®

Check for
updates

CPA-BAM-Slicing: Block-Abstraction
Memoization and Slicing with
Region-Based Dependency Analysis

(Competition Contribution)

Pavel Andrianov, Vadim Mutilin, Mikhail Mandrykin®?, and Anton Vasilyev

Ivannikov Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia
{andrianov,mutilin,mandrykin,vasilyev}@ispras.ru

Abstract. Our submission to SV-COMP’18 is a composite tool based on
software verification framework CPACHECKER and static analysis plat-
form FrRAMA-C. The base verifier uses a combination of predicate and
explicit value analysis with block-abstraction memoization as the CPA-
BAM-BnB tool presented at SV-COMP’17. In this submission we aug-
ment the verifier on reachability verification tasks with a slicer that is
able to remove those statements that are irrelevant to the reachability of
error locations in the analysed program. The slicer is based on context-
sensitive flow-insensitive separation analysis with typed polymorphic
regions and simple dependency analysis with transitive closures. The
resulting analysis preserves reachability modulo possible non-termination
while removing enough irrelevant code to achieve considerable speedup
of the main analysis. The slicer is implemented as a FRAMA-C plugin.

1 Verification Approach

The submission presents a composite setting comprised of a mature static verifi-
cation tool CPACHECKER [1] and an experimental reachability slicer (a FRAMA-
C [2] plugin) intended to speed up verification by pruning the verification scope
prior the application of the main analysis. By verification scope we understand
the code to be analyzed rather than the search space explored by the main anal-
ysis since the slicer doesn’t prune the search space as it is, but rather removes
statements (including function calls) that can be proved to not influence the
verification outcome. The slicer included in this submission is currently only
applicable to reachability verification tasks, though the underline algorithm is
not generally limited to reachability of a small number of error locations and so
can be potentially extended to support e.g. memory safety properties.

The slicer is based on a relatively simple mark-and-sweep algorithm, where
the relevant statements are first identified by computing transitive closure of

M. Mandrykin—Jury member.
The research was supported by RFBR grant 18-01-00426.
© The Author(s) 2018

D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 427-431, 2018.
https://doi.org/10.1007/978-3-319-89963-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_26&domain=pdf

428 P. Andrianov et al.

the dependency relation, then marked, and finally the remaining statements are
removed to produce a sliced verification task. The mark-and-sweep slicing is per-
formed on top of preliminary region analysis, which allows to handle abstract
memory locations ascribed to the corresponding disjoint memory regions essen-
tially similar to usual unaliased program variables.

The region analysis implemented in the current submission is a conserva-
tive over-approximation of context-sensitive flow-insensitive separation analy-
sis with polymorphic regions for deductive verification. It was first described
in [3] and later substantially extended in [4]. The conservative approximation
is needed because the original analysis generally requires user annotations. The
over-approximation is expressed in the form of additional dependencies intro-
duced on the marking stage rather than in the region analysis itself. The depen-
dencies allow to approximate reinterpretations of memory regions (corresponding
to the use of unions and arbitrary pointer type casts), but not some corner cases
of pointer arithmetic (mostly arithmetic dependent on a particular layout of
structure fields), so the resulting analysis remains unsound in the general case.
However, the results of analysis benchmarking using CPACHECKER as reacha-
bility verifier on the tasks in SV-COMP SoftwareSystems category showed no
cases of unsoundness caused by the region analysis. This may be explained by
the fact that most of the cases where the analysis is unsound with respect to
a low-level C memory model are also regarded as undefined behavior by the C
standard, so are probably quite rarely used in practice.

2 Software Architecture

The main CPACHECKER verification framework is included in the submission
without any considerable changes. The combined tool is implemented as a wrap-
per script that encapsulates the main verifier invocation and does the following:

— extracts the property specification and verification task from the arguments;

— runs the slicer with timeout of 400s (the sliced program is written to an
intermediate C file);

— runs CPACHECKER configuration 1dv-bam-svcomp on the sliced program;

— post-processes the witness produced by CPACHECKER.

The slicer (named CRUDE_SLICER) is implemented as a plugin to FRAMA-C [2],
an extensible platform for source-code analysis of C software. The plugin imple-
mentation does not interact with other FRAMA-C plugins and only makes use of the
FrAMA-C kernel. The plugin also uses OCAMLGRAPH [5] library. Both the FRAMA-
C platform and the CRUDE_SLICER plugin are implemented in OCaml.

The witness post-processing stage currently simply removes the character
offsets from the resulting witness (the line numbers are preserved using line
directives supported by CPACHECKER) and substitutes checksum of the original
program source.

Since the SoftwareSystems category of the competition also contains mem-
ory safety (and overflow) verification tasks, the submission also includes memory
safety configuration smg-1dv based on shape analysis presented in [6].

CPA-BAM-Slicing: Block-Abstraction Memoization and Slicing 429

3 Evaluation of the Approach

The slicer is currently able to handle only reachability verification tasks.
It was evaluated on 2734 tasks from the Systems_DeviceDriversLinux64.
ReachSafety subcategory of the SV-COMP’18 benchmarks on Intel Xeon E3-
1230 v5 (3.4 GHz) machines in the competition setting. The submitted configu-
ration with slicing was compared to baseline CPA-BAM-BnB [7, 8] configuration
(-1dv-bam-svcomp) without slicing that was also submitted to this year’s com-
petition. The results are presented in the following table:

TRUE verdicts FALSE verdicts Speedup
New (+) | Lost (=) | Total | New (4) | Lost (=) | Total | Min | Max Average
151 10 2252 |97 11 267 10.03 x | 18.59 x | 1.17 x

The table presents the results for correct verdicts only and does not take
witness checking into account.

There are two significant limitations of the approach. First, the slicing is
performed under assumption that all possible execution paths in the verified
program are finite. This does not lead to unsoundness, since reachability (as a
safety property) can be assumed to be violated only on finite paths. However,
there is 3 wrong FALSE verdicts reported on the benchmarks where an error loca-
tion is spuriously reached after passing through an infinite loop removed by the
slicer. Another limitation is that the resulting tool can not produce precise wit-
nesses both due to imprecision in source code locations and (more importantly)
due to unavailability of either invariants or error paths in the sliced out parts
of the code. The caused 1090 TRUE verdicts and all FALSE verdicts to fail to be
confirmed by the witness checkers on the competition.

The time required for slicing varies from 0.08 to 1905.47s with an average
of 14.82s. So in the submission the slicer is run with a timeout of 400s and the
remaining tasks (17 out of 2734 in the evaluation) are passed to the main verifier
without slicing.

4 Tool Setup and Configuration

The submission is available for download as a ZIP archive named cpa-bam-
slicing.zip from the SV-COMP repository by following URL: https://gitlab.
com/sosy-lab/sv-comp/archives/tree/master/2018. The submission includes
CPACHECKER version 1.6.1 and a statically linked version of FRAMA-
C Sulfur-20171101-beta with CRUDE_SLICER plugin. The version of the plugin
corresponds to commit £cd3b927. CPACHECKER requires Java 8 runtime envi-
ronment. The invocation of the slicer is embedded in the CPACHECKER wrapper
script, so the whole tool has to be executed with the following command line:

https://gitlab.com/sosy-lab/sv-comp/archives/tree/master/2018
https://gitlab.com/sosy-lab/sv-comp/archives/tree/master/2018

430 P. Andrianov et al.

scripts/cpa.sh -ldv-bam-svcomp -disable-java-assertions
-heap 10000m -spec prop.prp program.c
The tool participates in SoftwareSystems category, the corresponding
benchmark definition is cpa-bam-slicing.xml.

Acknowledgements. The CPACHECKER project is open-source and developed by an
international research group from Ludwig-Maximilian University of Munich, University
of Passau, Ivannikov Institute for System Programming of the Russian Academy of
Sciences and several other universities and institutions. More information about the
project can be accessed at https://cpachecker.sosy-lab.org. The slicer is developed as
part of the Linux Driver Verification project [9] (http://linuxtesting.org/ldv), the slicer
project page is https://forge.ispras.ru/projects/crude_slicer. Both the CPACHECKER
tool and the CRUDE_SLICER plugin are distributed under the terms of the Apache
License, Version 2.0. The FrRAMA-C platform (http://frama-c.com/) is co-developed
at two French public institutions: CEA LIST and INRIA Saclay — Ile-de-France, and
licensed under GNU LGPL v2. We thank all contributors of the projects for their work.

References

1. Beyer, D., Keremoglu, M.E.: CPACHECKER: a tool for configurable software verifica-
tion. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184—
190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_16

2. Cuoq, P.; Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: a software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233-247. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33826-7_16

3. Hubert, T., Marché, C.: Separation analysis for deductive verification. In: Heap
Analysis and Verification (HAV 2007), Braga, Portugal, pp. 81-93, March 2007

4. Mandrykin, M.U., Khoroshilov, A.V.: Region analysis for deductive verification of
C programs. Program. Comput. Softw. 42(5), 257-278 (2016)

5. Conchon, S., Filliatre, J.C., Signoles, J.: Designing a generic graph library using
ML functors. In: Morazdn, M.T. (ed.) Trends in Functional Programming, vol. 8,
Selected Papers of the 8th International Symposium on Trends in Functional Pro-
gramming (TFP 2007), New York, USA. Intellect (2008)

6. Muller, P., Vojnar, T.: CPALIEN: shape analyzer for CPAChecker. In: Abrahém, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 395-397. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_28

7. Andrianov, P., Friedberger, K., Mandrykin, M., Mutilin, V., Volkov, A.: CPA-BAM-
BnB: block-abstraction memoization and region-based memory models for pred-
icate abstractions. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 355-359. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5_-22

8. Volkov, A., Mandrykin, M.: Predicate abstractions memory modeling method with
separation into disjoint regions. Proc. Inst. Syst. Program. 29, 203-216 (2017)

9. Zakharov, 1.S., Mandrykin, M.U., Mutilin, V.S., Novikov, E.M., Petrenko, A.K.,
Khoroshilov, A.V.: Configurable toolset for static verification of operating systems
kernel modules. Program. Comput. Softw. 41(1), 49-64 (2015)

https://cpachecker.sosy-lab.org
http://linuxtesting.org/ldv
https://forge.ispras.ru/projects/crude_slicer
http://frama-c.com/
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-54862-8_28
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-662-54580-5_22

CPA-BAM-Slicing: Block-Abstraction Memoization and Slicing 431

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	CPA-BAM-Slicing: Block-Abstraction Memoization and Slicing with Region-Based Dependency Analysis
	1 Verification Approach
	2 Software Architecture
	3 Evaluation of the Approach
	4 Tool Setup and Configuration
	References

