Skip to main content

Optimal Foraging Theory

  • Living reference work entry
  • First Online:
Encyclopedia of Social Insects

All of life forages for resources that are needed for survival, development, and reproduction. Optimal foraging theory (OFT) aims to understand foraging behavior by hypothesizing that animals forage in ways such that some currency, such as net rate of energy intake, could not be improved with an alternative strategy [21, 22, 23]. Choosing an appropriate currency is all-important. For more than 50 years, OFT has provided evolutionary explanations for observed foraging behavior, to the point that it can be considered a strong theory of behavior and ecology [22, 23].

OFT takes two forms: classical OFT, which applies to solitary foragers, and foraging game theory, which applies to social species. In the former, individuals are assumed to forage independently of each other, so that an individual does not respond directly to the behavior of neighbors. If, however, individuals respond directly to the behavior of others, then all individuals are involved in a “game,” as the outcomes for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Burd, M., & Howard, J. J. (2005). Global optimization from suboptimal parts: Foraging sensu lato by leaf-cutting ants. Behavioral Ecology and Sociobiology, 59, 234–242.

    Article  Google Scholar 

  2. Burns, J. G., & Thomson, J. D. (2006). A test of spatial memory and movement patterns of bumblebees at multiple spatial and temporal scales. Behavioural Ecology, 17, 48–55.

    Article  Google Scholar 

  3. Cartar, R. V. (1991). A test of risk-sensitive foraging in wild bumble bees. Ecology, 72, 888–895.

    Article  Google Scholar 

  4. Collevatti, R. G., Campos, L. A. O., & Schoereder, J. H. (1997). Foraging behaviour of bee pollinators on the tropical weed Triumfetta semitriloba: Departure rules from flower patches. Insectes Sociaux, 44, 345–352.

    Article  Google Scholar 

  5. Detrain, C., Tasse, O., Versaen, M., & Pasteels, J. M. (2000). A field assessment of optimal foraging in ants: Trail patterns and seed retrieval by the European harvester ant Messor barbarus. Insectes Sociaux, 47, 56–62.

    Article  Google Scholar 

  6. Dreisig, H. (1989). Nectar distribution assessment by bumblebees foraging at vertical inflorescences. Oikos, 55, 239–249.

    Article  Google Scholar 

  7. Dreisig, H. (2012). How long to stay on a plant: The response of bumblebees to encountered nectar levels. Arthropod-Plant Interactions, 6, 315–325.

    Article  Google Scholar 

  8. Gonzalvez, F. G., & Rodriguez-Girones, M. A. (2013). Seeing is believing: Information content and behavioural response to visual and chemical cues. Proceedings of the Royal Society B Biological Sciences, 280, 1–8.

    Article  Google Scholar 

  9. Haynes, J., & Mesler, M. (1984). Pollen foraging by bumble bees: Foraging patterns and efficiency on Lupinus polyphyllus. Oecologia, 61, 249–253.

    Article  Google Scholar 

  10. Higginson, A. D., Gilbert, F. S., & Barnard, C. J. (2006). Morphological correlates of nectar production used by honeybees. Ecological Entomology, 31, 269–276.

    Article  Google Scholar 

  11. Hodges, C. M. (1981). Optimal foraging in bumblebees – Hunting by expectation. Animal Behaviour, 29, 1166–1171.

    Article  Google Scholar 

  12. Hodges, C. M., & Wolf, L. L. (1981). Optimal foraging in bumblebees: Why is nectar left behind in flowers? Behavioral Ecology and Sociobiology, 9, 41–44.

    Article  Google Scholar 

  13. Kadmon, R., & Shmida, A. V. I. (1992). Departure rules used by bees foraging for nectar - a field-test. Evolutionary Ecology, 6, 142–151.

    Article  Google Scholar 

  14. King, J. R., Warren, R. J., & Bradford, M. A. (2013). Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS One, 8(10), e75843.

    Article  CAS  Google Scholar 

  15. Olsson, O., Bolin, A., Smith, H. G., & Lonsdorf, E. V. (2015). Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory. Ecological Modelling, 316, 133–143.

    Article  Google Scholar 

  16. Pleasants, J. M. (1981). Bumble bee response to variation in nectar availability. Ecology, 62, 1648–1661.

    Article  Google Scholar 

  17. Pyke, G. H. (1978a). Optimal foraging in bumblebees and coevolution with their plants. Oecologia, 36, 281–294.

    Article  Google Scholar 

  18. Pyke, G. H. (1978b). Optimal foraging: Movement patterns of bumblebees between inflorescences. Theoretical Population Biology, 13, 72–98.

    Article  CAS  Google Scholar 

  19. Pyke, G. H. (1979). Optimal foraging in bumblebees: Rule of movement between flowers within inflorescences. Animal Behaviour, 27, 1167–1181.

    Article  Google Scholar 

  20. Pyke, G. H. (1980). Optimal foraging in bumblebees: Calculation of net rate of energy intake and optimal patch choice. Theoretical Population Biology, 17, 232–246.

    Article  CAS  Google Scholar 

  21. Pyke, G. H. (1984). Optimal foraging theory: A critical review. Annual Review of Ecology and Systematics, 15, 523–575.

    Article  Google Scholar 

  22. Pyke, G. H. (2019). Optimal foraging theory: An introduction. In J. C. Choe (Ed.), Encyclopedia of animal behavior (2nd ed., pp. 111–117). Academic Press: Elsevier.

    Chapter  Google Scholar 

  23. Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. Quarterly Review of Biology, 52, 137–154.

    Article  Google Scholar 

  24. Real, L. A. (1981). Uncertainty and pollinator-plant interactions – The foraging behavior of bees and wasps on artificial flowers. Ecology, 62, 20–26.

    Article  Google Scholar 

  25. Shutler, D., & Mullie, A. (1991). Size-related foraging behavior of the leaf-cutting ant Atta colombica. Canadian Journal of Zoology, 69, 1530–1537.

    Article  Google Scholar 

  26. Stabentheiner, A., & Kovac, H. (2016). Honeybee economics: Optimisation of foraging in a variable world. Scientific Reports, 6, 28339. https://doi.org/10.1038/srep28339.

  27. Wells, H., Hill, P. S., & Wells, P. H. (1992). Nectarivore foraging ecology: Rewards differing in sugar types. Ecological Entomology, 17, 280–288.

    Article  Google Scholar 

  28. Wilson, E. O., & Hölldobler, B. (2005). Eusociality: Origin and consequences. Proceedings of the National Academy of Sciences of the USA, 102, 13367–13371.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham H. Pyke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pyke, G.H., Starr, C.K. (2020). Optimal Foraging Theory. In: Starr, C. (eds) Encyclopedia of Social Insects. Springer, Cham. https://doi.org/10.1007/978-3-319-90306-4_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90306-4_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90306-4

  • Online ISBN: 978-3-319-90306-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics