
Fine-Grained Complexity of Safety
Verification

Peter Chini(B), Roland Meyer(B), and Prakash Saivasan(B)

TU Braunschweig, Braunschweig, Germany
{p.chini,roland.meyer,p.saivasan}@tu-bs.de

Abstract. We study the fine-grained complexity of Leader Contributor
Reachability (LCR) and Bounded-Stage Reachability (BSR), two vari-
ants of the safety verification problem for shared-memory concurrent
programs. For both problems, the memory is a single variable over a
finite data domain. We contribute new verification algorithms and lower
bounds based on the Exponential Time Hypothesis (ETH) and kernels.

LCR is the question whether a designated leader thread can reach an
unsafe state when interacting with a certain number of equal contributor
threads. We suggest two parameterizations: (1) By the size of the data
domain D and the size of the leader L, and (2) by the size of the contrib-
utors C. We present two algorithms, running in O∗((L ·(D+1))L·D ·DD) and
O∗(4C) time, showing that both parameterizations are fixed-parameter
tractable. Further, we suggest a modification of the first algorithm suit-
able for practical instances. The upper bounds are complemented by
(matching) lower bounds based on ETH and kernels.

For BSR, we consider programs involving t different threads. We
restrict the analysis to computations where the write permission changes
s times between the threads. BSR asks whether a given configuration
is reachable via such an s-stage computation. When parameterized by
P, the maximum size of a thread, and t, the interesting observation is
that the problem has a large number of difficult instances. Formally, we
show that there is no polynomial kernel, no compression algorithm that
reduces D or s to a polynomial dependence on P and t. This indicates
that symbolic methods may be harder to find for this problem.

A full version of the paper is available as [9].

1 Introduction

We study the fine-grained complexity of two safety verification problems [1,16,
27] for shared-memory concurrent programs. The motivation to reconsider these
problems are recent developments in fine-grained complexity theory [6,10,30,33].
They suggest that classifications such as NP or even FPT are too coarse to explain
the success of verification methods. Instead, it should be possible to identify the
precise influence that parameters of the input have on the verification time. Our
contribution confirms this idea. We give new verification algorithms for the two
problems that, for the first time, can be proven optimal in the sense of fine-
grained complexity theory. To state the results, we need some background. As
we proceed, we explain the development of fine-grained complexity theory.
c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 20–37, 2018.
https://doi.org/10.1007/978-3-319-89963-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_2&domain=pdf

Fine-Grained Complexity of Safety Verification 21

There is a well-known gap between the success that verification tools see
in practice and the judgments about computational hardness that worst-case
complexity is able to give. The applicability of verification tools steadily increases
by tuning them towards industrial instances. The complexity estimation is stuck
with considering the input size (or at best assumes certain parameters to be
constant, which does not mean much if the runtime is then nk, where n is the
input size and k the parameter).

The observation of a gap between practical algorithms and complexity theory
is not unique to verification but made in every field that has to solve computa-
tionally hard problems. Complexity theory has taken up the challenge to close
the gap. So-called fixed-parameter tractability (FPT) [11,13] proposes to identify
parameters k so that the runtime is f(k)poly(n), where f is a computable func-
tion. These parameters are powerful in the sense that they dominate the com-
plexity.

For an FPT result to be useful, function f should only be mildly exponential,
and of course k should be small in the instances of interest. Intuitively, they are
what one needs to optimize. Fine-grained complexity is the study of upper and
lower bounds on function f . Indeed, the fine-grained complexity of a problem is
written as O∗(f(k)), emphasizing f and k and suppressing the polynomial part.
For upper bounds, the approach is still to come up with an algorithm.

For lower bounds, fine-grained complexity has taken a new and very prag-
matic perspective. For the problem of n-variable 3-SAT the best known algo-
rithm runs in 2n, and this bound has not been improved since 1970. The idea
is to take improvements on this problem as unlikely, known as the exponential-
time hypothesis (ETH) [30]. ETH serves as a lower bound that is reduced to
other problems [33]. An even stronger assumption about n-variable SAT, called
SETH [6,30], and a similar one about Set Cover [10] allow for lower bounds like
the absence of (2 − ε)n algorithms.

In this work, we contribute fine-grained complexity results for verification
problems on concurrent programs. The first problem is reachability for a leader
thread that is interacting with an unbounded number of contributors (LCR) [16,
27]. We show that, assuming a parameterization by the size of the leader L and
the size of the data domain D, the problem can be solved in O∗((L·(D+1))L·D ·DD).
At the heart of the algorithm is a compression of computations into witnesses. To
check reachability, our algorithm then iterates over candidates for witnesses and
checks each of them for being a proper witness. Interestingly, we can formulate
a variant of the algorithm that seems to be suited for large state spaces.

Using ETH, we show that the algorithm is (almost) optimal. Moreover, the
problem is shown to have a large number of hard instances. Technically, there is
no polynomial kernel [4,5]. Experience with kernel lower bounds is still limited.
This notion of hardness seems to indicate that symbolic methods are hard to
apply to the problem. The lower bounds that we present share similarities with
the reductions from [7,24,25].

22 P. Chini, R. Meyer, and P. Saivasan

If we consider the size of the contributors a parameter, we obtain a singly
exponential upper bound that we also prove to be tight. The saturation-based
technique that we use is inspired by thread-modular reasoning [20,21,26,29].

The second problem we study generalizes bounded context switching.
Bounded-stage reachability (BSR) asks whether a state is reachable if there is
a bound s on the number of times the write permission is allowed to change
between the threads [1]. Again, we show the new form of kernel lower bound.
The result is tricky and highlights the power of the computation model.

The results are summarized by the table below. Two findings stand out,
we highlight them in gray. We present a new algorithm for LCR. Moreover, we
suggest kernel lower bounds as hardness indicators for verification problems. The
lower bound for BSR is particularly difficult to achieve.

Problem Upper Bound Lower Bound Kernel

LCR(D, L) O∗((L · (D+1))L·D · DD) 2o(
√

L·D·log(L·D) No poly.

LCR(C) O∗(4C) 2o(C) No poly.

BSR(P, t) O∗(P2t) 2o(t·log(P)) No poly.

Related Work. Concurrent programs communicating through a shared mem-
ory and having a fixed number of threads have been extensively studied
[2,14,22,28]. The leader contributor reachability problem as considered in this
paper was introduced as parametrized reachability in [27]. In [16], it was shown
to be NP-complete when only finite-state programs are involved and PSPACE-
complete for recursive programs. In [31], the parameterized pairwise-reachability
problem was considered and shown to be decidable. Parameterized reachability
under a variant of round-robin scheduling was proven decidable in [32].

The bounded-stage restriction on the computations of concurrent programs
as considered here was introduced in [1]. The corresponding reachability problem
was shown to be NP-complete when only finite-state programs are involved. The
problem remains in NEXP-time and PSPACE-hard for a combination of counters
and a single pushdown. The bounded-stage restriction generalizes the concept
of bounded context switching from [34], which was shown to be NP-complete in
that paper. In [8], FPT algorithms for bounded context switching were obtained
under various parameterization. In [3], networks of pushdowns communicating
through a shared memory were analyzed under various topological restrictions.

There have been few efforts to obtain fixed-parameter-tractable algorithms
for automata and verification-related problems. FPT algorithms for automata
problems have been studied in [18,19,35]. In [12], model-checking problems for
synchronized executions on parallel components were considered and proven
intractable. In [15], the notion of conflict serializability was introduced for the
TSO memory model and an FPT algorithm for checking serializability was pro-
vided. The complexity of predicting atomicity violations on concurrent systems
was considered in [17]. The finding is that FPT solutions are unlikely to exist.

Fine-Grained Complexity of Safety Verification 23

2 Preliminaries

We introduce our model for programs, which is fairly standard and taken from [1,
16,27], and give the basics on fixed-parameter tractability.

Programs. A program consists of finitely many threads that access a shared
memory. The memory is modeled to hold a single value at a time. Formally, a
(shared-memory) program is a tuple A = (D , a0, (Pi)i∈[1..t]). Here, D is the data
domain of the memory and a0 ∈ D is the initial value. Threads are modeled as
control-flow graphs that write values to or read values from the memory. These
operations are captured by Op(D) = {!a, ?a | a ∈ D}. We use the notation
W (D) = {!a | a ∈ D} for the write operations and R(D) = {?a | a ∈ D}
for the read operations. A thread Pid is a non-deterministic finite automaton
(Op(D), Q, q0, δ) over the alphabet of operations. The set of states is Q with
q0 ∈ Q the initial state. The final states will depend on the verification task.
The transition relation is δ ⊆ Q × (Op(D) ∪ {ε}) × Q. We extend it to words
and also write q

w−→ q′ for q′ ∈ δ(q, w). Whenever we need to distinguish between
different threads, we add indices and write Qid or δid.

The semantics of a program is given in terms of labeled transitions between
configurations. A configuration is a pair (pc, a) ∈ (Q1 × · · · × Qt) × D . The
program counter pc is a vector that shows the current state pc(i) ∈ Qi of each
thread Pi. Moreover, the configuration gives the current value in memory. We
call c0 = (pc0, a0) with pc0(i) = q0i for all i ∈ [1..t] the initial configuration. Let C
denote the set of all configurations. The transition relation among configurations
→ ⊆ C × (Op(D)∪{ε})×C is obtained by lifting the transition relations of the
threads. To define it, let pc1 = pc[i = qi], meaning thread Pi is in state qi and
otherwise the program counter coincides with pc. Let pc2 = pc[i = q′

i]. If thread
Pi tries to read with the transition qi

?a−→ q′
i, then (pc1, a) ?a−→ (pc2, a). Note that

the memory is required to hold the desired value. If the thread has the transition
qi

!b−→ q′
i, then (pc1, a) !b−→ (pc2, b). Finally, qi

ε−→ q′
i yields (pc1, a) ε−→ (pc2, a). The

program’s transition relation is generalized to words, c
w−→ c′. We call such a

sequence of consecutive labeled transitions a computation. To indicate that there
is a word that justifies a computation from c to c′, we write c →∗ c′. We may
use an index w−→i to indicate that the computation was induced by thread Pi.
Where appropriate, we also use the program as an index, w−→A.

Fixed-Parameter Tractability. We wish to study the fine-grained complexity
of safety verification problems for the above programs. This means our goal is to
identify parameters of these problems that have two properties. First, in practical
instances they are small. Second, assuming that these parameters are small, show
that there are efficient verification algorithms. Parametrized complexity makes
precise the idea of an algorithm being efficient relative to a parameter.

A parameterized problem L is a subset of Σ∗ × N. The problem is fixed-
parameter tractable if there is a deterministic algorithm that, given (x, k) ∈ Σ∗×N,

24 P. Chini, R. Meyer, and P. Saivasan

decides (x, k) ∈ L in time f(k) · |x|O(1). We use FPT for the class of all fixed-
parameter-tractable problems and say a problem is FPT to mean it is in that class.
Note that f is a computable function that only depends on the parameter k. It is
common to denote the runtime by O∗(f(k)) and suppress the polynomial part. We
will be interested in the precise dependence on the parameter, in upper and lower
bounds on the function f . This study is often referred to as fine-grained complexity.

Lower bounds on f are obtained by the Exponential Time Hypothesis (ETH).
It assumes that there is no algorithm solving n-variable 3-SAT in 2o(n) time. The
reasoning is as follows: If f dropped below a certain bound, ETH would fail.

While many parameterizations of NP-hard problems were proven to be fixed-
parameter tractable, there are problems that are unlikely to be FPT. Such prob-
lems are hard for the complexity class W[1]. The appropriate notion of reduction
for a theory of relative hardness in parameterized complexity is called parame-
terized reduction.

3 Leader Contributor Reachability

We consider the leader contributor reachability problem for shared-memory pro-
grams. The problem was introduced in [27] and shown to be NP-complete in
[16] for the finite-state case.1 We contribute two new verification algorithms
that target two parameterizations of the problem. In both cases, our algorithms
establish fixed-parameter tractability. Moreover, with matching lower bounds we
prove them to be optimal even in the fine-grained sense.

