wearers. Br J Ophthalmol. 2005;89:430–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walline JJ, Jones LA, Mutti DO, Zadnik K. A randomized trial of the effects of the rigid contact lenses on myopia progression. Arch Ophthalmol. 2004;122:1760–6.

    Article  PubMed  Google Scholar 

  22. Weiss RS, Park S. Recent updates on myopia control: preventing progression one diopter at a time. Curr Opin Ophthalmol. 2019;30(4):215–9.

    Article  PubMed  Google Scholar 

  23. Jensen H. Myopia progression in young school children: a prospective study of myopia progression and the effect of a trial with bifocal lenses and beta clocker eye drops. Acta Ophthalmol. 1991;200(suppl):69.

    Google Scholar 

  24. Huang J, et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology. 2016;123(4):697–708.

    Article  PubMed  Google Scholar 

  25. Drack A, Nucci P. Refractive surgery in children. Ophthalmol Clin N Am. 2001;14:457–66.

    Article  CAS  Google Scholar 

  26. Chua WH, Balakrishnan V, Chan YH, et al: Atropine for the treatment of childhood myopia. Ophthalmol 2006; 21; epub ahead of print.

    Google Scholar 

  27. Pineles SL, Kraker RT, DK VV, et al. Atropine for the prevention of myopia progression in children: a report by the American Academy of ophthalmology. Ophthalmology. 2017;124(12):1857–66.

    Article  PubMed  Google Scholar 

  28. Yam B, JC JY, Tang SM, et al. Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology. 2018;126(1):113–24.

    Article  PubMed  Google Scholar 

  29. Tan DT, Lam DS, Chua WH, et al. One-year multicenter double masked placebo-controlled parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmol. 2005;112:84–91.

    Article  Google Scholar 

  30. Schmid KL, Abbott M, Humphries M, et al. Timolol lowers intraocular pressure but does not inhibit the development of experimental myopia in chick. Exp Eye Res. 2000;70:659–66.

    Article  CAS  PubMed  Google Scholar 

  31. Curtin BJ. The myopias: basic science and clinical management. New York: Harper and Row; 1985.

    Google Scholar 

  32. Sorsby A. Ophthalmic genetics. 2nd edn. London: Butterworths; 1970.

    Google Scholar 

  33. Minkovitz JB, Essary LR, Walker RS, et al. Comparative corneal topography and refractive parameters in MZ and DZ twins. Invest Ophthalmol Vis Sci. 1993;34(Suppl):abstract 2531.

    Google Scholar 

  34. Ashton GC. Segregation analysis of ocular refraction and myopia. Hum Hered. 1985;35:232–9.

    Article  CAS  PubMed  Google Scholar 

  35. Zummo A, Drack A: Autosomal dominant congenital esotropia. Posters presented at Association for Research in Vision and Ophthalmology and American Association for Pediatric Ophthalmology and Strabismus Annual Meetings, 1995.

    Google Scholar 

  36. Zadnik K, Satariano WA, Mutti DO. The effect of parental history of myopia on children’s eye size. JAMA. 1994;271:1323–7.

    Article  CAS  PubMed  Google Scholar 

  37. He M, Zen J, Liu Y, et al. Refractive error and visual impairment in urban children in southern China. Invest Ophthalmol Vis Sci. 2004;45:793–9.

    Article  PubMed  Google Scholar 

  38. Naidoo KS, Raghunanden A, Mashige KP, et al. Refractive error and visual impairment in African children in South Africa. Invest Ophthalmol Vis Sci. 2003;44:3764–70.

    Article  PubMed  Google Scholar 

  39. Murthy GV, Gupta SK, Ellwein LB, et al. Refractive error in children in an urban population in New Delhi. Invest Ophthalmol Vis Sci. 2002;43:623–31.

    CAS  PubMed  Google Scholar 

  40. Pokharel GP, Negrel AD, Munoz SR, Ellwein LB. Refractive error study in children: results from Mechi zone, Nepal. Am J Ophthalmol. 2000;129:436–44.

