
The Refinement Calculus of Reactive
Systems Toolset

Iulia Dragomir1(B), Viorel Preoteasa2(B), and Stavros Tripakis2,3(B)

1 Univ. Grenoble Alpes, CNRS,
Grenoble INP, VERIMAG, Grenoble, France
iulia.dragomir@univ-grenoble-alpes.fr

2 Aalto University, Espoo, Finland
3 University of California, Berkeley, USA

Abstract. We present the Refinement Calculus of Reactive Systems
Toolset, an environment for compositional modeling and reasoning about
reactive systems, built on top of Isabelle, Simulink, and Python.

1 Introduction

The Refinement Calculus of Reactive Systems (RCRS) is a compositional frame-
work for modeling and reasoning about reactive systems. RCRS has been inspired
by component-based frameworks such as interface automata [3] and has its ori-
gins in the theory of relational interfaces [14]. The theory of RCRS has been
introduced in [13] and is thoroughly described in [11].

RCRS comes with a publicly available toolset, the RCRS toolset (Fig. 1),
which consists of:

– A full implementation of RCRS in the Isabelle proof assistant [9].
– A set of analysis procedures for RCRS components, implemented on top of

Isabelle and collectively called the Analyzer.
– A Translator of Simulink diagrams into RCRS code.
– A library of basic RCRS components, including a set of basic Simulink blocks

modeled in RCRS.

An extended version of this paper contains an additional six-page appendix
describing a demo of the RCRS toolset [6]. The extended paper can also be
found in a figshare repository [7]. The figshare repository contains all data (code
and models) required to reproduce all results of this paper as well as of [6]: see
Section “Data Availability Statement” for more details. The RCRS toolset can
be downloaded also from the RCRS web page: http://rcrs.cs.aalto.fi/.

This work has been supported by the Academy of Finland and the U.S. National
Science Foundation (awards #1329759 and #1139138).
I. Dragomir—Partially supported by the H2020 Programme SRC ESROCOS and
ERGO projects.
Grenoble INP—Institute of Engineering Univ. Grenoble Alpes.

c© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 201–208, 2018.
https://doi.org/10.1007/978-3-319-89963-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_12&domain=pdf
http://rcrs.cs.aalto.fi/

202 I. Dragomir et al.

Fig. 1. The RCRS toolset.

2 Modeling Systems in RCRS

RCRS provides a language of components to model systems in a modular fash-
ion. Components can be either atomic or composite. Here are some examples of
atomic RCRS components:

definition "Id = [: x � y . y = x :]"

definition "Add = [: (x, y) � z . z = x + y :]"

definition "Constant c = [: x::unit � y . y = c :]"

definition "UnitDelay = [: (x,s) � (y,s’) . y = s ∧ s’ = x :]"

definition "SqrRoot = {. x . x ≥ 0 .} o [- x � √
x -]"

definition "NonDetSqrt = {. x . x ≥ 0 .} o [: x � y . y ≥ 0 :]"

definition "ReceptiveSqrt = [: x � y . x ≥ 0 −→ y =
√
x :]"

definition "A = {. x . �♦x .} o [: x � y . �♦y :]"

Id models the identity function: it takes input x and returns y such that
y = x. Add returns the sum of its two inputs. Constant is parameterized by c,
takes no input (equivalent to saying that its input variable is of type unit), and
returns an output which is always equal to c. UnitDelay is a stateful component:
s is the current-state variable and s’ is the next-state variable. SqrRoot is a
non-input-receptive component: its input x is required to satisfy x≥0. (SqrRoot
may be considered non-atomic as it is defined as the serial composition of two
predicate transformers – see Sect. 3.) NonDetSqrt is a non-deterministic version
of SqrRoot: it returns an arbitrary (but non-negative) y, and not necessarily
the square-root of x. ReceptiveSqrt is an input-receptive version of SqrRoot:
it accepts negative inputs, but may return an arbitrary output for such inputs.
RCRS also allows to describe components using the temporal logic QLTL, an
extension of LTL with quantifiers [11]. An example is component A above. A
accepts an infinite input sequence of x’s, provided x is infinitely often true, and
returns a (non-deterministic) output sequence which satisfies the same property.

