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Abstract. Model checking large networks of processes is challenging due
to state explosion. In many cases, individual processes are isomorphic,
but there is insufficient global symmetry to simplify model checking. This
work considers the verification of local properties, those defined over the
neighborhood of a process. Considerably generalizing earlier results on
invariance, it is shown that all local mu-calculus properties, including
safety and liveness properties, are preserved by neighborhood symme-
tries. Hence, it suffices to check them locally over a set of representative
process neighborhoods. In general, local verification approximates veri-
fication over the global state space; however, if process interactions are
outward-facing, the relationship is shown to be exact. For many network
topologies, even those with little global symmetry, analysis with repre-
sentatives provides a significant, even exponential, reduction in the cost
of verification. Moreover, it is shown that for network families generated
from building-block patterns, neighborhood symmetries are easily deter-
mined, and verification over the entire family reduces to verification over
a finite set of representative process neighborhoods.

1 Introduction

Networks of communicating processes are a model for distributed systems, cloud
computing environments, routing protocols, many-core hardware processors, and
other such systems. Often, networks are described parametrically, that is, a pro-
cess template is instantiated at each node of a network graph. The expectation
then is that basic correctness properties should hold regardless of the size and
the shape of the network.

Model checkers can determine, fully automatically, whether a fixed instance
of a process network satisfies a correctness property. However, model checking
suffers from exponential state explosion as the size of the analyzed network
increases. Thus, one may aim for parameteric analysis of a network family, “in
one fell swoop”; however, the parametric model checking problem (PMCP) is
undecidable in general [2]. Limiting to compositional proofs makes parametrized
verification more tractable; as shown in [20], the PCMCP (Parameterized Com-
positional Model Checking problem) can be solved efficiently for standard
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network families (rings, tori, wrap-around mesh, etc.) where the PMCP is unde-
cidable even for invariance properties.

In this work, we generalize these results considerably, from invariance to mu-
calculus properties. We formulate a local version of the mu-calculus to describe
behaviors of a single process and its immediate neighborhood. The logic allows
specification of safety and liveness properties, each property being limited to
assertions over a fixed process neighborhood – e.g., “A hungry philosopher even-
tually acquires all adjacent forks”. The goal of this work is a method to prove
such properties for all processes in a network and, moreover, to prove properties
parametrically, i.e., for all networks in a family.

Our analysis is based on a grouping of processes by local symmetry, where
“balanced” processes have (recursively) similar neighborhoods [17,18,20]. Such
symmetries are common in parametric network structures, for example [18,19],
c.f. [17,20]. We establish that the local state spaces of balanced processes are
sufficiently bisimilar that they satisfy the same local mu-calculus properties. It
is, therefore, enough to model-check a representative process from each balance
class, while paying particular attention to ‘interference’ transitions from neigh-
boring processes.

We show that any universal local mu-calculus property established locally
also holds on the global state space. Thus, a universal property can be estab-
lished globally for all processes by checking it on the local state spaces of a few
representatives.

Many communication protocols are designed in such a way that a typical
process must offer a given set of input/output services to its communication
environment, irrespective of its internal state. We show that under such outward-
facing interactions, the correspondence is exact: a local mu-calculus property
holds globally if, and only if, it holds locally.

We also detail the implications for entire families of networks that are defined
by ‘symmetry patterns.’ For instance, a network family with a transitive global
symmetry group can be analyzed by examining a single representative node.
Such dramatic reductions in complexity are generally not possible for non-local
properties.

None of the symmetry reduction results rely in any essential manner on the
processes being finite-state. To summarize the main results:

– The local state spaces of balanced processes (the spaces incorporate interfer-
ence from neighbors) are bisimilar. Hence, it suffices to model-check properties
on representative processes of the balance equivalence classes,

– The local state space simulates the global space up to stuttering. Thus, a
universal local mu-calculus property holds on the global space if it holds on
a representative local space,

– With ‘outward-facing’ interaction, the local and global spaces are stuttering-
bisimilar. A local mu-calculus property holds on the global space if, and only
if, it holds on a representative local space.

We also explore the implications of these results and, in particular, show
that in several settings, local symmetries can be determined easily from process



Symmetry Reduction for the Local Mu-Calculus 381

syntax. We show that for isomorphic ‘normal’ processes operating in a network
whose communication graph has at least transitive symmetry, a balance relation
with a single representative process can be generated from the syntactic descrip-
tion of the network. In another direction, we show that for networks formed
from ‘building block’ patterns, the pattern instances serve as balance represen-
tatives. These direct, syntactic constructions avoid having to build global sym-
metry reduced structures, can lead to exponential reductions in the cost of model
checking, and apply to many networks where global symmetry reduction tech-
niques are ineffective. Moreover, entire network families can be model-checked
via the analysis of a small number of representative processes, so that the savings
in the cost of analysis are unbounded.

2 Preliminaries

Processes and Networks: Syntax. A network is a directed graph, defined by
a set of nodes, N , a set of edges, E, and two connection relations: Out ⊆ N × E
and In ⊆ N × E. Connections are directed from node n to the edges in Out(n),
and directed inwards from the edges in In(n) to n. Nodes m and n are neighbors,
denoted nbr(n,m), if they have a common connected edge. Node m points to
node n if there is an edge e in Out(m) ∩ In(n).

A process is defined by a tuple (V, I, T ), where V is a set of variables which
defines its local state space; I(V ) is a Boolean predicate defining the initial
states; and T (V, V ′) is a Boolean predicate defining the state transitions, using
a copy V ′ to denote the next state. Variables are partitioned into internal and
external variables. External variables are labeled as read, or write, or both. The
transition relation is required to preserve the value of read-only variables and its
enabledness cannot depend on the values of write-only variables.

A process network P is defined by a network graph, a set of processes, and
an assignment, ξ. Every node n is assigned a process ξ(n), which we denote
for convenience by Pn = (Vn, In, Tn). Each edge e is assigned a variable ξ(e) in
V = (

⋃
n : Vn). The assignment ξ must assign In(n) to the read variables in

Vn,Out(n) to the write variables of Vn, and the internal variables of Vn to no
network edge. The shared variables of processes Pm and Pn are those assigned
to common connected edges of m and n.

Processes and Networks: Semantics. Semantically, the behavior of a process
network P is defined as the process P = (I, V, T ), where V = (

⋃
n : Vn), I =

(
∧

n : In), and T = (
∨

n : Tn ∧ unchanged(V \Vn)). This defines an interleaving
semantics, with unchanged(W ) denoting that the values of variables in W are
unchanged.

A global state is a function mapping variables in V to values in their domain.
A local state of Pn is a function mapping the variables in Vn to values in their
domain. An internal state of Pn is a function mapping the internal variables of
Pn to values in their domains.
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For neighbors m,n, a joint state is a pair x = (xm, xn), where xm and xn

are local states of processes Pm and Pn, respectively, such that xm and xn have
the same value for all shared variables. The transition relation Tn is extended
to joint states as Tn(x, y), which holds iff Tn(xn, yn) holds and the values of
variables in Pm that are not shared with Pn are unchanged.

Invariants: Global and Compositional. Invariance is central to reasoning
about dynamic system behavior. For a process network P as defined above, a
global assertion, θ, is a set of global states of P . It is an inductive invariant for P
if all initial states are in θ, i.e., [I(x) → θ(x)], and θ is closed under transitions,
i.e., [θ(x) ∧ T (x, y) → θ(y)].1

In place of a single invariance assertion, compositional reasoning postulates
a set of local assertions, {θn}, where θn is a set of local states of Pn, for each n.
This set is a compositional inductive invariant if, for all n:

(Init) The initial states of Pn are included in θn. That is, [In(xn) → θn(xn)]
(Step) Transitions of Pn preserve θn. That is, [θn(xn) ∧ Tn(xn, yn) → θn(yn)]
(Non-Interference) Assertion θn is preserved by transitions of neighbors Pm,

from every joint state satisfying both θm and θn. I.e., For all m such that
nbr(n,m) and all joint states x = (xn, xm), y = (yn, ym) : [θn(xn)∧ θm(xm)∧
Tm(x, y) → θn(yn)]

These constraints are in a simultaneous pre-fixpoint form over {θn}. The
least fixpoint is the strongest compositional invariant. For finite-state processes,
this computation is polynomial-time in the size of the local state spaces.

Theorem 1 [17]. If {θn} is a compositional inductive invariant then
∧

i θi is a
global inductive invariant.

Symmetry Between Neighborhoods. A neighborhood symmetry between
nodes m and n is witnessed by a bijection, β, which maps edges in In(m) to those
in In(n) and edges in Out(m) to those in Out(n); we call (m,β, n) a similarity.
The set of similarities (m,β, n) is a groupoid2.

A balance relation ([17], c.f. [11]) links symmetries throughout a network:
balanced nodes m,n have isomorphic neighborhoods, nodes connected to cor-
responding edges of m,n are themselves balanced, and so on. Formally, a bal-
ance relation, B, is a set of triples (m,β, n), such that (m,β, n) is a similarity;
(n, β−1,m) is in B; and for any node k that points to m, there is a node l which
points to n and a bijection γ such that (k, γ, l) is in B, and γ(e) = β(e) for every
edge e that is connected to both m and k.

The structure of this condition is similar to that of bisimulation (it is co-
inductive); thus, there is a greatest fixpoint, which is the largest balance relation.
Nodes m,n are balanced if (m,β, n) is in the largest balance relation for some β.
1 The notation, [ϕ], from Dijkstra and Scholten [7], means that ϕ is valid.
2 I.e., (n, ι, n) is a similarity for the identity map ι; if (m, β, n) is a similarity, so is

(n, β−1, m); and if (m, β, q) and (q, γ, n) are similarities, so is (m, (γβ), n).
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A process network P respects balance relation B if balanced nodes are
assigned processes with isomorphic initial states and transition relations: i.e.,
for all (m,β, n) ∈ B, it is the case that [In(β(s)) ≡ Im(s)] for all s, and
[Tn(β(s), β(t)) ≡ Tm(s, t)] for all s, t. Similarly, we say that local assertions
{φi} respect B if [φn(β(s)) ≡ φm(s)] for all (m,β, n) ∈ B. We abbreviate these
conditions as [In ≡ β(Im)], [Tn ≡ β(Tm)] and [φn ≡ β(φm)], respectively.
Here, β is overloaded to permute local states of Pm. For local state s of node m,
the local state β(s) at node n is defined as follows: the internal states of m in s
and n in β(s) are identical and, for every edge e connected to m, the value on e
in s is identical to the value of β(e) in β(s). A key result is that balanced nodes
have isomorphic compositional invariants.

Theorem 2 ([17]). If a process network respects balance relation B, its strongest
compositional invariant also respects B.

This theorem implies that it suffices to compute the strongest compositional
invariant only for representative nodes3, as the invariants for all other nodes are
isomorphic to those of their representatives.

3 The Local Mu-Calculus

Intuitively, a local property is one that refers to the local state of a node, e.g.,
“the process at node n is in its critical section”, or “the philosopher at node
n holds all adjacent forks”. We are interested in establishing a local property
f(n), parameterized by node n, and so isomorphic between nodes, for all nodes
of a process network. We represent such a property by a mu-calculus formula.
This has two interpretations: one in the global state space, the other in a com-
positionally constructed local state space. Their connections are discussed in the
next section.

3.1 Syntax

The local mu-calculus syntax and semantics is largely identical to that of the
standard mu-calculus [15]. The only difference is the use of the E[U ] operator
in place of EX, this is given a stuttering-insensitive semantics.

Let Σ be a set of atomic propositions, Γ be a set of propositional variables,
and Δ a set of transition labels; these sets are mutually disjoint. Local mu-
calculus formulas are defined by the following grammar. A formula is one of

– An atomic proposition from Σ,
– A propositional variable from Γ ,
– ¬ϕ, for a formula ϕ,
3 A balance relation B induces the equivalence relation m �B n if (m, β, n) ∈ B for

some β. The compositional fixpoint is calculated for a representative of each class of
�B . In the fixpoint calculation, the assertion θn is replaced by γ(θr), where r is the
representative for n, and γ is a chosen isomorphism such that (r, γ, n) is in B.
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– ϕ ∧ ψ, the conjunction of formulae ϕ and ψ,
– E[ϕUa ψ], where ϕ,ψ are formulas, and a is a transition label from Δ,
– μZ.ϕ(Z), where ϕ(Z) is a formula syntactically monotone in Z (i.e., all occur-

rences of Z fall under an even number of negations).

Operators A[ϕWa ψ] = ¬E[¬ϕUa ¬ψ] and νZ.ϕ(Z) = ¬μZ.(¬ϕ(¬Z)) are the
negation duals of E[U ] and μ, respectively, with Boolean operations ∨ and →
defined as usual.

3.2 Semantics

A state space has the form (S, S0, R, L), where S is a set of states, S0 is the
set of initial states, R ⊆ S × Δ ∪ {τ} × S is a left-total transition relation,
and L : S → 2Σ labels states with atomic propositions. A path is a sequence
s0, a0, s1, a1, . . . such that (si, ai, si+1) ∈ R for all i, where the sub-sequence
a0, a1, . . . is the label sequence of the path.

The state set S generates a complete lattice of all subsets of S, ordered by set
inclusion. A functional Π : 2S → 2S is monotone if for all A,B such that A ⊆ B it
is the case that Π(A) ⊆ Π(B). By the Knaster-Tarski theorem, every monotone
functional has a least and a greatest fixpoint. Consider a formula ϕ(Z1, . . . , Zd)
with free variables Z1, . . . , Zd. Given an assignment λ mapping each free variable
to a subset of S, the interpretation of ϕ under λ is defined inductively as follows.
We write M, s |= ϕ to mean that state s in space M satisfies a closed formula
ϕ, i.e., s is in interp(ϕ, ε) where ε is the empty interpretation.

– interp(p, λ) = {s ∈ S | p ∈ L(s)}, for proposition p ∈ Σ,
– interp(Z, λ) = λ(Z),
– interp(ϕ ∧ ψ, λ) = interp(ϕ, λ) ∩ interp(ψ, λ),
– interp(¬ϕ, λ) = S \ interp(ϕ, λ),
– State s is in interp(E[ϕUa ψ], λ) if, and only if, there is a finite path π from s

to state t with label sequence τ∗; a, where t is in interp(ψ, λ) and every other
state s′ on π is in interp(ϕ, λ). Informally, ϕ holds until the first a-action,
after which ψ is true,

– interp(μZ.ϕ(Z), λ) is the least fixpoint of functional Π(X) = interp(ϕ(Z), λ′)
where λ′ extends λ with the assignment of X to Z.

3.3 Local and Global Interpretations

Let θ be a compositional invariant respecting a balance relation B. For any node
n of the network, define Hθ

n as the following transition system:

– The states are the local states of Pn that satisfy θn,
– A transition (s, s′) is either

• A transition (labeled with n) by Pn from state s, or
• An interference transition (labeled with m) by a neighbor Pm from a joint

state (s, u) where θn(s) and θm(u) hold, to a joint state (s′, u′).
By the properties of a compositional invariant, s′ is in θn in both cases.
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The only missing ingredient is a labeling of the states with atomic propositions.
Given such a labeling, L, a closed formula evaluates to a set of local states.

The global transition system G defines the semantics of the process network.
For a given n, let Gn be G with transitions by Pn labeled with n, transitions by
neighbors m of n labeled with m, and all other transitions (which cannot change
the local state of Pn) labeled with τ . A local labeling L of Pn is extended to Gn

by labeling a global state s with proposition p if p labels the local state of Pn in
s. Formulas local to node n are evaluated over Gn. A closed formula evaluates
to a set of global states.

3.4 Simulation and Bisimulation

For processes without τ actions, a simulation relation α from process P to process
Q is a relation from the state space of P to that of Q, satisfying:

– Every initial state of P is related to an initial state of Q by α, and
– If sαt holds, then s and t satisfy the same atomic propositions, and
– If sαt holds and s′ is a successor state of s in P , there is a successor state t′

of t in Q such that s′αt′ holds.

If a simulation relation exists from P to Q, we say that Q simulates P . It
is well known that if Q simulates P , then any standard universal mu-calculus
formula that holds for all initial states of Q also holds for all initial states of P . A
universal local mu-calculus formula is one where its negation normal form does
not contain E[U ]. Relation α is a bisimulation from P to Q if α is a simulation
from P to Q and α−1 is a simulation from Q to P . It is well known that bisimilar
processes satisfy the same standard mu-calculus properties.

For processes with τ transitions, one can relax the third condition to allow
the possibility of stuttering (cf. [4]): if sαt holds, then for any state s′ reachable
from s by a finite path π with label sequence τ∗; a (for a non-τ letter a), there is
a state t′ reachable from t by a finite path δ labeled τ∗; a such that s′ and t′ are
related by α, and every other pair of states u on π and v on δ is related by α.
Relation α is a stuttering bisimulation if α and α−1 are stuttering simulations.

Theorem 3. Stuttering simulation preserves universal local mu-calculus prop-
erties. Stuttering bisimulation preserves all local mu-calculus properties.

4 Connecting Local Mu-Calculus Interpretations

We explore relationships between the local and global interpretation of formulas,
and show the following:

– The local state spaces of balanced nodes are bisimilar. It follows from Theo-
rem 3 that balanced nodes satisfy the same local mu-calculus formulas. From
this result, to model check a property of the form (

∧
i :: f(i)), it suffices to

check f(i) for the representatives of the balance equivalence classes.
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– The local state space of node m stuttering-simulates the global state space
up to the local state of m. It follows from Theorem 3 that a universal local
mu-calculus formula on m holds globally if it holds locally.

– If processes exhibit ‘outward-facing’ interaction, i.e., (roughly) the effect of
interfering transitions is independent of the internal state of the interfering
process, then the local and global state spaces are stuttering-bisimilar up to
the local state of m. It follows that the two spaces satisfy precisely the same
local mu-calculus formulas over m.

Notation. In the proofs below, for a local state s of node n, the notation s[n]
refers to the internal state of Pn in s, and for an edge e that is connected to n,
the notation s[e] refers to the value in s of the variable assigned to e.

4.1 Bisimilarity Between Local State Spaces

Theorem 4. Let B be a balance relation on a process network P , and θ a compo-
sitional invariant for the network. If P and θ respect B, then for every (m,β, n)
in B,Hθ

m and Hθ
n are bisimilar up to β.

Proof: The bisimulation relation R relates a local state s of node m to a local
state t of node n if β(s) = t. Before getting to the details of the proof, which
is technical, we sketch the main reasoning. First, local transitions are easily
matched by symmetry. For an interfering transition from a neighbor k of m, by
balance, there is a matching neighbor l of n with a symmetric interference tran-
sition. Crucially, the preservation of the compositional invariant under balance
lets us transfer the joint state from which the interference transition occurs in
Hθ

m to a joint state with a matching interference transition in Hθ
n.

Suppose that s, t are states of m and n in the local state spaces Hθ
m and Hθ

n,
respectively, such that sRt holds, that is β(s) = t. By construction of Hθ

m and
Hθ

n, θm(s) and θn(t) hold.
Consider a step transition Tm(s, s′). Since Tm and Tn respect the balance rela-

tion, B, by the local symmetry between the transition relations, Tn(β(s), β(s′))
holds as well. Thus, for t′ = β(s′), we have that there is a step transition Tn(t, t′)
such that s′Rt′. By construction, s′ and t′ are successors of s and t, respectively,
in the local state spaces.

Now consider an interference transition in Hθ
m from a joint state (s, u) where

u is a local state of a neighbor k of m. The transition Tk(u, u′) creates a joint
state (s′, u′). From the definition of balance, there is a neighbor l of n such
that for some γ, we have (k, γ, l) in the balance relation. As θ respects B by
assumption, we have that θl = γ(θk). As θk(u) holds by the definition of the
interference transition, the state v = γ(u) is in θl. We claim that there is a
matching transition from the joint state (t, v).

First, we show that the pair (t, v) forms a joint state. Consider any edge f
that is shared between n and l. By balance, shared edges are mapped identically
by β and γ; hence, e = β−1(f) = γ−1(f) is shared by m and k. By the definition
of t = β(s) and v = γ(u), we have that t[f ] = s[e] and v[f ] = u[e]. As (s, u) is a
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joint state, we have s[e] = u[e]; hence, t[f ] = v[f ]. As f was chosen arbitrarily,
it follows that t and v agree on the values of all shared edges, so (t, v) is a joint
state. Moreover, the state t is in θn by assumption, and v is in θl by construction.

By the similarity between Pk and Pl, there is a transition Tl(γ(u), γ(u′));
letting v′ = γ(u′), this can be expressed as Tl(v, v′). That induces an interference
transition in Hθ

n from the joint state (t, v) to a joint state (t′, v′).
Finally, we show that t′ = β(s′). Let e be an edge connected to node m and

let f = β(e). Note that f is shared between n and l if, and only if, e is shared
between m and k. Now if f is not shared between n and l, then t′[f ] = t[f ] by
definition of interference; t[f ] = s[e] as t = β(s); and s′[e] = s[e] by definition
of interference. By transitivity, t′[f ] = s′[e], as required. If f is a shared edge,
then t′[f ] = v′[f ] by joint state; v′[f ] = u′[e] as v′ = γ(u′); and u′[e] = s′[e] by
joint state. By transitivity, t′[f ] = s′[e]. The internal states of t, t′ and s, s′ are
(respectively) identical, as they are unaffected by interference. Hence, t′ = β(s′).

The proof so far shows that R is a simulation if (m,β, n) is in the balance
relation. From the same argument applied to (n, β−1,m), which must also be
in the balance relation, the inverse of R is also a simulation. Hence, R is a
bisimulation between Hθ

m and Hθ
n. EndProof.

We say that per-process propositional labelings respect balance if for every
(m,β, n) in the balance relation, every atomic proposition p, and every local
state s: [p ∈ Ln(β(s)) ≡ p ∈ Lm(s)]. From Theorems 3 and 4, we obtain:

Corollary 1. Let f(i) be a local mu-calculus formula parameterized by i. If the
compositional invariant θ and the interpretation of the atomic propositions in
f respect balance relation B, then for any (m,β, n) in B and any local state s:
Hθ

m, s |= f(m) if, and only if, Hθ
n, β(s) |= f(n).

4.2 Local-Global Simulation

From the point of view of a process Pm, a transition in the global state space is
either a transition of Pm, or an interference transition by one of the neighbors
of m, or a transition by a “far away” process that has no immediate effect
on the local space of m. Thus, global transitions can be simulated by step or
interference transitions in the local space, with far-away transitions exhibiting
stuttering. The converse need not be true, as interference transitions appear in
the local space without the constraining context of the entire global state.

Theorem 5. Let the scheduling of transitions in the global system be uncon-
ditionally fair. For every m and any compositional inductive invariant θ,Hθ

m

simulates the global transition system Gm up to stuttering.

Proof: For a global state s, let s[m] refer to the local state of node m in s.
Define the relation R from global states to those of Hθ

m by (s, t) ∈ R iff θ(s)
and s[m] = t. We show that R is a simulation, up to stuttering. The proof is by
cases on the kinds of transitions from global state s to a successor state, s′. As
θ is a global inductive invariant by Theorem1, it is the case that θ(s′) holds.



388 K. S. Namjoshi and R. J. Trefler

Suppose the transition is by process m. Thus, Tm(s[m], s′[m]) should hold.
As θm(s[m]) holds, this transition is in the local state space as well. Letting
t′ = s′[m], we have s′Rt′.

Suppose the transition is by a neighbor k of m, so that Tk(s[k], s′[k]) holds,
and for all edges e that are not connected to k, s′[e] = s[e]. By definition,
θm(s[m]) and θk(s[k]) hold, so this is a valid interference transition in the local
state space Hθ

m. Denoting s[k] by u, this can be re-expressed as a joint transition
from state (t, u) to (t′, u′), where u′ = s′[k]. Consider an edge e that is connected
to m but not to k. Then t′[e] = (by non-adjacency) t[e] = (by R) s[m][e] =
(by non-adjacency) s′[m][e]. Now consider an edge e that is shared by nodes m
and k; then t′[e] = (by shared edge) u′[e] = (by definition) s′[k][e] = (by shared
edge) s′[m][e]. The internal state of m is unchanged on either transition. Thus,
t′ = s′[m], so that s′Rt′, as desired.

Finally, suppose the transition is by a process that is not a neighbor of m.
Then s′[m] = s[m], so that s′Rt holds. This is the stuttering step. As transitions
are scheduled in an unconditionally fair manner, on any infinite computation
from s, process m or one of its neighbors must eventually make a move. Hence,
all stuttering is bounded. This establishes (fair) stuttering simulation between
the two spaces. EndProof.

From the preservation of universal local mu-calculus properties under stut-
tering simulation, we have:

Corollary 2. If f(m) is a universal local mu-calculus formula, then for any t, s
such that s[m] = t: Hθ

m, t |= f(m) implies that Gm, s |= f(m) under fairness.

4.3 Outward-Facing Interactions and Local-Global Bisimulation

The obstacle to establishing bisimilarity in the proof of Theorem5 is that an
interference transition from local state t may not have a corresponding transition
from a related global state s, as the internal state of the interfering neighbor in s
may be different from the internal state of the interfering neighbor of t. In some
protocols, however, we see that interference depends only on the shared state.
For instance, in a form of the dining philosophers’ protocol where a process may
give up a fork if it is not eating, the interference transition (passing a fork to a
neighbor) is dependent only on possession of the fork. In this setting, one can
indeed show that the two spaces are bisimilar.

We express the independence from internal state as a stuttering bisimulation
within the interfering process. Define a relation Bm,n on the local state space of
Pn by (u, v) ∈ Bm,n if u and v are both in θn, and u[e] = v[e] for every edge e
shared between m and n. We say that process n is outward-facing in interactions
with its neighbor m if the relation Bm,n is a stuttering bisimulation on Hθ

n.

Theorem 6. With outward-facing interaction, the local state space of process m
is stuttering bisimilar to the global state space in terms of the local state of m.

Proof: Define the relation R from global states to those of Hθ
m as in the proof

of Theorem 5 by (s, t) ∈ R iff θ(s) and s[m] = t.
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Consider a transition from t to t′. If the move is by process m, it is enabled
in s as well, and the resulting states are related by R. Now suppose the move
is an interference transition by a neighbor, n. Hence there is some joint state
(t, u) of (m,n) such that the move is by n from (t, u) to (t′, u′). As u ∈ θn (by
joint state) and s[n] ∈ θn (by definition of R), and the two are connected to
the same local state of m, the pair (s[n], u) is in Bm,n. As Bm,n is a stuttering
bisimulation, there is a sequence, say σ, of transitions by Pn alone from s[n] to
a state v′ such that (v′, u′) ∈ Bm,n, and all intermediate states on σ from s[n]
to v′ are related by Bm,n to u. Hence, the value of the shared edges between m
and n is unchanged on σ until the final step, where it matches u′. Therefore, for
the global computation induced by σ from s, the final state s′ is such that s′Rt′,
and for all intermediate global states x on that path, xRt holds. This shows that
R−1 is a stuttering simulation from the local to the global space. By Theorem5,
the relation R is a simulation from the global to the local space. Hence, R is a
stuttering bisimulation between the spaces. EndProof.

Corollary 3. With outward-facing interaction and unconditionally fair schedul-
ing, the local state space of a process m satisfies the same local mu-calculus
properties as the global state space.

5 Syntactic Determination of Local Symmetries

We show how to recognize local symmetry from syntactic structure. This also
applies to network families, with corresponding unbounded savings in local ver-
ification. First, we use relations between structure and global symmetry, and
between global and local symmetries. Next, we show how local symmetries may
be directly derived if network families are induced by a finite set of tilings. We
note that when local symmetry is derived syntactically, either through the use
of normal process descriptions, or through building block tiles, the computa-
tion of the compositional invariant can be done symbolically, and in the case of
tilings, directly on each tile, unlike the case of global symmetry reduction, where
the symbolic (BDD-based) orbit relation is difficult to compute even for fully
symmetric networks [5].

5.1 Program Symmetries

Let P = ||i∈[0..k−1]Pi, k ≥ 1 be a fixed network where each component Pi is an
implementation of a process template W . Network topology is restricted so that
all edges are bidirectional and connect only two nodes. Each Pm is described
by a finite transition graph where if there is an arc from the internal node g
to the internal node h then the arc is labeled by a guarded command ρ → A.
Transitions are given by g : ρ → A : h where A is the local update function and
ρ is a predicate over the neighborhood of Pm. The action A is given by a list of
simultaneous updates to the shared variables, v1, . . . , vd, where vi is the variable
across the edge (m,ni).
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We name the variables associated with a process, depending on the specific
topology, the left variable, the right variable, the forward variable of Pm, etc.
This modeling tactic is used (see [8]) to stipulate that the update functions for
the variables be process-index independent.

Two transitions g : ρ → A : h and g′ : ρ′ → A′ : h′ are equivalent if
g = g′, h = h′, ρ is semantically equivalent to ρ′ and A and A′ are semantically
equivalent (c.f. [8]). Processes Pm and Pn are equivalent if there is a bijec-
tive mapping between equivalent transitions of Pm and Pn. A permutation π
of process indices is an automorphism of P if Pm is equivalent to Pπ(m) for all
m ∈ [0..k − 1].

As shown in [8] the global symmetries of the program P , essentially the
permutations of [0..k − 1] that leave P unchanged, are a subset of the global
symmetries of the global state space G. From P , one defines an undirected
graph, the communication relation, CR [8]. The nodes of CR are the nodes of
N of the topology (N,E) and there is an edge from m to n in CR iff the nodes
are connected to a common edge.

P is normal [8] if the transitions of P are given in the following form:

g : (∧n∈CR(m)ρ(m,n)) → (∧n∈CR(m)A(m,n)) : h

where each ρ(m,n) is a boolean expression over the internal state of Pm and the
neighborhood variables of Pm, or equality tests between the variables local to the
neighborhood of Pm, and the assignments of A(m,n) are concurrent assignments
to the neighborhood variables of Pm, where variable values may be swapped with
each other or assigned constant values. When P is a normal process network [8]
showed that global symmetries of CR are symmetries of P and are automor-
phisms of G.

This setting substantially simplifies the application of local symmetry. First,
the balance relation can be “read off” directly from the relation CR, as by results
in [17], the global symmetries of CR define a balance relation over (N,E), which
includes (m,β, n) if there is a symmetry π of CR such that π(m) = n. Secondly, if
CR induces a transitive symmetry group, then local symmetry reduction reduces
to analysis of a single representative process and its neighborhood. This may
result in an exponential reduction in the cost of model checking, compared with
an analysis of the entire state space. (The global symmetry used in [8] provides an
exponential reduction only when CR is fully symmetric.) The check is in general
over-approximate (cf. Corollary 2) but is exact under outward-facing interaction.
In the parametric setting, the reduction is unbounded.

5.2 Tilings

Rings, tori, and other ‘regular’ network patterns have considerable local sym-
metry but little global symmetry. Here we show how to enforce local symmetry
across network families by generating them from a finite set of tiles. The tiles
directly induce local symmetries and balance.

Consider a fixed, finite set of process types where each process type has a
fixed, finite set of edge directions, which are given unique names. The initial
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condition and the transition relation of a process type may refer to the values
on edges in the given direction. Each type is associated with a tile describing a
fixed neighborhood pattern around a node of that type. The pattern specifies
for each edge connected to the central node its direction from the center and
the type and direction of the other process connected to it. The tiles induce a
family of networks, typically of unbounded size, as follows. A network is in the
family if (1) each node is assigned an instance of a process type, and (2) the
neighborhood of a node matches the tile for that node type. For instance, a tile
for a torus shape would have 4 neighbors, labeled north, south, east and west.

A network family constructed in this manner has an induced balance relation,
B, defined as follows. Let m,n be nodes of a network in the family. Let (m,β, n)
belong to B if (a) both nodes are instances of the same type and (b) β is the
mapping which, for each direction a, relates the edge reachable in direction a
from m to the edge reachable in the same direction from n. (E.g., it maps the
north edge of m to the north edge of n.)

Theorem 7. B is a balance relation for the induced family, with finitely many
equivalence classes.

Proof: We show that B is a balance relation, and that it is respected by the
process assignment. The mapping β is an isomorphism of the edges connected
to m and n, as both have the same type. Moreover, as their initial conditions
and transition relations are derived from those of the type and are independent
of node identities, they are isomorphic up to β.

We now establish that B meets the balance relation. Consider a direction
a. Let m′ (n′) be the node connected to m (n) in that direction. As m and
n have the same tiling pattern, m′ and n′ have the same type, so the tuple
(m′, γ, n′) is in B, for the isomorphism γ between the edges of m′ and n′ as
given in the definition of B. Consider the edge e reached from m in direction a,
and let b be the direction that this edge is reached from m′. Let f be the edge
in direction a from n. As m and n follow the same tiling pattern, f must be
reached from direction b from n′. Therefore, β and γ agree on this edge. As the
edge was chosen arbitrarily, this establishes the balance condition. The number
of equivalence classes induced by the greatest balance relation is, then, at most
the number of tiles, which equals the number of process types. EndProof.

Theorem 7 implies that the compositional analysis of all instances of the net-
work family can be reduced to the analysis of a finite set of representatives. This
contrasts with global symmetry reduction for network families, where parame-
terized collapse is not as simple, nor as general. Moreover, the required repre-
sentatives are just the tiles. The easy syntactic symmetry reduction contrasts
with the difficulty of computing global symmetry groups for network families.

6 Applications

Example 1. Consider a non-deterministic token-ring system P = ||iPi. The
internal states of Pi range over {T, H, E} with shared variables xi and xi+1 ranging
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over {⊥, tok}. Initially, each process is in internal state T and either owns 0
tokens or owns 1 token. The initial condition specifies that a single process owns
the token. Processes cycle through states in the order T ,H and E . A process in
H can move to E only if it owns the token. When exiting E the process puts
the token on its right and enters T . If a process is in T and has the token,
then it either enters H or passes the token to the right. It can be shown that
the process interactions are outward-facing. Verification of the mutual exclusion
property for all i: AG(Ei → (xi = tok)) can then be performed on a model with
3 processes that suffices to see all reachable local states.

