
Geometric Nontermination Arguments

Jan Leike1 and Matthias Heizmann2(B)

1 Australian National University, Canberra, Australia
2 University of Freiburg, Freiburg im Breisgau, Germany

heizmann@informatik.uni-freiburg.de

Abstract. We present a new kind of nontermination argument, called
geometric nontermination argument. The geometric nontermination
argument is a finite representation of an infinite execution that has the
form of a sum of several geometric series. For so-called linear lasso pro-
grams we can decide the existence of a geometric nontermination argu-
ment using a nonlinear algebraic ∃-constraint. We show that a deter-
ministic conjunctive loop program with nonnegative eigenvalues is non-
terminating if an only if there exists a geometric nontermination argu-
ment. Furthermore, we present an evaluation that demonstrates that our
method is feasible in practice.

1 Introduction

The problem whether a program is terminating is undecidable in general. One
way to approach this problem in practice is to analyze the existence of ter-
mination arguments and nontermination arguments. The existence of a certain
termination argument like, e.g, a linear ranking function, is decidable [4,31] and
implies termination. However, if we cannot find a linear ranking function we
cannot conclude nontermination. Vice versa, the existence of a certain nonter-
mination argument like, e.g, a linear recurrence set [20], is decidable and implies
nontermination however, if we cannot find such a recurrence set we cannot con-
clude termination.

In this paper1 we present a new kind of termination argument which we call
geometric nontermination argument (GNTA). Unlike a recurrence set, a geo-
metric nontermination argument does not only imply nontermination, it also
explicitly represents an infinite program execution. Hence a user sees immedi-
ately if the counterexample to termination is a fixpoint or an unbounded diverg-
ing execution. An infinite program execution that is represented by a geometric
nontermination argument can be written as a pointwise sum of several geomet-
ric series. We show that such an infinite execution exists for each deterministic
conjunctive loop program that is nonterminating and whose transition matrix
has only nonnegative eigenvalues.

1 An extended version of this paper [29] contains more examples and further explana-
tions.

c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 266–283, 2018.
https://doi.org/10.1007/978-3-319-89963-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_16&domain=pdf

Geometric Nontermination Arguments 267

b := 1 ;
while (a+b >= 3) :

a := 3∗a + 1 ;
b := nondet () ;

(a)

b := 1 ;
while (a+b >= 3) :

a := 3∗a − 2 ;
b := 2∗b ;

(b)

b := 1 ;
while (a+b >= 4) :

a := 3∗a + b ;
b := 2∗b ;

(c)

Fig. 1. Three nonterminating linear lasso programs. Each has an infinite execution
which is either a geometric series or a pointwise sum of geometric series. The first lasso
program is nondeterministic because the variable b gets some nondeterministic value
in each iteration.

We restrict ourselves to linear lasso programs. A lasso program consists of a
single while loop that is preceded by straight-line code. The name refers to the
lasso shaped form of the control flow graph. Usually, linear lasso programs do not
occur as stand-alone programs. Instead, they are used as a finite representation
of an infinite path in a control flow graph. For example, in (potentially spurious)
counterexamples in termination analysis [6,16,21,22,24,25,32,33,37], stability
analysis [11,34], cost analysis [1,19], or the verification of temporal properties [7,
13–15,18] for programs.

We present a constraint based approach that allow us to check whether a
linear conjunctive lasso program has a geometric nontermination argument and
to synthesize one if it exists.

Our analysis is motived by the probably simplest form of an infinite execu-
tions, namely infinite execution where the same state is always repeated. We
call such a state a fixed point. For lasso programs we can reduce the check for
the existence of a fixed point to a constraint solving problem as follows. Let us
assume that the stem and the loop of the lasso program are given as a formulas
over primed and unprimed variables STEM(x,x′) and LOOP(x,x′). The infinite
sequence s0, s̄, s̄, s̄, . . . is an nonterminating execution of the lasso program iff
the assignment x0 �→ s0, x̄ �→ s̄ is a satisfying assignment for the constraint
STEM(x0, x̄)∧LOOP(x̄, x̄). In this paper, we present a constraint that is not only
satisfiable if the program has a fixed point, it is also satisfiable if the program has
a nonterminating execution that can be written as a pointwise sum of geometric
series.

Let us motivate the representation of infinite executions as sums of geometric
series in three steps. The program depicted in Fig. 1a shows a lasso program
which does not have a fixed point but the following infinite execution.

(2
0) , (2

1) , (7
1) , (22

1) , (67
1) , . . .

We can write this infinite execution as a a geometric series where for t > 1 the
t-th state is the sum x1 +

∑t−2
i=0 λiy, where we have x1 = (2

1), y = (5
0), and

λ = 3. The state x1 is the state before the loop was executed before the first
time and intuitively y is the direction in which the execution is moving initially
and λ is the speed at which the execution continues to move in this direction.

268 J. Leike and M. Heizmann

Next, let us consider the lasso program depicted in Fig. 1b which has the
following infinite execution.

(2
0) , (2

1) , (4
4) , (10

8) , (28
16) , . . .