    Article  CAS  PubMed  Google Scholar 

  41. McClements M, Davies WI, Michaelides M, et al. Variations in opsin coding sequences cause x-linked cone dysfunction syndrome with myopia and dichromacy. IOVS. 2013;54(2):1361–9.

    CAS  Google Scholar 

  42. Aboshiha J, Dubis AM, Carroll J, et al. The cone dysfunction syndromes. BJO. 2016;100(1):115–21.

    Article  Google Scholar 

  43. Sundin OH, Leppert GS, Silva ED, et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a frizzled-related protein. PNAS of USA. 2005;102:9553–8.

    Article  CAS  Google Scholar 

  44. Morillo Sanchez MJ, Llavero Valero P, Conzalez-Del Pozo M, et al. Posterior microphthalmos, RP and foveoschisis caused by a mutation in the MFRP gene: a familial study. Ophthalmic Genet. 2019;40(3):288–92.

    Article  CAS  PubMed  Google Scholar 

  45. Carricondo PC, Andrade T, Prasov L et al. Nanophthalmos: a review of the clinical spectrum and genetics. J Ophthalmol 2018:2735465. https://doi.org/10.1155/2018/2735465. ecCollection 2018.

  46. Velez G, Tsang SH, Tsai YT, et al. Gene therapy restores Mfrp and corrects axial eye length. Sci Rep. 2017;7(1):16151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Young TL, Ronan SM, Drahozal LA, et al. Evidence that a locus for familial high myopia maps to chromosome 18p. Am J Hum Genet. 1998;63:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Young TL, Ronan SM, Alvear AB, et al. A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet. 1998;63:1419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hawthorne F, Feng S, Metlapally R, et al. Association mapping of the high grade myopia MYP3 locus reveals novel candidate genes UHRF1BP1L, PTPRR, and PPFIA2. IOVS. 2013;54(3):2076–86.

    Google Scholar 

  50. Young T, Paluru P, Heon E, et al. A new locus for autosomal dominant high myopia maps to chromosome 17q21-23. Am J Hum Genet. 2001;69(suppl):2022.

    Google Scholar 

  51. Naiglin L, Gazagne C, Dallongeville F, et al. A genome wide scan for familial high myopia suggests a novel locus on chromosome 7q36. J Med Genet. 2002;39:118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mutti DO, Semina E, Marazita M, et al. Genetic loci for pathological myopia are not associated with juvenile myopia. Am J Med Genet. 2002;112:355–60.

    Article  PubMed  Google Scholar 

  53. Tang YG, Rabinowitz YS, Taylor KD, et al. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet Med. 2005;7:397–405.

    Article  CAS  PubMed  Google Scholar 

  54. JA K, Gajecka M. Genomic strategies to understand causes of keratoconus. Mol Geneti GEneomics. 2017;292(2):251–69.

    Article  CAS  Google Scholar 

  55. Young TL, Guo XD, King RA, Rada JA. Identification of genes expressed in human scleral cDNA library. Invest Ophthalmol Vis Sci. 2002;43(suppl):2466.

    Google Scholar 

  56. Williams RW, Zhou G. Development of genetic models for myopia research: high resolution mapping of a new set ofr loci that control eye size in mice. Invest Ophthalmol Vis Sci. 2001;42(suppl):3508.

    Google Scholar 

  57. Zylberman R, Landau D, Berson D. The influence of study habits on myopia in Jewish teenagers. J Pediatr Ophthalmol Strabismus. 1993;30:319–22.

    Article  Google Scholar 

  58. Rosner M, Belkin M. Intelligence, education and myopia in males. Arch Ophthalmol. 1987;105:1508–11.

    Article  CAS  PubMed  Google Scholar 

  59. Teasdale TW, Goldschmidt E. Myopia and its relationship to education, intelligence and height. Preliminary results from an on-going study of Danish draftees. Acta Ophthalmol. 1988;185(Suppl):41–3.