Composite components are formed by composing other (atomic or composite)
components using three primitive composition operators, as illustrated in Fig. 2:
C o C ′ (in series) connects outputs of C to inputs of C ′; C ** C ′ (in parallel)
“stacks” C and C ′ “on top of each other”; and feedback(C) connects the first

The Refinement Calculus of Reactive Systems Toolset 203

C C′x zy y

(a) serial: C o C′

C

C′

x

u

y

v

(b) parallel: C ** C′

C

x1 y1

x2

...

y2
...

(c) feedback: feedback(C)

Fig. 2. The three composition operators of RCRS.

output of C to its first input. These operators are sufficient to express any block
diagram, as described in Sect. 4.

3 The Implementation of RCRS in Isabelle

RCRS is fully implemented in the Isabelle theorem prover. The RCRS imple-
mentation currently consists of 22 Isabelle theories (.thy files), totalling 27588
lines of Isabelle code. Some of the main theories are described next.

Theory Refinement.thy (1209 lines) contains a standard implementation of
refinement calculus [1]. Systems are modeled as monotonic predicate transform-
ers [4] with a weakest precondition interpretation. Within this theory we imple-
mented non-deterministic and deterministic update statements, assert state-
ments, parallel composition, refinement and other operations, and proved nec-
essary properties of these.

Theory RefinementReactive.thy (1144 lines) extends Reactive.thy to
reactive systems by introducing predicates over infinite traces in addition to
predicates over values, and property transformers in addition to predicate trans-
formers [11,13].

Theory Temporal.thy (788 lines) implements a semantic version of QLTL,
where temporal operators are interpreted as predicate transformers. For example,
the operator �, when applied to the predicate on infinite traces (x > 0) : (nat →
real) → bool, returns another predicate on infinite traces �(x > 0) : (nat →
real) → bool. Temporal operators have been implemented to be polymorphic
in the sense that they apply to predicates over an arbitrary number of variables.

Theory Simulink.thy (873 lines) defines a subset of the basic blocks in the
Simulink library as RCRS components (at the time of writing, 48 Simulink block
types can be handled). In addition to discrete-time, we can handle continuous-
time blocks with a fixed-step forward Euler integration scheme. For example,
Simulink’s integrator block can be defined in two equivalent ways as follows:

definition "Integrator dt = [- (x,s) � (s, s+x*dt) -]"

definition "Integrator dt = [: (x,s) � (y,s’). y=s ∧ s’=s+x*dt :]"

The syntax [- x� f(x) -] assumes that f is a function, whereas [: :] can be
used also for relations (i.e., non-deterministic systems). Using the former instead

204 I. Dragomir et al.

of the latter to describe deterministic systems aids the Analyzer to perform
simplifications – see Sect. 5.

Theory SimplifyRCRS.thy (2175 lines) implements several of the Analyzer’s
procedures. In particular, it contains a simplification procedure which reduces
composite RCRS components into atomic ones (see Sect. 5).

In addition to the above, there are several theories containing a proof of
correctness of our block-diagram translation strategies (see Sect. 4 and [10]),
dealing with Simulink types [12], generating Python simulation code, and many
more. A detailed description of all these theories and graphs depicting their
dependencies is included in the documentation of the toolset.

The syntax of RCRS components is implemented in Isabelle using a shallow
embedding [2]. This has the advantage of all datatypes and other mechanisms
of Isabelle (e.g., renaming) being available for component specification, but also
the disadvantage of not being able to express properties and simplifications of
the RCRS language within Isabelle, as discussed in [11]. A deep embedding, in
which the syntax of components is defined as a datatype of Isabelle, is possible,
and is left as an open future work direction.

4 The Translator

The Translator, called simulink2isabelle, translates hierarchical block dia-
grams (HBDs), and in particular Simulink models, into RCRS theories [5]. The
Translator (implemented in about 7100 lines of Python code) takes as input
a Simulink model (.slx file) and a list of options and generates as output an
Isabelle theory (.thy file). The output file contains: (1) the definition of all
instances of basic blocks in the Simulink diagram (e.g., all Adders, Integrators,
Constants, etc.) as atomic RCRS components; (2) the bottom-up definition of
all subdiagrams as composite RCRS components; (3) calls to simplification pro-
cedures; and (4) theorems stating that the resulting simplified components are
equivalent to the original ones. The .thy file may also contain additional content
depending on user options as explained below.

As shown in [5], there are many possible ways to translate a block diagram
into an algebra of components with the three primitive composition operators
of RCRS. This means that step (2) above is not unique. simulink2isabelle
implements the several translation strategies proposed in [5] as user options.

Fig. 3. A Simulink diagram.

For example, when run on the Simulink
diagram of Fig. 3, the Translator produces
a file similar to the one shown in Fig. 4.
IC Model and FP Model are composite RCRS
components generated automatically w.r.t.
two different translation strategies, imple-
mented by user options -ic and -fp. The
simplify RCRS construct is explained in
Sect. 5 that follows.

Other user options to the Translator include: whether to flatten the input dia-
gram, optional typing information for wires, and whether to generate in addition

The Refinement Calculus of Reactive Systems Toolset 205

to the top-level STS component, a QLTL component representing the tempo-
ral behavior of the system. The user can also ask the Translator to generate:
(1) components w.r.t. all translation strategies; (2) the corresponding theorems
showing that these components are all semantically equivalent; and (3) Python
simulation scripts for the top-level component.

Fig. 4. Auto-generated Isabelle theory for the Simulink diagram of Fig. 3

5 The Analyzer

The Analyzer is a set of procedures implemented on top of Isabelle and
ML, the programming language of Isabelle. These procedures implement a
set of functionalities such as simplification, compatibility checking, refinement
checking, etc. Here we describe the main functionalities, implemented by the
simplify RCRS construct. As illustrated in Fig. 4, the general usage of this
construct is simplify RCRS "Model = C" "in" "out", where C is a (generally
composite) component and in, out are (tuples of) names for its input and output
variables. When such a statement is executed in Isabelle, it performs the follow-
ing steps: (1) It creates the definition Model = C. (2) It expands C, meaning
that it replaces all atomic components and all composition operators in C with
their definitions. This results in an Isabelle expression E. E is generally a com-
plicated expression, containing formulas with quantifiers, case expressions for
tuples, function compositions, and several other operators. (3) simplify RCRS
simplifies E, by eliminating quantifiers, renaming variables, and performing sev-
eral other simplifications. The simplified expression, F, is of the form {.p.} o
[:r:], where p is a predicate on input variables and r is a relation on input and

206 I. Dragomir et al.

output variables. That is, F is an atomic RCRS component. (4) simplify RCRS
generates a theorem stating that Model is semantically equivalent to F, and also
the mechanized proof of this theorem (in Isabelle). Note that the execution by the
Analyzer of the .thy file generated by the Translator is fully automatic, despite
the fact that Isabelle generally requires human interaction. This is thanks to
the fact that the theory generated by the Translator contains all declarations
(equalities, rewriting rules, etc.) neccessary for the Analyzer to produce the sim-
plifications and their mechanical proofs, without user interaction.

For example, when the theory in Fig. 4 is executed, the following theorem is
generated and proved automatically:

Model = [- (g, s) � (s, s+g) -]

where Model is either IC Model or FP Model. The rightmost expression is the
automatically generated simplification of the top-level system to an atomic
RCRS component.

If the model contains incompatibilities, where for instance the input condition
of a block like SqrRoot cannot be guaranteed by the upstream diagram, the top-
level component automatically simplifies to ⊥ (i.e., false). Thus, in this usage
scenario, RCRS can be seen as a static analysis and behavioral type checking
and inference tool for Simulink.

6 Case Study

We have used the RCRS toolset on several case studies, the most significant of
which is a real-world benchmark provided by Toyota [8]. The benchmark con-
sists of a set of Simulink diagrams modeling a Fuel Control System.1 A typical
diagram in the above suite contains 3 levels of hierarchy, 104 Simulink blocks
in total (out of which 8 subsystems), and 101 wires (out of which 8 are feedbacks,
the most complex composition operator in RCRS). Using the Translator on this
diagram results in a .thy file of 1671 lines and 57037 characters. Translation time
is negligible. The Analyzer simplifies this model to a top-level atomic STS com-
ponent with no inputs, 7 (external) outputs and 14 state variables (note that all
internal wires have been automatically eliminated in this top-level description).
Simplification takes approximately 15 seconds and generates a formula which is
8337 characters long. The formula is consistent (not false), which proves stati-
cally that the original Simulink diagram has no incompatibilities. More details
about the case study can be found in [5,6].