We cannot write this execution as a geometric series as we did above. Intuitively,
the reason is that the values of both variables are increasing at different speeds
and hence this execution is not moving in a single direction. However, we can
write this infinite execution as a sum of geometric series where for t ∈ N\{0}
the t-th state can be written as a sum x1 +

∑t−2
i=0 Y

(
λ1 0
0 λ2

)i
1, where we have

x1 = (2
1), Y =

(
2 0
0 1

)

, λ1 = 3, λ2 = 2 and 1 denotes the column vector of

ones. Intuitively, our execution is moving in two different directions at different
speeds. The directions are reflected by the column vectors of Y , the values of λ1

and λ2 reflect the respective speeds.
Let us next consider the lasso program in Fig. 1c which has the following

infinite execution.
(3
0) , (3

1) , (10
2) , (32

4) , (100
8) , . . .

We cannot write this execution as a pointwise sum of geometric series in the form
that we used above. Intuitively, the problem is that one of the initial directions
contributes at two different speeds to the overall progress of the execution. How-
ever, we can write this infinite execution as a pointwise sum of geometric series
where for t ∈ N\{0} the t-th state can be written as a sum x1+

∑t−2
i=0 Y

(
λ1 μ
0 λ2

)i
1,

where we have x1 = (3
1), Y =

(
4 3
0 1

)

, λ1 = 3, λ2 = 2, μ = 1 and 1 denotes the

column vector of ones. We call the tuple (x0,x1, Y, λ1, λ2, μ) which we use as a
finite representation for the infinite execution a geometric nontermination argu-
ment.

In this paper, we formally introduce the notion of a geometric nontermination
argument for linear lasso programs (Sect. 3) and we prove that each nonterminat-
ing deterministic conjunctive linear loop program whose transition matrix has
only nonnegative real eigenvalues has a geometric nontermination argument, i.e.,
each such nonterminating linear loop program has an infinite execution which
can be written as a sum of geometric series (Sect. 4).

2 Preliminaries

We denote vectors x with bold symbols and matrices with uppercase Latin
letters. Vectors are always understood to be column vectors, 1 denotes a vector
of ones, 0 denotes a vector of zeros (of the appropriate dimension), and ei denotes
the i-th unit vector.

Geometric Nontermination Arguments 269

2.1 Linear Lasso Programs

In this work, we consider linear lasso programs, programs that consist of a pro-
gram step and a single loop. We use binary relations over the program’s states
to define the stem and the loop transition relation. Variables are assumed to be
real-valued.

We denote by x the vector of n variables (x1, . . . , xn)T ∈ R
n corresponding

to program states, and by x′ = (x′
1, . . . , x

′
n)T ∈ R

n the variables of the next
state.

Definition 1 (Linear Lasso Program). A (conjunctive) linear lasso program
L = (STEM, LOOP) consists of two binary relations defined by formulas with the
free variables x and x′ of the form

A (x
x′) ≤ b

for some matrix A ∈ R
n×m and some vector b ∈ R

m.

A linear loop program is a linear lasso program L without stem, i.e., a linear
lasso program such that the relation STEM is equivalent to true.

Definition 2 (Deterministic Linear Lasso Program). A linear loop pro-
gram L is called deterministic iff its loop transition LOOP can be written in the
following form

(x,x′) ∈ LOOP ⇐⇒ Gx ≤ g ∧ x′ = Mx + m

for some matrices G ∈ R
n×m, M ∈ R

n×n, and vectors g ∈ R
m and m ∈ R

n.

Definition 3 (Nontermination). A linear lasso program L is nonterminating
iff there is an infinite sequence of states x0,x1, . . ., called an infinite execution
of L, such that (x0,x1) ∈ STEM and (xt ,xt+1) ∈ LOOP for all t ≥ 1.

2.2 Jordan Normal Form

Let M ∈ R
n×n be a real square matrix. If there is an invertible square matrix S

and a diagonal matrix D such that M = SDS−1, then M is called diagonalizable.
The column vectors of S form the basis over which M has diagonal form. In
general, real matrices are not diagonalizable. However, every real square matrix
M with real eigenvalues has a representation which is almost diagonal, called
Jordan normal form. This is a matrix that is zero except for the eigenvalues on
the diagonal and one superdiagonal containing ones and zeros.

Formally, a Jordan normal form is a matrix J = diag(Ji1(λ1), . . . , Jik(λk))
where λ1, . . . , λk are the eigenvalues of M and the real square matrices Ji(λ) ∈
R

i×i are Jordan blocks,

Ji(λ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
...

. . .
...

0 0 0 . . . λ 1
0 0 0 . . . 0 λ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

270 J. Leike and M. Heizmann

The subspace corresponding to each distinct eigenvalue is called generalized
eigenspace and their basis vectors generalized eigenvectors.

Theorem 4 (Jordan Normal Form). For each real square matrix M ∈ R
n×n

with real eigenvalues, there is an invertible real square matrix V ∈ R
n×n and a

Jordan normal form J ∈ R
n×n such that M = V JV −1.

3 Geometric Nontermination Arguments

Fix a conjunctive linear lasso program L = (STEM, LOOP) and let A ∈ R
n×m and

b ∈ R
m define the loop transition such that

(x,x′) ∈ LOOP ⇐⇒ A (x
x′) ≤ b.

Definition 5 (Geometric Nontermination Argument). A tuple (x0,x1,
y1, . . . ,ys , λ1, . . . , λs, μ1, . . . , μs−1) is called a geometric nontermination argu-
ment for the linear lasso program L = (STEM, LOOP) iff all of the following
statements hold.

(domain) x0,x1,y1, . . . ,ys ∈ R
n, and λ1, . . . , λs, μ1, . . . , μs−1 ≥ 0

(initiation) (x0,x1) ∈ STEM

(point) A
(x1

x1+
∑s

k=1 yk

) ≤ b

(ray) A
(y1

λ1y1

) ≤ 0 and A
(yi

λiyk +μk−1yk −1

) ≤ 0 for each k ∈ {2 . . . s}.
The number s ≥ 0 is the size of the geometric nontermination argument.

The existence of a geometric nontermination argument can be checked using
an SMT solver. The constraints given by (domain), (init), (point), (ray) are non-
linear algebraic constraints and the satisfiability of these constraints is decidable.

Proposition 6 (Soundness). If there is a geometric nontermination argument
for a linear lasso program L, then L is nonterminating.

Proof. We define Y := (y1 . . . yk) as the matrix containing the vectors yi as
columns, and we define the following matrix.

U :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λ1 μ1 0 . . . 0 0
0 λ2 μ2 . . . 0 0
...

. . .
...

0 0 0 . . . λn−1 μn−1

0 0 0 . . . 0 λn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1)

Following Definition 3 we show that the linear lasso program L has the infinite
execution

x0, x1, x1 +Y 1, x1 +Y 1+Y U1, x1 +Y 1+Y U1+Y U21, . . . (2)

Geometric Nontermination Arguments 271

From (init) we get (x0,x1) ∈ STEM. It remains to show that
⎛

⎝x1 +
t−1∑

j=0

Y U j1, x1 +
t∑

j=0

Y U j1

⎞

⎠ ∈ LOOP for all t ∈ N. (3)

According to (domain) the matrix U has only nonnegative entries, so the same
holds for the matrix Z :=

∑t−1
j=0 U j . Hence Z1 has only nonnegative entries

and thus Y Z1 can be written as
∑s

k=1 αkyk for some αk ≥ 0. We multiply the
inequality number k from (ray) with αk and get

A
(αkyk

αkλkyk +αkμk−1yk −1

) ≤ 0. (4)

where we define for convenience y0 := 0 and μ0 := 0. Now we sum (4) for all k
and add (point) to get

A
(

x1+
∑

k αkyk

x1+
∑

k yk +
∑

k(αkλkyk +αkμk−1yk −1)

)
≤ b. (5)

By definition of αk, we have

x1 +
s∑

k=1

αkyk = x1 + Y Z1 = x1 +
t−1∑

j=0

Y U j1

and

x1 +
s∑

k=1

yk +
s∑

k=1

(αkλkyk + αkμk−1yk−1) = x1 + Y 1 +
s∑

k=1

αkY Uek

= x1 + Y 1 + Y UZ1

= x1 +
t∑

j=0

Y U j1.

Therefore (3) and (5) are the same, which concludes this proof.
�
Proposition 7 (Closed Form of the Infinite Execution). For t ≥ 2 the
following is the closed form of the state xt = x1 +

∑t−2
j=0 Y U j1 in the infinite

execution (2). Let U =: N +D where N is a nilpotent matrix and D is a diagonal
matrix.

Y U j1 = Y

(
j∑

i=0

(
j

i

)

N iDj−i

)

1 =
s∑

k=1

yk

j−k+1∑

i=0

(
j

i

)

λj−i
n−k−i

k+i−1∏

�=k

μ� ♦

4 Completeness Results

First we show that a linear loop program has a GNTA if it has is a bounded
infinite execution. In the next section we use this to prove our completeness
result.

272 J. Leike and M. Heizmann

4.1 Bounded Infinite Executions

Let |·| : Rn → R denote some norm. We call an infinite execution (xt)t≥0 bounded
iff there is a real number d ∈ R such that the norm of each state is bounded by
d, i.e., |xt| ≤ d for all t (in R

n the notion of boundedness is independent of the
choice of the norm).

Lemma 8 (Fixed Point). Let L = (true, LOOP) be a linear loop program. The
linear loop program L has a bounded infinite execution if and only if there is a
fixed point x∗ ∈ R

n such that (x∗,x∗) ∈ LOOP.

Proof. If there is a fixed point x∗, then the loop has the infinite bounded execu-
tion x∗,x∗, Conversely, let (xt)t≥0 be an infinite bounded execution. Bound-
edness implies that there is an d ∈ R such that |xt| ≤ d for all t. Consider the
sequence zk := 1

k

∑k
t=1 xt.

|zk − zk+1| =

∣
∣
∣
∣
∣

1
k

k∑

t=1

xt − 1
k + 1

k+1∑

t=1

xt

∣
∣
∣
∣
∣
=

1
k(k + 1)

∣
∣
∣
∣
∣
(k + 1)

k∑

t=1

xt − k

k+1∑

t=1

xt

∣
∣
∣
∣
∣

=
1

k(k + 1)

∣
∣
∣
∣
∣

k∑

t=1

xt − kxk+1

∣
∣
∣
∣
∣
≤ 1

k(k + 1)

(
k∑

t=1

|xt| + k|xk+1|
)

≤ 1
k(k + 1)

(k · d + k · d) =
2d

k + 1
−→ 0 as k → ∞.

Hence the sequence (zk)k≥1 is a Cauchy sequence and thus converges to some
z∗ ∈ R

n. We will show that z∗ is the desired fixed point.
For all t, the polyhedron Q := {(x

x′) | A (x
x′) ≤ b} contains (xt

xt+1) and is
convex. Therefore for all k ≥ 1,

1
k

k∑

t=1

(xt
xt+1) ∈ Q.