An instance of the leader contributor reachability problem is given by a
shared-memory program of the form A = (D , a0, (PL, (Pi)i∈[1..t])). The program
has a designated leader thread PL and several contributor threads P1, . . . , Pt. In
addition, we are given a set of unsafe states for the leader. The task is to check
whether the leader can reach an unsafe state when interacting with a number of
instances of the contributors. It is worth noting that the problem can be reduced
to having a single contributor. Let the corresponding thread PC be the union
of P1, . . . , Pt (constructed using an initial ε-transition). We base our complexity
analysis on this simplified formulation of the problem.

For the definition, let A = (D , a0, (PL, PC)) be a program with two threads.
Let FL ⊆ QL be a set of unsafe states of the leader. For t ∈ N, define the program
At = (D , a0, (PL, (PC)i∈[1..t])) to have t copies of PC . Further, let Cf be the set
of configurations where the leader is in an unsafe state (from FL). The problem
of interest is as follows:

Leader Contributor Reachability (LCR)
Input: A program A = (D , a0, (PL, PC)) and a set of states FL ⊆ QL.
Question: Is there a t ∈ N such that c0 →∗

At c for some c ∈ Cf?

1 The problem is called parameterized reachability in these works. We renamed it to
avoid confusion with parameterized complexity.

Fine-Grained Complexity of Safety Verification 25

We consider two parameterizations of LCR. First, we parameterize by D, the
size of the data domain D , and L, the number of states of the leader PL. We
denote the parameterization by LCR(D, L). While for LCR(D, L) we obtain an
FPT algorithm, it is not likely that LCR(D) and LCR(L) admit the same. These
parameterizations are W[1]-hard. For details, we refer to the full version [9].

The second parameterization that we consider is LCR(C), a parameterization
by the number of states of the contributor PC . We prove that the parameter is
enough to obtain an FPT algorithm.

3.1 Parameterization by Memory and Leader

We give an algorithm that solves LCR in time O∗((L·(D+1))L·D ·DD), which means
LCR(D, L) is FPT. We then show how to modify the algorithm to solve instances
of LCR as they are likely to occur in practice. Interestingly, the modified version
of the algorithm lends itself to an efficient implementation based on off-the-shelf
sequential model checkers. We conclude with lower bounds for LCR(D, L).

Upper Bound. We give an algorithm for the parameterization LCR(D, L). The
key idea is to compactly represent computations that may be present in an
instance of the given program. To this end, we introduce a domain of so-called
witness candidates. The main technical result, Lemma 4, links computations and
witness candidates. It shows that reachability of an unsafe state holds in an
instance of the program if and only if there is a witness candidate that is valid
(in a precise sense). With this, our algorithm iterates over all witness candi-
dates and checks each of them for being valid. To state the overall result, let
Wit(L, D) = (L · (D + 1))L·D · DD · L be the number of witness candidates and let
Valid(L, D, C) = L3 · D2 · C2 be the time it takes to check validity of a candidate.
Note that it is polynomial.

Theorem 1. LCR can be solved in time O(Wit(L, D) · Valid(L, D, C)).

Let A = (D , a0, (PL, PC)) be the program of interest and FL be the set of
unsafe states in the leader. Assume we are given a computation ρ showing that
PL can reach a state in FL when interacting with a number of contributors. We
explain the main ideas to find an efficient representation for ρ that still allows
for the reconstruction of a similar computation. To simplify the presentation, we
assume the leader never writes (!a) and immediately reads (?a) the same value.
If this is the case, the read can be replaced by ε.

In a first step, we delete most of the moves in ρ that were carried out by
contributors. We only keep first writes. For each value a, this is the write tran-
sition fw(a) = c

!a−→ c′ where a is written by a contributor for the first time. The
reason we can omit subsequent writes of a is the following: If fw(a) is carried
out by contributor P1, we can assume that there is an arbitrary number of other
contributors that all mimicked the behavior of P1. This means whenever P1 did
a transition, they copycatted it right away. Hence, there are arbitrarily many
contributors pending to write a. Phrased differently, the symbol a is available

26 P. Chini, R. Meyer, and P. Saivasan

for the leader whenever PL needs to read it. The idea goes back to the Copycat
Lemma stated in [16]. The reads of the contributors are omitted as well. We will
make sure they can be served by the first writes and the moves done by PL.

After the deletion, we are left with a shorter expression ρ′. We turn it into a
word w over the alphabet QL∪D⊥∪D̄ with D⊥ = D∪{⊥} and D̄ = {ā | a ∈ D}.

Each transition c
!a/?a/ε−−−−−→L c′ in ρ′ that is due to the leader moving from q to

q′ is mapped (i) to q.a.q′ if it is a write and (ii) to q.⊥.q′ otherwise. A first
write fw(a) = c

a−→ c′ of a contributor is mapped to ā. We may assume that
the resulting word w is of the form w = w1.w2 with w1 ∈ ((QL.D⊥)∗.D̄)∗ and
w2 ∈ (QL.D⊥)∗.FL. Note that w can still be of unbounded length.

In order to find a witness of bounded length, we compress w1 and w2 to
w′

1 and w′
2. Between two first writes ā and b̄ in w1, the leader can perform an

unbounded number of transitions, represented by a word in (QL.D⊥)∗. Hence,
there are states q ∈ QL repeating between ā and b̄. We contract the word between
the first and the last occurrence of q into just a single state q. This state now
represents a loop on PL. Since there are L states in the leader, this bounds the
number of contractions. Furthermore, we know that the number of first writes is
bounded by D, each symbol can be written for the first time at most once. Thus,
the compressed string w′

1 is in the language ((QL.D⊥)≤L.D̄)≤D.
The word w2 is of the form w2 = q.u for a state q ∈ QL and a word u.

We truncate the word u and only keep the state q. Then we know that there is
a computation leading from q to a state in FL where PL can potentially write
any symbol but read only those symbols which occurred as a first write in w′

1.
Altogether, we are left with a word of bounded length.

Definition 2. The set of witness candidates is E = ((QL.D⊥)≤L.D̄)≤D.QL.

To characterize computations in terms of witness candidates, we define the
notion of validity. This needs some notation. Consider a word w = w1 . . . w�

over some alphabet Γ . For i ∈ [1..�], we set w[i] = wi and w[1..i] = w1 . . . wi. If
Γ ′ ⊆ Γ , we use w↓Γ ′ for the projection of w to the letters in Γ ′.

Consider a witness candidate w ∈ E and let i ∈ [1..|w|]. We use D̄(w, i)
for the set of all first writes that occurred in w up to position i. Formally,
D̄(w, i) = {a | ā is a letter in w[1..i]↓D̄}. We abbreviate D̄(w, |w|) as D̄(w). Let
q ∈ QL and S ⊆ D . Recall that the state represents a loop in PL. The set of all
letters written within a loop from q to q when reading only symbols from S is
Loop(q, S) = {a | a ∈ D and ∃v1, v2 ∈ (W (D) ∪ R(S))∗ : q

v1!av2−−−−→L q}.
The definition of validity is given next. The three requirements are made

precise in the text below.

Definition 3. A witness candidate w ∈ E is valid if it satisfies the following
properties: (1) First writes are unique. (2) The word w encodes a run in PL. (3)
There are supportive computations on the contributors.

(1) If w↓D̄ = c̄1 . . . c̄�, then the c̄i are pairwise different.
(2) Let w ↓QL∪D⊥= q1a1q2a2 . . . a�q�+1. If ai ∈ D , then qi

!ai−−→L qi+1 ∈ δL is a
write transition of PL. If ai = ⊥, then we have an ε-transition qi

ε−→L qi+1.

Fine-Grained Complexity of Safety Verification 27

Alternatively, there is a read qi
?a−→L qi+1 of a symbol a ∈ D̄(w, pos(ai))

that already occurred within a first write (the leader does not read the own
writes). Here, we use pos(ai) to access the position of ai in w. State q1 = q0L
is initial. There is a run from q�+1 to a state qf ∈ FL. During this run,
reading is restricted to symbols that occurred as first writes in w. Formally,
there is a v ∈ (W (D) ∪ R(D̄(w)))∗ such that q�+1

v−→L qf .
(3) For each prefix vā of w with ā ∈ D̄ there is a computation q0C

u!a−−→C q on PC so
that the reads in u can be obtained from v. Formally, let u′ = u↓R(D). Then
there is an embedding of u′ into v, a monotone map μ : [1..|u′|] → [1..|v|] that
satisfies the following. Let u′[i] = ?a with a ∈ D . The read is served in one of
the following three ways. We may have v[μ(i)] = a, which corresponds to a
write of a by PL. Alternatively, v[μ(i)] = q ∈ QL and a ∈ Loop(q, D̄(w, μ(i))).
This amounts to reading from a leader’s write that was executed in a loop.
Finally, we may have a ∈ D̄(w, μ(i)), corresponding to reading from another
contributor.

Lemma 4. There is a t ∈ N so that c0 →∗
At c with c ∈ Cf if and only if there

is a valid witness candidate w ∈ E.
Our algorithm iterates over all witness candidates w ∈ E and tests whether w

is valid. The number of candidates Wit(L, D) is given by (L · (D + 1))L·D ·DD ·L. This
is due to the fact that we can force a witness candidate to have maximum length
via inserting padding symbols. The number of candidates constitutes the first
factor of the runtime stated in Theorem1. The polynomial factor Valid(L, D, C) is
due to the following Lemma. Details are given in the full version of the paper [9].

Lemma 5. Validity of w ∈ E can be checked in time O(L3 · D 2 · C 2).

Practical Algorithm. We improve the above algorithm so that it should work
well on practical instances. The idea is to factorize the leader along its strongly
connected components (SCCs), the number of which is assumed to be small in real
programs. Technically, our improved algorithm works with valid SCC-witnesses.
They symbolically represent SCCs rather than loops in the leader. To state the
complexity, we define the straight-line depth, the number of SCCs the leader may
visit during a computation. The definition needs a graph construction.

LetV ⊆ D̄≤D contain onlywords that do not repeat letters. Let r = c̄1 . . . c̄� ∈ V
and i ∈ [0..�]. By PL ↓i we denote the automaton obtained from PL by removing
all transitions that read a value outside {c1, . . . , ci}. Let SCC(PL ↓i) denote the
set of all SCCs in this automaton. We construct the directed graph G(PL, r) as
follows. The vertices are the SCCs of all PL ↓i, i ∈ [0..�]. There is an edge between
S, S′ ∈ SCC(PL ↓i), if there are states q ∈ S, q′ ∈ S′ with q → q′ in PL ↓i. If
S ∈ SCC(PL ↓i−1) and S′ ∈ SCC(PL ↓i), we only get an edge if we can get from S to
S′ by reading ci. Note that the graph is acyclic.

The depth d(r) of PL relative to r is the length of the longest path in G(PL, r).
The straight-line depth is d = max{d(r) | r ∈ V}. The number of SCCs s is
the size of SCC(PL ↓0). With these values at hand, the number of SCC-witness

28 P. Chini, R. Meyer, and P. Saivasan

candidates (the definition of which can be found in the full version [9]) can be
bounded by WitSCC (s, D, d) ≤ (s · (D + 1))d · DD · 2D+d. The time needed to test
whether a candidate is valid is ValidSCC (L, D, C, d) = L2 · D · C2 · d2.
Theorem 6. LCR can be solved in time O(WitSCC (s, D, d)·ValidSCC (L, D, C, d)).

For this algorithm, what matters is that the leader’s state space is strongly
connected. The number of states has limited impact on the runtime.

Lower Bound. We prove that the algorithm from Theorem1 is only a root
factor away from being optimal: A 2o(

√
L·D·log(L·D))-time algorithm for LCR would

contradict ETH. We achieve the lower bound by a reduction from k × k Clique,
the problem of finding a clique of size k in a graph the vertices of which are
elements of a k × k matrix. Moreover, the clique has to contain one vertex from
each row. Unless ETH fails, the problem cannot be solved in time 2o(k·log(k)) [33].

Technically, we construct from an instance (G, k) of k × k Clique an instance
(A = (D , a0, (PL, PC)), FL) of LCR such that D = O(k) and L = O(k). Further-
more, we show that G contains the desired clique of size k if and only if there
is a t ∈ N such that c0 →∗

At c with c ∈ Cf . Suppose we had an algorithm for
LCR running in time 2o(

√
L·D·log(L·D)). Combined with the reduction, this would

yield an algorithm for k × k Clique with runtime 2o(
√

k2·log(k2)) = 2o(k·log k). But
unless ETH fails, such an algorithm cannot exist.

Proposition 7. LCR cannot be solved in time 2o(
√
L·D·log(L·D)) unless ETH fails.

We assume that the vertices V of G are given by tuples (i, j) with i, j ∈ [1..k],
where i denotes the row and j denotes the column. In the reduction, we need the
leader and the contributors to communicate on the vertices of G. However, we
cannot store tuples (i, j) in the memory as this would cause a quadratic blow-up
D = O(k2). Instead, we communicate a vertex (i, j) as a string row(i). col(j). We
distinguish between row and column symbols to avoid stuttering, the repeated
reading of the same symbol. With this, it cannot happen that a thread reads a
row symbol twice and takes it for a column.

The program starts its computation with each contributor choosing a vertex
(i, j) to store. For simplicity, we denote a contributor storing (i, j) by P(i,j). Note
that there can be copies of P(i,j).

Since there are arbitrarily many contributors, the chosen vertices are only a
superset of the clique we want to find. To cut away the false vertices, the leader
PL guesses for each row the vertex belonging to the clique. To this end, the
program performs for each i ∈ [1..k] the following steps: If (i, ji) is the vertex
of interest, PL first writes row(i) to the memory. Each contributor that is still
active reads the symbol and moves on for one state. Then PL communicates the
column by writing col(ji). Again, the active contributors P(i′,j′) read.

A contributor can react to the read symbol in three different ways: (1) If
i′
= i, the contributor P(i′,j′) stores a vertex of a different row. The computation
in P(i′,j′) can only go on if (i′, j′) is connected to (i, ji) in G. Otherwise it will

Fine-Grained Complexity of Safety Verification 29

stop. (2) If i′ = i and j′ = ji, then P(i′,j′) stores exactly the vertex guessed by
PL. In this case, P(i′,j′) can continue its computation. (3) If i′ = i and j′
= j,
thread P(i′,j′) stores a different vertex from row i. The contributor has to stop
its computation.

After k such rounds, there are only contributors left that store vertices
guessed by PL. Furthermore, each two of these vertices are connected. Hence,
they form a clique. To transmit this information to PL, each P(i,ji) writes #i to
the memory, a special symbol for row i. After PL has read the string #1 . . . #k, it
moves to its final state. A formal construction can be found in the full version [9].

Absence of a Polynomial Kernel. A kernelization of a parameterized prob-
lem is a compression algorithm. Given an instance, it returns an equivalent
instance the size of which is bounded by a function only in the parameter. From
an algorithmic perspective, kernels put a bound on the number of hard instances
of the problem. Indeed, the search for small kernels is a key interest in algorith-
mics, similar to the search for fast FPT algorithms. Even more, it can be shown
that kernels exist if and only if a problem admits an FPT algorithm [11].

Let Q be a parameterized problem. A kernelization of Q is an algorithm
that transforms, in polynomial time, a given instance (B, k) into an equivalent
instance (B′, k′) such that |B′| + k′ ≤ g(k), where g is a computable function. If
g is a polynomial, we say that Q admits a polynomial kernel.

Unfortunately, for many problems the community failed to come up with
polynomial kernels. This lead to the contrary approach, namely disproving their
existence [4,5,23]. Such a result constitutes an exponential lower bound on the
number of hard instances. Like computational hardness results, such a bound
is seen as an indication of general hardness of the problem. Technically, the
existence of a polynomial kernel for the problem of interest is shown to imply
NP ⊆ coNP/poly. But this inclusion is unlikely as it would cause a collapse of
the polynomial hierarchy to the third level [36].

In order to link the occurrence of a polynomial kernel for LCR(D, L) with the
above inclusion, we follow the framework developed in [5]. Let Γ be an alphabet.
A polynomial equivalence relation is an equivalence relation R on Γ ∗ with the
following properties: Given x, y ∈ Γ ∗, it can be decided in time polynomial in
|x|+ |y| whether (x, y) ∈ R. Moreover, for each n there are at most polynomially
many equivalence classes in R restricted to Γ≤n.

The key tool for proving kernel lower bounds are cross-compositions: Let
L ⊆ Γ ∗ be a language and Q ⊆ Γ ∗ × N be a parameterized language. We say
that L cross-composes into Q if there exists a polynomial equivalence relation
R and an algorithm C, the cross-composition, with the following properties: C
takes as input ϕ1, . . . , ϕI ∈ Γ ∗, all equivalent under R. It computes in time
polynomial in

∑I
�=1 |ϕ�| a string (y, k) ∈ Γ ∗ ×N such that (y, k) ∈ Q if and only

if there is an � ∈ [1..I] with ϕ� ∈ L. Furthermore, k ≤ p(max�∈[1..I] |ϕ�|+log(I))
for a polynomial p.

It was shown in [5] that a cross-composition of any NP-hard language into
a parameterized language Q prohibits the existence of a polynomial kernel for

30 P. Chini, R. Meyer, and P. Saivasan

Q unless NP ⊆ coNP/poly. In order to make use of this result, we show how to
cross-compose 3-SAT into LCR(D, L). This yields the following:

Theorem 8. LCR(D, L) does not admit a poly. kernel unless NP ⊆ coNP/poly.

The difficulty of finding a cross-composition is in the restriction on the size
of the parameters. This affects D and L: Both parameters are not allowed to
depend polynomially on I, the number of given 3-SAT-instances. We resolve
the polynomial dependence by encoding the choice of a 3-SAT-instance into the
contributors via a binary tree.

Proof (Idea). Assume some encoding of Boolean formulas as strings over a finite
alphabet. We use the polynomial equivalence relation R defined as follows: Two
strings ϕ and ψ are equivalent under R if both encode 3-SAT-instances, and the
numbers of clauses and variables coincide. On strings of bounded length, R has
polynomially many equivalence classes.

Let the given 3-SAT-instances be ϕ1, . . . , ϕI . Every two of them are equivalent
under R. This means that all ϕ� have the same number of clauses m and use
the same set of variables {x1, . . . , xn}. We assume that ϕ� = C�

1 ∧ · · · ∧ C�
m.

We construct a program proceeding in three phases. First, it chooses an
instance ϕ�, then it guesses a valuation for all variables, and in the third phase
it verifies that the valuation satisfies ϕ�. While the second and the third phase
do not cause a dependence of the parameters on I, the first phase does. It is not
possible to guess a number � ∈ [1..I] and communicate it via the memory as this
would provoke a polynomial dependence of D on I.

To implement the first phase without a polynomial dependence, we transmit
the indices of the 3-SAT-instances in binary. The leader guesses and writes tuples
(u1, 1), . . . , (ulog(I), log(I)) with u� ∈ {0, 1} to the memory. This amounts to
choosing an instance ϕ� with binary representation bin(�) = u1 . . . ulog(I).

It is the contributors’ task to store this choice. Each time, the leader writes
a tuple (ui, i), the contributors read and branch either to the left, if ui = 0, or
to the right, if ui = 1. Hence, in the first phase, the contributors are binary trees
with I leaves, each leaf storing the index of an instance ϕ�. Since we did not
assume that I is a power of 2, there may be computations arriving at leaves that
do not represent proper indices. In this case, the computation deadlocks.

The size of D and PL in the first phase is O(log(I)). This satisfies the size-
restrictions of a cross-composition.

For guessing the valuation in the second phase, the system communicates on
tuples (xi, v) with i ∈ [1..n] and v ∈ {0, 1}. The leader guesses such a tuple for
each variable and writes it to the memory. Any participating contributor is free
to read one of the tuples. After reading, it stores the variable and the valuation.

In the third phase, the satisfiability check is performed as follows: Each con-
tributor that is still active has stored in its current state the chosen instance
ϕ�, a variable xi, and its valuation vi. Assume that xi when evaluated to vi

satisfies C�
j , the j-th clause of ϕ�. Then the contributor loops in its current state

while writing the symbol #j . The leader waits to read the string #1 . . . #m. If
PL succeeds, we are sure that the m clauses of ϕ� were satisfied by the chosen

Fine-Grained Complexity of Safety Verification 31

valuation. Thus, ϕ� is satisfiable and PL moves to its final state. For details of
the construction, we refer to the full version of the paper [9]. �

3.2 Parameterization by Contributors

We show that the size of the contributors C has a wide influence on the complexity
of LCR. We give an algorithm singly exponential in C, provide a matching lower
bound, and prove the absence of a polynomial kernel.

Upper Bound. Our algorithm is based on saturation. We keep the states reach-
able by the contributors in a set and saturate it. This leads to a more compact
representation of the program. Technically, we reduce LCR to a reachability
problem on a finite automaton. The result is as follows.

Proposition 9. LCR can be solved in time O(4C · L4 · D 3 · C 2).

The main observation is that keeping one set of states for all contributors
suffices to represent a computation. Let S ⊆ QC be the set of states reachable
by the contributors in a given computation. By the Copycat Lemma [16], we can
assume for each q ∈ S an arbitrary number of contributors that are currently
in state q. This means that we do not have to distinguish between different
contributor instances.

Formally, we reduce the search space to QL ×D × P(QC). Instead of storing
explicit configurations, we store tuples (qL, a, S), where qL ∈ QL, a ∈ D , and
S ⊆ QC . Between such tuples, the transition relation is as follows. Transitions
of the leader change the state and the memory as expected. The contributors
also change the memory but saturate S instead of changing the state. Formally,
if there is a transition from q ∈ S to q′, we add q′ to S.

Lemma 10. There is a t ∈ N so that c0 →∗
At c with c ∈ Cf if and only if there

is a run from (q0L, a0, {q0C}) to a state in FL × D × P(QC).

The dominant factor in the complexity estimation of Proposition 9 is the
time needed to construct the state space. It takes time O(4C · L4 · D3 · C2). For
the definition and the proof of Lemma10, we refer to the full version [9].

Lower Bound and Absence of a Polynomial Kernel. We present two lower
bounds for LCR. The first is based on ETH: We show that there is no 2o(C)-time
algorithm for LCR unless ETH fails. This indicates that the above algorithm is
asymptotically optimal. Technically, we give a reduction from n-variable 3-SAT
to LCR such that the size of the contributor in the constructed instance is O(n).
Then a 2o(C)-time algorithm for LCR yields a 2o(n)-time algorithm for 3-SAT, a
contradiction to ETH.

With a similar reduction, one can cross-compose 3-SAT into LCR(C). This
shows that the problem does not admit a polynomial kernel. The precise con-
structions and proofs can be found in the full version [9].

32 P. Chini, R. Meyer, and P. Saivasan

Proposition 11

(a) LCR cannot be solved in time 2o(C) unless ETH fails.
(b) LCR(C) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

4 Bounded-Stage Reachability

The bounded-stage reachability problem is a simultaneous reachability problem. It
asks whether all threads of a program can reach an unsafe state when restricted
to s-stage computations. These are computations where the write permission
changes s times. The problem was first analyzed in [1] and shown to be NP-
complete for finite-state programs. We give matching upper and lower bounds in
terms of fine-grained complexity and prove the absence of a polynomial kernel.

Let A = (D , a0, (Pi)i∈[1..t]) be a program. A stage is a computation in A
where only one of the threads writes. The remaining threads are restricted to
reading the memory. An s-stage computation is a computation that can be split
into s parts, each of which forming a stage.

Bounded-Stage Reachability (BSR)
Input: A program A = (D , a0, (Pi)i∈[1..t]), a set Cf ⊆ C, and s ∈ N.
Question: Is there an s-stage computation c0 →∗

A c for some c ∈ Cf?

We focus on a parameterization of BSR by P, the maximum number of states
of a thread, and t, the number of threads. Let it be denoted by BSR(P, t). We
prove that the parameterization is FPT and present a matching lower bound. The
main result in this section is the absence of a polynomial kernel for BSR(P, t).
The result is technically involved and reveals hardness of the problem.

Parameterizations of BSR involving D and s, the number of stages, are not
interesting for fine-grained complexity theory. We can show that BSR is NP-hard
even for constant D and s. This immediately rules out FPT algorithms in these
parameters. For details, we refer to the full version of the paper [9].

Upper Bound. We show that BSR(P, t) is fixed-parameter tractable. The idea
is to reduce to reachability on a product automaton. The automaton stores the
configurations, the current writer, and counts up to the number of stages s. To
this end, it has O∗(Pt) many states. Details can be found in the full version [9].

Proposition 12. BSR can be solved in time O∗(P2t).

Lower Bound. By a reduction from k × k Clique, we show that a 2o(t·log(P))-
time algorithm for BSR would contradict ETH. The above algorithm is optimal.

Proposition 13. BSR cannot be solved in time 2o(t·log(P)) unless ETH fails.

Fine-Grained Complexity of Safety Verification 33

The reduction maps an instance of k × k Clique to an equivalent instance
(A = (D , a0(Pi)i∈[1..t]), Cf , s) of BSR. Moreover, it keeps the parameters small.
We have that P = O(k2) and t = O(k). As a consequence, a 2o(t·log(P))-time
algorithm for BSR would yield an algorithm for k × k Clique running in time
2o(k·log(k2)) = 2o(k·log(k)). But this contradicts ETH.

Proof (Idea). For the reduction, let V = [1..k] × [1..k] be the vertices of G. We
define D = V ∪ {a0} to be the domain of the memory. We want the threads to
communicate on the vertices of G. For each row we introduce a reader thread
Pi that is responsible for storing a particular vertex of the row. We also add
one writer, Pch, that is used to steer the communication between the Pi. Our
program A is given by (D , a0, ((Pi)i∈[1..k], Pch)).

Intuitively, the program proceeds in two phases. In the first phase, each Pi

non-deterministically chooses a vertex from the i-th row and stores it in its state
space. This constitutes a clique candidate (1, j1), . . . , (k, jk) ∈ V . In the second
phase, thread Pch starts to write a random vertex (1, j′

1) of the first row to the
memory. The first thread P1 reads (1, j′

1) from the memory and verifies that the
read vertex is actually the one from the clique candidate. The computation in
P1 will deadlock if j′

1
= j1. The threads Pi with i
= 1 also read (1, j′
1) from the

memory. They have to check whether there is an edge between the stored vertex
(i, ji) and (1, j′

1). If this fails in some Pi, the computation in that thread will also
deadlock. After this procedure, the writer Pch guesses a vertex (2, j′

2) and writes
it to the memory. Now the verification steps repeat. After k repetitions of the
procedure, we can ensure that the guessed clique candidate is indeed a clique.
Note that the whole communication takes one stage. Details are given in [9]. �

Absence of a Polynomial Kernel. We show that BSR(P, t) does not admit
a polynomial kernel. To this end, we cross-compose 3-SAT into BSR(P, t).

Theorem 14. BSR(P, t) does not admit a poly. kernel unless NP ⊆ coNP/poly.

In the present setting, coming up with a cross-composition is non-trivial. Both
parameters, P and t, are not allowed to depend polynomially on the number I
of given 3-SAT-instances. Hence, we cannot construct an NFA that distinguishes
the I instances by branching into I different directions. This would cause a
polynomial dependence of P on I. Furthermore, it is not possible to construct
an NFA for each instance as this would cause such a dependence of t on I. To
circumvent the problems, some deeper understanding of the model is needed.

Proof (Idea). Let ϕ1, . . . , ϕI be given 3-SAT-instances, where each two are equiv-
alent under R, the polynomial equivalence relation of Theorem8. Then each ϕ�

has m clauses and n variables {x1, . . . , xn}. We assume ϕ� = C�
1 ∧ · · · ∧ C�

m.
In the program that we construct, the communication is based on 4-tuples of

the form (�, j, i, v). Intuitively, such a tuple transports the following information:
The j-th clause in instance ϕ�, C�

j , can be satisfied by variable xi with valuation
v. Hence, our data domain is D = ([1..I] × [1..m] × [1..n] × {0, 1}) ∪ {a0}.

34 P. Chini, R. Meyer, and P. Saivasan

For choosing and storing a valuation of the xi, we introduce so-called variable
threads Px1 , . . . , Pxn

. In the beginning, each Pxi
non-deterministically chooses a

valuation for xi and stores it in its states.
We further introduce a writer Pw. During a computation, this thread guesses

exactly m tuples (�1, 1, i1, v1), . . . , (�m,m, im, vm) in order to satisfy m clauses
of potentially different instances. Each (�j , j, ij , vj) is written to the memory by
Pw. All variable threads then start to read the tuple. If Pxi

with i
= ij reads it,
then the thread will just move one state further since the suggested tuple does
not affect the variable xi. If Pxi

with i = ij reads the tuple, the thread will only
continue its computation if vj coincides with the value that Pxi

guessed for xi

and, moreover, xi with value vj satisfies clause C
�j
j .

Now suppose the writer did exactly m steps while each variable thread did
exactly m + 1 steps. This proves the satisfiability of m clauses by the chosen
valuation. But these clauses can be part of different instances: It is not ensured
that the clauses were chosen from one formula ϕ�. The major difficulty of the
cross-composition lies in how to ensure exactly this.

We overcome the difficulty by introducing so-called bit checkers Pb, where
b ∈ [1.. log(I)]. Each Pb is responsible for the b-th bit of bin(�), the binary
representation of �, where ϕ� is the instance we want to satisfy. When Pw writes
a tuple (�1, 1, i1, v1) for the first time, each Pb reads it and stores either 0 or
1, according to the b-th bit of bin(�1). After Pw has written a second tuple
(�2, 2, i2, v2), the bit checker Pb tests whether the b-th bit of bin(�1) and bin(�2)
coincide, otherwise it will deadlock. This will be repeated any time Pw writes a
new tuple to the memory.

Assume, the computation does not deadlock in any of the Pb. Then we can
ensure that the b-th bit of bin(�j) with j ∈ [1..m] never changed during the
computation. This means that bin(�1) = · · · = bin(�m). Hence, the writer Pw

has chosen clauses of just one instance ϕ� and with the current valuation, it is
possible to satisfy the formula. Since the parameters are bounded, P ∈ O(m)
and t ∈ O(n + log(I)), the construction constitutes a proper cross-composition.
For a formal construction and proof, we refer to the full version [9]. �

5 Conclusion

We studied several parameterizations of LCR and BSR, two safety verification
problems for shared-memory concurrent programs. For LCR, we identified the
parameters D, L, and C. Our first algorithm showed that LCR(D, L) is FPT. Then,
we used a modification of the algorithm to obtain a verification procedure valu-
able for practical instances. The main insight was that due to a factorization
along strongly connected components, the impact of L can be reduced to a poly-
nomial factor in the time complexity. We also proved the absence of a polynomial
kernel for LCR(D, L) and presented a lower bound which is a root factor away
from the upper bound. For LCR(C) we gave a tight upper and lower bound.

The parameters of interest for BSR are P and t. We have shown that BSR(P, t)
is FPT and gave a matching lower bound. The main contribution was to prove

Fine-Grained Complexity of Safety Verification 35

it unlikely that a polynomial kernel exists for BSR(P, t). The proof relies on a
technically involved cross-composition that avoids a polynomial dependence of
the parameters on the number of given 3-SAT-instances.

References

1. Atig, M.F., Bouajjani, A., Kumar, K.N., Saivasan, P.: On bounded reachability
analysis of shared memory systems. In: FSTTCS, LIPIcs, vol. 29, pp. 611–623.
Schloss Dagstuhl (2014)

2. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 107–123. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2 11

3. Atig, M.F., Bouajjani, A., Touili, T.: On the reachability analysis of acyclic net-
works of pushdown systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 356–371. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85361-9 29

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. JCSS 75(8), 423–434 (2009)

5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIDAM 28(1), 277–305 (2014)

6. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small
depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp.
75–85. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0 6

7. Cantin, J.F., Lipasti, M.H., Smith, J.E.: The complexity of verifying memory coher-
ence. In: SPAA, pp. 254–255. ACM (2003)

8. Chini, P., Kolberg, J., Krebs, A., Meyer, R., Saivasan, P.: On the complexity
of bounded context switching. In: ESA, LIPIcs, vol. 87, pp. 27:1–27:15. Schloss
Dagstuhl (2017)

9. Chini, P., Meyer, R., Saivasan, P.: Fine-grained complexity of safety verification.
CoRR, abs/1802.05559 (2018)

10. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi,
R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. ACM TALG
12(3), 41:1–41:24 (2016)

11. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

12. Demri, S., Laroussinie, F., Schnoebelen, P.: A parametric analysis of the state
explosion problem in model checking. In: Alt, H., Ferreira, A. (eds.) STACS 2002.
LNCS, vol. 2285, pp. 620–631. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45841-7 51

13. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

14. Durand-Gasselin, A., Esparza, J., Ganty, P., Majumdar, R.: Model checking param-
eterized asynchronous shared-memory systems. In: Kroening, D., Păsăreanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 67–84. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21690-4 5

15. Enea, C., Farzan, A.: On atomicity in presence of non-atomic writes. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 497–514. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 29

https://doi.org/10.1007/978-3-642-00768-2_11
https://doi.org/10.1007/978-3-540-85361-9_29
https://doi.org/10.1007/978-3-540-85361-9_29
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/3-540-45841-7_51
https://doi.org/10.1007/3-540-45841-7_51
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-319-21690-4_5
https://doi.org/10.1007/978-3-319-21690-4_5
https://doi.org/10.1007/978-3-662-49674-9_29

36 P. Chini, R. Meyer, and P. Saivasan

16. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 124–140. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 8

17. Farzan, A., Madhusudan, P.: The complexity of predicting atomicity violations. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 155–169.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2 14

18. Fernau, H., Heggernes, P., Villanger, Y.: A multi-parameter analysis of hard prob-
lems on deterministic finite automata. JCSS 81(4), 747–765 (2015)

19. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time
hypothesis. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp.
89–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40946-7 8

20. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-modular verification for shared-
memory programs. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.
262–277. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45927-8 19

21. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-44829-2 14

22. Fortin, M., Muscholl, A., Walukiewicz, I.: Model-checking linear-time properties
of parametrized asynchronous shared-memory pushdown systems. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 155–175. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63390-9 9

23. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. JCSS 77(1), 91–106 (2011)

24. Furbach, F., Meyer, R., Schneider, K., Senftleben, M.: Memory model-aware testing -
a unified complexity analysis. In: ACSD, pp. 92–101. IEEE (2014)

25. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997)

26. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis.
In: PLDI, pp. 266–277. ACM (2007)

27. Hague, M.: Parameterised pushdown systems with non-atomic writes. In: FSTTCS,
LIPIcs, vol. 13, pp. 457–468. Schloss Dagstuhl (2011)

28. Hague, M., Lin, A.W.: Synchronisation- and reversal-bounded analysis of multi-
threaded programs with counters. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 260–276. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31424-7 22

29. Hoĺık, L., Meyer, R., Vojnar, T., Wolff, S.: Effect summaries for thread-modular
analysis. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 169–191. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66706-5 9

30. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. JCSS 62(2), 367–375
(2001)

31. Kahlon, V.: Parameterization as abstraction: a tractable approach to the dataflow
analysis of concurrent programs. In: LICS, pp. 181–192. IEEE (2008)

32. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concur-
rent programs using linear interfaces. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 629–644. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14295-6 54

33. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: SODA, pp. 760–776. SIAM (2011)

https://doi.org/10.1007/978-3-642-39799-8_8
https://doi.org/10.1007/978-3-642-39799-8_8
https://doi.org/10.1007/978-3-642-00768-2_14
https://doi.org/10.1007/978-3-319-40946-7_8
https://doi.org/10.1007/3-540-45927-8_19
https://doi.org/10.1007/3-540-44829-2_14
https://doi.org/10.1007/978-3-319-63390-9_9
https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/978-3-319-66706-5_9
https://doi.org/10.1007/978-3-642-14295-6_54
https://doi.org/10.1007/978-3-642-14295-6_54

Fine-Grained Complexity of Safety Verification 37

34. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 7

35. Todd Wareham, H.: The parameterized complexity of intersection and composition
operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA 2000.
LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44674-5 26

36. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. TCS
26, 287–300 (1983)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/3-540-44674-5_26
https://doi.org/10.1007/3-540-44674-5_26
http://creativecommons.org/licenses/by/4.0/

	Fine-Grained Complexity of Safety Verification
	1 Introduction
	2 Preliminaries
	3 Leader Contributor Reachability
	3.1 Parameterization by Memory and Leader
	3.2 Parameterization by Contributors

	4 Bounded-Stage Reachability
	5 Conclusion
	References