In addition, a liveness property, for all i : AG(Hi → AFEi), can also be
verified using a combination of local arguments. The proof is constructed as
follows: first, show that the system satisfies the invariant that there is exactly
1 token in the system. Then show every process that has the token eventually
passes the token to the neighbor on the right. Using the global system fairness
assumption that each process executes infinitely often we can chain these proofs
together to conclude that for any particular process Pn: AG(Hn → AFEn) holds
which by local symmetry implies: for all i : AG(Hi → AFEi).

Example 2. Interestingly, the results about a single token ring network can
be extended to a ring with 2 tokens. However, the minimal model requires 4
processes. Similar reasoning holds for 3 tokens and we hypothesize can be gen-
eralized to any fixed number of tokens. A related example is a ring with 2 types
of processes, one labeled red and one labeled black . For rings with even numbers
of processes, half of them red and half of them black , there are 2 equivalence
classes. Local symmetry reduction can be used to verify behavior of the two
equivalence classes for any even number of processes, though the networks have
little global symmetry and do not have transitive symmetry.

Example 3. Several works including [3,9,10,14] have considered using counting
arguments as a way of implementing full symmetry reduction. Given an n process
system, with isomorphic processes having local state spaces of size m, and full
global symmetry on [1..n] the idea is to replace the global symmetry-reduced
model with a set of m counters, where the counter values record the number
of components in each of the different local states. A combinatorial argument
[22] shows that the number of combinations of n isomorphic process each with
m local states, is (m + n − 1)!/(n!(m − 1)!). If n > 2m, this is more than 2m.
On the other hand, if each component has b neighbors, the local representative
(full global symmetry implies a single balance class) has a local state space of
size approximately mb. Over a parametric analysis mb is a constant and b, the
number of neighbors, is likely to be small in comparison with m.

7 Discussion and Related Work

We studied the relationship between the satisfaction of temporal properties on
the global state space of a process network and on individual local state spaces.
We show that “balanced” processes have bisimilar local spaces and therefore
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satisfy the same local mu-calculus formulas. Hence, for a local formula f(n) that
is universal in nature, the satisfaction of f(n) on the local space of node n implies
that f(n) holds of the global state space. Thus, if universal formulas {f(n)} hold
for all nodes n, then (

∧
i : f(i)) holds for the global state space. This provides

an approximate way to establish quantified mu-calculus properties. Moreover,
as balanced nodes satisfy the same formulas, it is only necessary to model-check
representatives of the balance equivalence relation. For a fixed process network,
the restriction to local state spaces can result in exponential savings (in the
number of nodes), and the further restriction to representative spaces results in
a further linear cost saving. More dramatically, we show that network families
constructed from building-block “tiles” have a finite set of representative nodes,
so the cost saving is unbounded for parametric analysis. When network processes
communicate with their neighbors in an outward-facing manner, these results
carry over to the entire local mu-calculus, not just to universal properties.

The results build on our earlier work on balance relations and local sym-
metry [17,18,20]. That work focused on compositional invariants [21] the cen-
tral result being that the strongest compositional invariants for balanced nodes
are isomorphic. The current paper shows that the isomorphism applies to all
local mu-calculus properties. The local state spaces on which the mu-calculus
properties are evaluated are built using compositional invariants. An elegant
methodology using 3-valued logic to compositionally verify mu-calculus prop-
erties is developed in [23]; however, it applies to pairs of processes, and thus
does not consider symmetries in larger networks. The definition of network fam-
ilies through tilings has similarities to the network grammars used in [24,26];
however, the verification techniques are different.

The framework of this paper considers the neighborhood of a single node.
Compositional invariants have been generalized to apply to groups of processes,
to accommodate properties stated over all pairs i, j, or over all neighbors i, j;
see for example [1,6,12,13,16]. Construction of a comprehensive theory of neigh-
borhood symmetry for groups of processes is still an open question.

Global symmetry reduction, developed in [5,8,14], is based on a beautiful
mathematical theory of automorphisms in graphs. However, in practice, symme-
try reduction runs into difficulties, usually because there is not enough global
symmetry in a process network, but also because for even highly symmetric
networks, symbolic manipulation of symmetry reduced structures is difficult. In
fact [5] shows that any BDD-based representation of the global symmetry group
for any network with only transitive symmetry would likely incur a prohibitive
cost. By focusing on local similarities, a strict generalization of global symme-
tries [17,20], we can avoid these problems and obtain exponential improvements.
The theory of local symmetries is based on network groupoids, and we note that
any network automorphism group induces a balance relation.

We also consider parameterized verification. For network families built from
building-block tiles, there is a finite set of representative neighborhoods, and
it suffices to prove a parameterized local mu-calculus property for each of
those representatives to show that it holds for the entire family. This is an
approximate method for parameterized verification. In prior work [20], we had
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introduced the local PCMCP (parameterized compositional model-checking)
question as a decision problem that is, in many cases, more tractable than the
global PMCP (parameterized model-checking) problem. Deciding PCMCP for
local mu-calculus properties is a challenging open question.
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