Together with
(

zk
k+1
k zk+1

)
=

1
k

(
0
x1

)
+

1
k

k∑

t=1

(xt
xt+1)

we infer ((
zk

k+1
k zk+1

)
− 1

k

(
0
x1

)
)

∈ Q,

and since Q is topologically closed we have

(
z∗
z∗

)
= lim

k→∞

((
zk

k+1
k zk+1

)
− 1

k

(
0
x1

)
)

∈ Q.

�

Geometric Nontermination Arguments 273

Note that Lemma 8 does not transfer to lasso programs: there might only
be one fixed point and the stem might exclude this point (e.g., a = −0.5 and
b = 3.5 in example Fig. 1a).

Because fixed points give rise to trivial geometric nontermination arguments,
we can derive a criterion for the existence of geometric nontermination arguments
from Lemma 8.

Corollary 9 (Bounded Infinite Executions). If the linear loop program
L = (true, LOOP) has a bounded infinite execution, then it has a geometric non-
termination argument of size 0.

Proof. By Lemma 8 there is a fixed point x∗ such that (x∗,x∗) ∈ LOOP. We
choose x0 = x1 = x∗ which satisfies (point) and (ray) and thus is a geometric
nontermination argument for L.
�
Example 10. Note that according to our definition of a linear lasso program, the
relation LOOP is a topologically closed set. If we allowed the formula defining
LOOP to also contain strict inequalities, Lemma 8 no longer holds: the following
program is nonterminating and has a bounded infinite execution, but it does not
have a fixed point. However, the topological closure of the relation LOOP contains
the fixed point a = 0.

while (a > 0) :
a := a / 2 ;

Nevertheless, this example has a geometric nontermination argument, namely
x1 = 1, y1 = −0.5, λ1 = 0.5. ♦

4.2 Nonnegative Eigenvalues

This section is dedicated to the proof of the following completeness result for
deterministic linear loop programs.

Theorem 11 (Completeness). If a deterministic linear loop program L of
the form while (Gx ≤ g) do x := Mx + m with n variables is nonterminat-
ing and M has only nonnegative real eigenvalues, then there is a geometric non-
termination argument for L of size at most n.

To prove this completeness theorem, we need to construct a GNTA from a
given infinite execution. The following lemma shows that we can restrict our
construction to exclude all linear subspaces that have a bounded execution.

Lemma 12 (Loop Disassembly). Let L = (true, LOOP) be a linear loop pro-
gram over R

n = U ⊕ V where U and V are linear subspaces of R
n. Suppose L

is nonterminating and there is an infinite execution that is bounded when pro-
jected to the subspace U . Let xU be the fixed point in U that exists according
to Lemma 8. Then the linear loop program LV that we get by projecting to the
subspace V +xU is nonterminating. Moreover, if LV has a GNTA of size s, then
L has a GNTA of size s.

274 J. Leike and M. Heizmann

Proof. Without loss of generality, we are in the basis of U and V so that these
spaces are nicely separated by the use of different variables. Using the infinite
execution of L that is bounded on U we can do the construction from the proof
of Lemma 8 to get an infinite execution z0,z1, . . . that yields the fixed point xU

when projected to U . We fix xU in the loop transition by replacing all variables
from U with the values from xU and get the linear loop program LV (this is the
projection to V +xU). Importantly, the projection of z0,z1, . . . to V +xU is still
an infinite execution, hence the loop LV is nonterminating. Given a GNTA for
LV we can construct a GNTA for L by adding the vector xU to x0 and x1.
�
Proof (of Theorem 11). The polyhedron corresponding to loop transition of the
deterministic linear loop program L is

⎛

⎝
G 0
M −I

−M I

⎞

⎠
(

x
x′

)

≤
⎛

⎝
g

−m
m

⎞

⎠ . (6)

Define Y to be the convex cone spanned by the rays of the guard polyhedron:

Y := {y ∈ R
n | Gy ≤ 0}

Let Y be the smallest linear subspace of Rn that contains Y, i.e., Y = Y − Y
using pointwise subtraction, and let Y⊥

be the linear subspace of Rn orthogonal
to Y; hence R

n = Y ⊕ Y⊥
.

Let P := {x ∈ R
n | Gx ≤ g} denote the guard polyhedron. Its projection

PY⊥
to the subspace Y⊥

is again a polyhedron. By the decomposition theorem
for polyhedra [36, Corollary 7.1b], PY⊥

= Q+C for some polytope Q and some
convex cone C. However, by definition of the subspace Y⊥

, the convex cone C

must be equal to {0}: for any y ∈ C ⊆ Y⊥
, we have Gy ≤ 0, thus y ∈ Y, and

therefore y is orthogonal to itself, i.e., y = 0. We conclude that PY⊥
must be a

polytope, and thus it is bounded. By assumption L is nonterminating, so LY⊥
is

nonterminating, and since PY⊥
is bounded, any infinite execution of LY⊥

must
be bounded.

Let U denote the direct sum of the generalized eigenspaces for the eigenvalues
0 ≤ λ < 1. Any infinite execution is necessarily bounded on the subspace U since
on this space the map x �→ Mx+m is a contraction. Let U⊥ denote the subspace
of Rn orthogonal to U . The space Y ∩ U⊥ is a linear subspace of Rn and any
infinite execution in its complement is bounded. Hence we can turn our analysis
to the subspace Y ∩ U⊥ + x for some x ∈ Y⊥ ⊕ U for the rest of the proof
according to Lemma 12. From now on, we implicitly assume that we are in this
space without changing any of the notation.

Part 1. In this part we show that there is a basis y1, . . . ,ys ∈ Y such that M
turns into a matrix U of the form given in (1) with λ1, . . . , λs, μ1, . . . , μs−1 ≥ 0.
Since we allow μk to be positive between different eigenvalues (Example 14

Geometric Nontermination Arguments 275

illustrates why), this is not necessarily a Jordan normal form and the vectors yi

are not necessarily generalized eigenvectors.
We choose a basis v1, . . . ,vs such that M is in Jordan normal form with the

eigenvalues ordered by size such that the largest eigenvalues come first. Define
V1 := Y ∩ U⊥ and let V1 ⊃ . . . ⊃ Vs be a strictly descending chain of linear
subspaces where Vi is spanned by vk , . . . ,vs .

We define a basis w1, . . . ,ws by doing the following for each Jordan block of
M , starting with k = 1. Let M (k) be the projection of M to the linear subspace
Vk and let λ be the largest eigenvalues of M (k). The m-fold iteration of a Jordan
block J�(λ) for m ≥ � is given by

J�(λ)m =

⎛

⎜
⎜
⎜
⎝

λm
(
m
1

)
λm−1 . . .

(
m
�

)
λm−�

λm . . .
(

m
�−1

)
λm−�+1

. . .
...

0 λm

⎞

⎟
⎟
⎟
⎠

∈ R
�×�. (7)

Let z0,z1,z2, . . . be an infinite execution of the loop L in the basis vk , . . . ,vs

projected to the space Vk. Since by Lemma 12 we can assume that there are
no fixed points on this space, |zt | → ∞ as t → ∞ in each of the top � com-
ponents. Asymptotically, the largest eigenvalue λ dominates and in each row
of Jk(λk)m (7), the entries

(
m
j

)
λm−j in the rightmost column grow the fastest

with an asymptotic rate of Θ(mj exp(m)). Therefore the sign of the component
corresponding to basis vector vk+� determines whether the top � entries tend to
+∞ or −∞, but the top � entries of zt corresponding to the top Jordan block
will all have the same sign eventually. Because no state can violate the guard
condition we have that the guard cannot constraint the infinite execution in the
direction of vj or −vj , i.e., GVkvj ≤ 0 for each j ∈ {k, . . . , k + �} or GVkvj ≥ 0
for each j ∈ {k, . . . , k + �}, where GVk is the projection of G to the subspace Vk.
So without loss of generality the former holds (otherwise we use −vj instead of
vj for j ∈ {k, . . . , k + �}) and for j ∈ {k, . . . , k + �} we get vj ∈ Y + V⊥

k where
V⊥

k is the space spanned by v1, . . . ,vk−1. Hence there is a uj ∈ V⊥
k such that

wj := vj + uj is an element of Y. Now we move on to the subspace Vk+�+1,
discarding the top Jordan block.

Let T be the matrix M written in the basis w1, . . . ,wk . Then T is of upper
triangular form: whenever we apply Mwk we get λkwk + uk (wk was an eigen-
vector in the space Vk) where uk ∈ V⊥

k , the space spanned by v1, . . . ,vk−1

(which is identical with the space spanned by w1, . . . ,wk−1). Moreover, since
we processed every Jordan block entirely, we have that for wk and wj from the
same generalized eigenspace (Tk,k = Tj,j) that for k > j

Tj,k ∈ {0, 1} and Tj,k = 1 implies k = j + 1. (8)

In other words, when projected to any generalized eigenspace T consists only of
Jordan blocks.

276 J. Leike and M. Heizmann

Now we change basis again in order to get the upper triangular matrix U
defined in (1) from T . For this we define the vectors

yk := βk

k∑

j=1

αk,jwj .

with nonnegative real numbers αk,j ≥ 0, αk,k > 0, and β > 0 to be deter-
mined later. Define the matrices W := (w1 . . . ws), Y := (y1 . . . ys), and
α := (αk,j)1≤j≤k≤s. So α is a nonnegative lower triangular matrix with a pos-
itive diagonal and hence invertible. Since α and W are invertible, the matrix
Y = diag(β)αW is invertible as well and thus the vectors y1, . . . ,ys form a
basis. Moreover, we have yk ∈ Y for each k since α ≥ 0, β > 0, and Y is a
convex cone. Therefore we get

GY ≤ 0. (9)

We will first choose α. Define T =: D + N where D = diag(λ1, . . . , λs) is a
diagonal matrix and N is nilpotent. Since w1 is an eigenvector of M we have
My1 = Mβ1α1,1w1 = λ1β1α1,1w1 = λ1y1. To get the form in (1), we need for
all k > 1

Myk = λkyk + μk−1yk−1. (10)

Written in the basis w1, . . . ,ws (i.e., multiplied with W−1),

(D + N)βk

∑

j≤k

αk,jej = λkβk

∑

j≤k

αk,jej + μk−1βk−1

∑

j<k

αk−1,jej .

Hence we want to pick α such that
∑

j≤k

αk,j(λj − λk)ej + N
∑

j≤k

αk,jej − μk−1βk−1

∑

j<k

αk−1,jej = 0. (11)

First note that these constraints are independent of β if we set μk−1 := β−1
k−1 > 0,

so we can leave assigning a value to β to a later part of the proof.
We distinguish two cases. First, if λk−1 �= λk, then λj − λk is positive for

all j < k because larger eigenvalues come first. Since N is nilpotent and upper
triangular, N

∑
j≤k αk,jej is a linear combination of e1, . . . ,ek−1 (i.e., only the

first k − 1 entries are nonzero). Whatever values this vector assumes, we can
increase the parameters αk,j for j < k to make (11) larger and increase the
parameters αk−1,j for j < k to make (11) smaller.

Second, let � be minimal such that λ� = λk wkth � �= k, then w� , . . . ,wj are
from the same generalized eigenspace. For the rows 1, . . . , � − 1 we can proceed
as we did in the first case and for the rows �, . . . , k − 1 we note that by (8)
Nej = Tj−1,jej−1. Hence the remaining constraints (11) are

∑

�<j≤k

αk,jTj−1,jej−1 − μk−1

∑

�≤j<k

αk−1,jej = 0,

which is solved by αk,j+1Tj,j+1 = αk−1,j for � ≤ j < k. This is only a problem if
there is a j such that Tj−1,j = 0, i.e., if there are multiple Jordan blocks for the

Geometric Nontermination Arguments 277

same eigenvalue. In this case, we can reduce the dimension of the generalized
eigenspace to the dimension of the largest Jordan block by combining all Jordan
blocks: if Myk = λyk + yk−1, and Myj = λyj + yj−1, then M(yk + yj) =
λ(yk + yj) + (yk−1 + yj−1) and if Myk = λyk + yk−1, and Myj = λyj , then
M(yk + yj) = λ(yk + yj) + yk−1. In both cases we can replace the basis vector
yk with yk + yj without reducing the expressiveness of the GNTA.

Importantly, there are no cyclic dependencies in the values of α because
neither one of the coefficients α can be made too large. Therefore we can choose
α ≥ 0 such that (10) is satisfied for all k > 1 and hence the basis y1, . . . ,ys

brings M into the desired form (1).

Part 2. In this part we construct the geometric nontermination argument and
check the constraints from Definition 5. Since L has an infinite execution, there
is a point x that fulfills the guard, i.e., Gx ≤ g. We choose x1 := x + Y γ with
γ ≥ 0 to be determined later. Moreover, we choose λ1, . . . , λs and μ1, . . . , μs−1

from the entries of U given in (1). The size of our GNTA is s, the number of
vectors y1, . . . ,ys . These vectors form a basis of Y ∩ U⊥, which is a subspace of
R

n; thus s ≤ n, as required.
The constraint (domain) is satisfied by construction and the constraint (init)

is vacuous since L is a loop program. For (ray) note that from (9) and (10)
we get

⎛

⎝
G 0
M −I

−M I

⎞

⎠
(

yk

λkyk + μk−1yk−1

)

≤
⎛

⎝
0
0
0

⎞

⎠ .

The remainder of this proof shows that we can choose β and γ such that (point)
is satisfied, i.e., that

Gx1 ≤ g and Mx1 + m = x1 + Y 1. (12)

The vector x1 satisfies the guard since Gx1 = Gx + GY γ ≤ g +0 according
to (9), which yields the first part of (12). For the second part we observe the
following.

Mx1 + m = x1 + Y 1

⇐⇒ (M − I)(x + Y γ) + m = Y 1

⇐⇒ (M − I)x + m = Y 1 − (M − I)Y γ

Since Y is a basis, it is invertible, so

⇐⇒ Y −1(M − I)x + Y −1m = 1 − Y −1(M − I)Y γ

⇐⇒ (U − I)Y −1x + Y −1m = 1 − (U − I)γ
⇐⇒ (U − I)x̃ + m̃ = 1 − (U − I)γ (13)

278 J. Leike and M. Heizmann

with x̃ := Y −1x = W−1α−1diag(β)−1x and m̃ := Y −1m =
W−1α−1diag(β)−1m. Equation (13) is now conveniently in the basis y1, . . . ,ys

and all that remains to show is that we can choose γ ≥ 0 and β > 0 such that
(13) is satisfied.

We proceed for each (not quite Jordan) block of U separately, i.e., we assume
that we are looking at the subspace yj , . . . ,yk with μk = μj−1 = 0 and μ� > 0 for
all � ∈ {j, . . . , k−1}. If this space only contains eigenvalues that are larger than 1,
then U − I is invertible and has only nonnegative entries. By using large enough
values for β, we can make x̃ and m̃ small enough, such that 1 ≥ (U − I)x̃ + m̃.
Then we just need to pick γ appropriately.

If there is at least one eigenvalue 1, then U − I is not invertible, so (13)
could be overconstraint. Notice that μ� > 0 for all � ∈ {j, . . . , k − 1}, so only
the bottom entry in the vector Eq. (13) is not covered by γ. Moreover, since
eigenvalues are ordered in decreasing order and all eigenvalues in our current
subspace are ≥ 1, we conclude that the eigenvalue for the bottom entry is 1.
(Furthermore, k is the highest index since each eigenvalue occurs only in one
block). Thus we get the equation m̃k = 1. If m̃k is positive, this equation has a
solution since we can adjust βk accordingly. If it is zero, then the execution on
the space spanned by yk is bounded, which we can rule out by Lemma 12.

It remains to rule out that m̃k is negative. Let U be the generalized eigenspace
to the eigenvector 1 and use Lemma 13 below to conclude that o := Ns−1m+u ∈
Y for some u ∈ U⊥. We have that Mo = M(Ns−1m + u) = Mu ∈ U⊥, so o is
a candidate to pick for the vector wk . Therefore without loss of generality we
did so in part 1 of this proof and since yk is in the convex cone spanned by the
basis w1, . . . ,ws we get m̃k > 0.
�
Lemma 13 (Deterministic Loops with Eigenvalue 1). Let M = I + N
and let N be nilpotent with nilpotence index k (k := min{i | N i = 0}). If
GNk−1m �≤ 0, then L is terminating.

Proof. We show termination by providing an k-nested ranking function
[28, Definition 4.7]. By [28, Lemma 3.3] and [28, Theorem 4.10], this implies
that L is terminating.

According to the premise, GNk−1m �≤ 0, hence there is at least one positive
entry in the vector GNk−1m. Let h be a row vector of G such that hT Nk−1m =:
δ > 0, and let h0 ∈ R be the corresponding entry in g. Let x be any state and
let x′ be a next state after the loop transition, i.e., x′ = Mx + m. Define the
affine-linear functions fj(x) := −hT Nk−jx + cj for 1 ≤ j ≤ k with constants
cj ∈ R to be determined later. Since every state x satisfies the guard we have
hT x ≤ h0, hence fk(x) = −hT x + ck ≥ −h0 + ck > 0 for ck := h0 + 1.

f1(x′) = f1(x + Nx + m) = −hT Nk−1(x + Nx + m) + c1

= f1(x) − hT Nkx − hT Nk−1m

< f1(x) − 0 − δ

Geometric Nontermination Arguments 279

For 1 < j ≤ k,

fj(x′) = fj(x + Nx + m) = −hT Nk−j(x + Nx + m) + cj

= fj(x) + fj−1(x) − hT Nk−jm − cj−1

< fj(x) + fj−1(x)

for cj−1 := −hT Nk−jm − 1.
�
Example 14 (U is not in Jordan Form). The matrix U defined in (1) and used
in the completeness proof is generally not the Jordan normal form of the loop’s
transition matrix M . Consider the following linear loop program.

while (a − b ≥ 0 ∧ b ≥ 0) :
a := 3a ;
b := b + 1 ;

This program is nonterminating because a grows exponentially and hence faster
than b. It has the geometric nontermination argument

x0 = (9
1) , x1 = (9

1) , y1 = (12
0) , y2 = (6

1) , λ1 = 3, λ2 = 1, μ1 = 1.

The matrix corresponding to the linear loop update is

M =
(

3 0
0 1

)

which is diagonal (hence diagonalizable). Therefore M is already in Jordan nor-
mal form. The matrix U defined according to (1) is

U =
(

3 1
0 1

)

.

The nilpotent component μ1 = 1 is important and there is no GTNA for this
loop program where μ1 = 0 since the eigenspace to the eigenvalue 1 is spanned
by (0 1)T which is in Y, but not in Y. ♦

5 Experiments

We implemented our method in a tool that is specialized for the analysis of
lasso programs and called Ultimate LassoRanker2. LassoRanker is used
by Ultimate Büchi Automizer [22] which analyzes termination of (general)
C programs. Büchi Automizer iteratively picks lasso shaped paths in the con-
trol flow graph converts them to lasso programs and lets LassoRanker analyze
them. In case LassoRanker was able to prove nontermination a real counterex-
ample to termination was found, in case LassoRanker was able to provide a
2 http://ultimate.informatik.uni-freiburg.de/lasso ranker/.

http://ultimate.informatik.uni-freiburg.de/lasso_ranker/

280 J. Leike and M. Heizmann

termination argument (e.g., a linear ranking function), Büchi Automizer con-
tinues the analysis, but only on lasso shaped paths for which the termination
arguments obtained in former iterations are not applicable.

We applied Büchi Automizer to the 803 C programs from the Termination
Competition 20173 Our constraints for the existence of a geometric nontermi-
nation arguments (GNTA) were stated over the integers and we used the SMT
solver Z3 [23] with a timeout of 12 s to solve these constraints. The overall time-
out for the termination analysis was 60s. In our implementation, LassoRanker
first tries to find a fixpoint for a lasso and only if not fixpoint exists, it tries to
find a GNTA that can also represent an unbounded execution. The tool was able
to identify 143 nonterminating programs. For 82 of these a fixpoint was detected.
For the other 61 programs the counterexample had only an unbounded execution
but not fixpoint.

This experiment demonstrates that despite the nonlinear integer constraint
the synthesis of GNTA is feasible in practice and that furthermore GNTAs which
can also represent unbounded executions improved Büchi Automizer signifi-
cantly.

6 Related Work

One line of related work is focused on decidability questions for deterministic
lasso programs. Tiwari [38] considered linear loop programs over the reals where
only strict inequalities are used in the guard and proved that termination is
decidable. Braverman [5] generalized this result to loop programs that use strict
and non-strict inequalities in the guard. Furthermore, he proved that termination
is also decidable for homogeneous deterministic loop programs over the integers.
Rebiha et al. [35] generalized the result to integer loops where the update matrix
has only real eigenvalues. Ouaknine et al. [30] generalized the result to integer
lassos where the update matrix of the loop is diagonalizable.

Another line of related work is also applicable to nondeterministic programs
and uses a constraint-based synthesis of recurrence sets. The recurrence sets are
defined by templates [20,39] or the constraint is given in a second order theory
for bit vectors [17]. These approaches can be used to find nonterminating lassos
that do not have a geometric nontermination argument; however, this comes at
the price that for nondeterministic programs an ∃∀∃-constraint has to be solved.

Furthermore, there is a long line of research [2,3,8–10,12,17,26,27] that
addresses programs that are more general than lasso programs.

7 Conclusion

We presented a new approach to nontermination analysis for (nondeterminis-
tic) linear lasso programs. This approach is based on geometric nontermination
arguments, which are an explicit representation of an infinite execution. Unlike,

3 http://termination-portal.org/wiki/Termination Competition 2017.

http://termination-portal.org/wiki/Termination_Competition_2017

Geometric Nontermination Arguments 281

e.g., a recurrence set which encodes a set of nonterminating executions, a user
can immediate see if our nonterminating proof encodes a fixpoint or a diverging
unbounded execution. Our nontermination arguments can be found by solving
a set of nonlinear constraints. In Sect. 4 we showed that the class of nontermi-
nating linear lasso programs that have a geometric nontermination argument is
quite large: it contains at least every deterministic linear loop program whose
eigenvalues are nonnegative. We expect that this statement can be extended to
encompass also negative and complex eigenvalues.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. J. Autom. Reasoning 46(2), 161–203 (2011)

2. Atig, M.F., Bouajjani, A., Emmi, M., Lal, A.: Detecting fair non-termination in
multithreaded programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 210–226. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31424-7 19

3. Bakhirkin, A., Piterman, N.: Finding recurrent sets with backward analysis and
trace partitioning. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 17–35. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49674-9 2

4. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops. In:
POPL (2013)

5. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963 34

6. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 28

7. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 387–393. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 22

8. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and nullpointerexceptions for Java Bytecode. In: Beckert, B., Damiani,
F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31762-0 9

9. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
54–70. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 4

10. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination
via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8 11

11. Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving stabilization of biological
systems. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 134–
149. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 11

12. Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.W.: Disproving termination with over-
approximation. In: FMCAD 2014, pp. 67–74. IEEE (2014)

https://doi.org/10.1007/978-3-642-31424-7_19
https://doi.org/10.1007/978-3-642-31424-7_19
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/978-3-642-39799-8_28
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-662-49674-9_4
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-18275-4_11

282 J. Leike and M. Heizmann

13. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for
infinite-state systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015, Part
I. LNCS, vol. 9206, pp. 13–29. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 2

14. Cook, B., Khlaaf, H., Piterman, N.: Verifying increasingly expressive temporal
logics for infinite-state systems. J. ACM 64(2), 15:1–15:39 (2017)

15. Cook, B., Koskinen, E., Vardi, M.: Temporal property verification as a program
analysis task. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 333–348. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 26

16. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 37

17. David, C., Kroening, D., Lewis, M.: Unrestricted termination and non-termination
arguments for bit-vector programs. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 183–204. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46669-8 8

18. Dietsch, D., Heizmann, M., Langenfeld, V., Podelski, A.: Fairness modulo theory:
a new approach to LTL software model checking. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015, Part I. LNCS, vol. 9206, pp. 49–66. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 4

19. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI, pp. 292–304
(2010)

20. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. In: POPL, pp. 147–158 (2008)

21. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1 19

22. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797–813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 53

23. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 27

24. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.:
Loop summarization using abstract transformers. In: Cha, S.S., Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-6 10

25. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination anal-
ysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14295-6 9

26. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
non-termination using max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 52

27. Le, T.C., Qin, S., Chin, W.: Termination and non-termination specification infer-
ence. In: PLDI, pp. 489–498. ACM (2015)

28. Leike, J., Heizmann, M.: Ranking templates for linear loops. Log. Methods Com-
put. Sci. 11(1), 1–27 (2015)

https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1007/978-3-642-22110-1_26
https://doi.org/10.1007/978-3-642-22110-1_26
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/978-3-662-46669-8_8
https://doi.org/10.1007/978-3-662-46669-8_8
https://doi.org/10.1007/978-3-319-21690-4_4
https://doi.org/10.1007/978-3-642-15769-1_19
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-540-88387-6_10
https://doi.org/10.1007/978-3-642-14295-6_9
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-08867-9_52

Geometric Nontermination Arguments 283

29. Leike, J.M., Heizmann, M.: Geometric nontermination arguments. CoRR,
abs/1609.05207 (2016)

30. Ouaknine, J., Pinto, J.S., Worrell, J.: On termination of integer linear loops. In:
Symposium on Discrete Algorithms, pp. 957–969 (2015)

31. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

32. Podelski, A., Rybalchenko, A.: Transition invariants. In LICS, pp. 32–41 (2004)
33. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-

tion. In: POPL, pp. 132–144 (2005)
34. Podelski, A., Wagner, S.: A sound and complete proof rule for region stability of

hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 750–753. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71493-4 76

35. Rebiha, R., Matringe, N., Moura, A.V.: Characterization of termination for linear
homogeneous programs. Technical report, Institute of Computing, University of
Campinas, March 2014

36. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1999)
37. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-

Kamp, P., Aschermann, C.: Automatically proving termination and memory safety
for programs with pointer arithmetic. J. Autom. Reason. 58(1), 33–65 (2017)

38. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 6

39. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9 11

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-71493-4_76
https://doi.org/10.1007/978-3-540-71493-4_76
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-79124-9_11
http://creativecommons.org/licenses/by/4.0/

	Geometric Nontermination Arguments
	1 Introduction
	2 Preliminaries
	2.1 Linear Lasso Programs
	2.2 Jordan Normal Form

	3 Geometric Nontermination Arguments
	4 Completeness Results
	4.1 Bounded Infinite Executions
	4.2 Nonnegative Eigenvalues

	5 Experiments
	6 Related Work
	7 Conclusion
	References