1 We downloaded the Simulink models from https://cps-vo.org/group/ARCH/
benchmarks. One of those models is made available in the figshare repository [7]
– see also Section “Data Availability Statement”.

https://cps-vo.org/group/ARCH/benchmarks
https://cps-vo.org/group/ARCH/benchmarks

The Refinement Calculus of Reactive Systems Toolset 207

7 Data Availability Statement

All results mentioned in this paper as well as in the extended version of this
paper [6] are fully reproducible using the code, data, and instructions available
in the figshare repository: https://doi.org/10.6084/m9.figshare.5900911.v1.

The figshare repository contains the full implementation of the RCRS toolset,
including the formalization of RCRS in Isabelle, the Analyzer, the RCRS
Simulink library, and the Translator. The figshare repository also contains sam-
ple Simulink models, including the Toyota model discussed in Sect. 6, a demo file
named RCRS Demo.thy, and detailed step-by-step instructions on how to conduct
a demonstration and how to reproduce the results of this paper. Documentation
on RCRS is also provided.

The figshare repository provides a snapshot of RCRS as of February 2018. Fur-
ther developments of RCRS will be reflected on the RCRS web page: http://rcrs.
cs.aalto.fi/.

References

1. Back, R.-J., von Wright, J.: Refinement Calculus. Springer, Heidelberg (1998)
2. Boulton, R.J., Gordon, A., Gordon, M.J.C., Harrison, J., Herbert, J., Tassel, J.V.:

Experience with embedding hardware description languages in HOL. In: IFIP
TC10/WG 10.2 International Conference on Theorem Provers in Circuit Design,
pp. 129–156. North-Holland Publishing Co., Amsterdam (1992)

3. de Alfaro, L., Henzinger, T.: Interface automata. In: Foundations of Software Engi-
neering (FSE). ACM Press, New York (2001)

4. Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Comm. ACM 18(8), 453–457 (1975)

5. Dragomir, I., Preoteasa, V., Tripakis, S.: Compositional semantics and analysis of
hierarchical block diagrams. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS,
vol. 9641, pp. 38–56. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
32582-8 3

6. Dragomir, I., Preoteasa, V., Tripakis, S.: The Refinement Calculus of Reactive
Systems Toolset. CoRR, abs/1710.08195:1–12 (2017)

7. Dragomir, I., Preoteasa, V., Tripakis, S.: The Refinement Calculus of Reactive
Systems Toolset, February 2018. figshare. https://doi.org/10.6084/m9.figshare.
5900911.v1

8. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, HSCC 2014, pp. 253–262. ACM (2014)

9. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

10. Preoteasa, V., Dragomir, I., Tripakis, S.: A nondeterministic and abstract algo-
rithm for translating hierarchical block diagrams. CoRR, abs/1611.01337 (2016)

11. Preoteasa, V., Dragomir, I., Tripakis, S.: The Refinement Calculus of Reactive
Systems. CoRR, abs/1710.03979 (2017)

12. Preoteasa, V., Dragomir, I., Tripakis, S.: Type inference of Simulink hierarchical
block diagrams in Isabelle. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS,
vol. 10321, pp. 194–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-60225-7 14

https://doi.org/10.6084/m9.figshare.5900911.v1
http://rcrs.cs.aalto.fi/
http://rcrs.cs.aalto.fi/
https://doi.org/10.1007/978-3-319-32582-8_3
https://doi.org/10.1007/978-3-319-32582-8_3
https://doi.org/10.6084/m9.figshare.5900911.v1
https://doi.org/10.6084/m9.figshare.5900911.v1
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-60225-7_14
https://doi.org/10.1007/978-3-319-60225-7_14

208 I. Dragomir et al.

13. Preoteasa, V., Tripakis, S.: Refinement calculus of reactive systems. In: 2014 Inter-
national Conference on Embedded Software (EMSOFT), pp. 1–10, October 2014

14. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM TOPLAS 33(4), 14:1–14:41 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	The Refinement Calculus of Reactive Systems Toolset
	1 Introduction
	2 Modeling Systems in RCRS
	3 The Implementation of RCRS in Isabelle
	4 The Translator
	5 The Analyzer
	6 Case Study
	7 Data Availability Statement
	References