    CAS  Google Scholar 

  60. Framingham Offspring Eye Study Group. Familial aggregation and prevalence of myopia in the Framingham offspring eye study. Arch Ophthalmol. 1996;114:326–32.

    Article  Google Scholar 

  61. Bind E. Carrying optometric services to the Eskimos of the Eastern Arctic. Am J Optom Arch Acad Optom. 1950;47:24.

    Article  Google Scholar 

  62. Tideman, JW PJR, Hofman A, et al. Environmental factors explain socioeconomic prevalence differences in myopia in 6-year-old children. BMJ. 2018;102(2):243–7.

    Google Scholar 

  63. CM MK, Sherwin JC, Yazar S. Myopia in young adults is inversely related to an objective marker of ocular sun exposure: the Western Australian Raine cohort study. Am J Ophthalmol. 2014;158(5):1079–85.

    Article  Google Scholar 

  64. Williams KM, Bentham GC, Young IS, et al. Association between myopia, ultraviolet B radiation exposure, serum vitamin D concentrations, and genetic polymorphisms in vitamin D metabolic pathways in a multicountry European study. JAMA Ophthalmol. 2017;135(1):47–53.

    Article  PubMed  Google Scholar 

  65. Bothun ED, Wilson ME, Traboulsi EI. Outcomes of unilateral cataracts in infants and toddlers 7 to 24 months of age: toddler aphakia and pseudophakia study (TAPS). Ophthalmology. 2019;126(8):1189–95.

    Article  PubMed  Google Scholar 

  66. Infant aphakia treatment study group. A randomized clinical trial comparing contact lens to intraocular lens correction of monocular aphakia during infancy: HOTV optotype acuity at age 4.5 years and clinical findings at 5 years. JAMA Ophthalmol. 2014;132(6):676–82.

    Article  Google Scholar 

  67. Hayashi K, Hayashi H. Comparison of amplitude of apparent accommodation in pseudophakic eyes with that of normal accommodation in phakic eyes in various age groups. Eye. 2006;20:290–296. https://doi.org/10.1038/sj.eye.6701863

  68. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in subjects with RPE65-mediated inherited retinal dystrophy: a inherited retinal dystrophy: a randomized, controlled, open label phase 3 trial. Lancet. 2017. Pii: S0140–6736(17)31868–8. https://doi.org/10.1016/S0140-6736(17)31868-8.

  69. Stickler GB, Hughes W, Houchin P. Clinical features of hereditary progressive arthro-ophthalmopathy (Stickler syndrome): a survey. Genet Med. 2001;3:192–6.

    Article  CAS  PubMed  Google Scholar 

  70. Shapiro MJ, Blair MP, Solinski MA, et al. The importance of early diagnosis of Stickler syndrome: finding opportunities for preventing blindness. Taiwan J Ophthalmolo. 2018;8(4):189–95.

    Article  Google Scholar 

  71. Bakrania P, Efthymious M, Klein JC, et al. Mutations in BMP4 cause eye, brain and digit developmental anomalies. Am J Hum Genet. 2008;82(2):304–19.

    Google Scholar 

  72. Miraldi Utz V, Pfeifer W, Longmuir SQ, Olson RJ, Wang K, Drack AV. Presentation of TRPM1-associated congenital stationary night blindness in children. JAMA Ophthalmol. 2018;136(4):389–98.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Men CJ, Bujakowska KM, Comander J, et al. The importance of genetic testing as demonstrated by two cases of CACNA1F-associated retinal degeneration misdiagnosed as LCA. Mol Vis. 2017;23:695–706.

    Google Scholar 

  74. Jin Z-B, Wu J, Huang X-F, et al. Trio-based exome sequencing arrests de novo mutations in early onset high myopia. Proc Natl Acad Sci U S A. 2017;114(16):4219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Drack AV, Kutschke P, Stair S, Scott W. Compliance with safety glasses wear in monocular children. J Pediatr Ophthalmol Strabismus. 1993;30:259–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arlene V. Drack .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Drack, A.V., Simon, M. (2020). Refractive Errors in Childhood. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_271-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_271-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics