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Abstract. Automated synthesis of reactive systems from specifications
has been a topic of research for decades. Recently, a variety of approaches
have been proposed to extend synthesis of reactive systems from propo-
sitional specifications towards specifications over rich theories. We pro-
pose a novel, completely automated approach to program synthesis which
reduces the problem to deciding the validity of a set of ∀∃-formulas. In
spirit of IC3/PDR, our problem space is recursively refined by bloc-
king out regions of unsafe states, aiming to discover a fixpoint that
describes safe reactions. If such a fixpoint is found, we construct a witness
that is directly translated into an implementation. We implemented the
algorithm on top of the JKind model checker, and exercised it against
contracts written using the Lustre specification language. Experimental
results show how the new algorithm outperforms JKind’s already exist-
ing synthesis procedure based on k-induction and addresses soundness
issues in the k-inductive approach with respect to unrealizable results.

1 Introduction

Program synthesis is one of the most challenging problems in computer science.
The objective is to define a process to automatically derive implementations that
are guaranteed to comply with specifications expressed in the form of logic for-
mulas. The problem has seen increased popularity in the recent years, mainly due
to the capabilities of modern symbolic solvers, including Satisfiability Modulo
Theories (SMT) [1] tools, to compute compact and precise regions that describe
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under which conditions an implementation exists for the given specification [25].
As a result, the problem has been well-studied for the area of propositional speci-
fications (see Gulwani [15] for a survey), and approaches have been proposed
to tackle challenges involving richer specifications. Template-based techniques
focus on synthesizing programs that match a certain shape (the template) [28],
while inductive synthesis uses the idea of refining the problem space using coun-
terexamples, to converge to a solution [12]. A different category is that of func-
tional synthesis, in which the goal is to construct functions from pre-defined
input/output relations [22].

Our goal is to effectively synthesize programs from safety specifications writ-
ten in the Lustre [18] language. These specifications are structured in the form
of Assume-Guarantee contracts, similarly to approaches in Linear Temporal
Logic [11]. In prior work, we developed a solution to the synthesis problem which
is based on k-induction [14,19,21]. Despite showing good results, the approach
suffers from soundness problems with respect to unrealizable results; a contract
could be declared as unrealizable, while an actual implementation exists. In
this work, we propose a novel approach that is a direct improvement over the
k-inductive method in two important aspects: performance and generality. On
all models that can be synthesized by k-induction, the new algorithm always
outperforms in terms of synthesis time while yielding roughly approximate code
sizes and execution times for the generated code. More importantly, the new
algorithm can synthesize a strictly larger set of benchmark models, and comes
with an improved termination guarantee: unlike in k-induction, if the algorithm
terminates with an “unrealizable” result, then there is no possible realization of
the contract.

The technique has been used to synthesize contracts involving linear real and
integer arithmetic (LIRA), but remains generic enough to be extended into sup-
porting additional theories in the future, as well as to liveness properties that can
be reduced to safety properties (as in k-liveness [7]). Our approach is completely
automated and requires no guidance to the tools in terms of user interaction
(unlike [26,27]), and it is capable of providing solutions without requiring any
templates, as in e.g., work by Beyene et al. [2]. We were able to automatically
solve problems that were “hard” and required hand-written templates specialized
to the problem in [2].

The main idea of the algorithm was inspired by induction-based model check-
ing, and in particular by IC3/Property Directed Reachability (PDR) [4,9]. In
PDR, the goal is to discover an inductive invariant for a property, by recursively
blocking generalized regions describing unsafe states. Similarly, we attempt to
reach a greatest fixpoint that contains states that react to arbitrary environment
behavior and lead to states within the fixpoint that comply with all guarantees.
Formally, the greatest fixpoint is sufficient to prove the validity of a ∀∃-formula,
which states that for any state and environment input, there exists a system reac-
tion that complies with the specification. Starting from the entire problem space,
we recursively block regions of states that violate the contract, using regions of
validity that are generated by invalid ∀∃-formulas. If the refined ∀∃-formula
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is valid, we reach a fixpoint which can effectively be used by the specified tran-
sition relation to provide safe reactions to environment inputs. We then extract
a witness for the formula’s satisfiability, which can be directly transformed into
the language intended for the system’s implementation.

The algorithm was implemented as a feature in the JKind model checker and
is based on the general concept of extracting a witness that satisfies a ∀∃-formula,
using the AE-VAL Skolemizer [10,19]. While AE-VAL was mainly used as a tool
for solving queries and extracting Skolems in our k-inductive approach, in this
paper we also take advantage of its capability to generate regions of validity from
invalid formulas to reach a fixpoint of satisfiable assignments to state variables.

The contributions of the paper are therefore:

• A novel approach to synthesis of contracts involving rich theories that is
efficient, general, and completely automated (no reliance on templates or
user guidance),

• an implementation of the approach in a branch of the JKind model checker,
and

• an experiment over a large suite of benchmark models demonstrating the
effectiveness of the approach.

The rest of the paper is organized as follows. Section 2 briefly describes the
Cinderella-Stepmother problem that we use as an example throughout the paper.
In Sect. 3, we provide the necessary formal definitions to describe the synthesis
algorithm, which is presented then in Sect. 4. We present an evaluation in Sect. 5
and comparison against a method based on k-induction that exists using the
same input language. Finally, we discuss the differences of our work with closely
related ideas in Sect. 6 and conclude in Sect. 7.

2 Overview: The Cinderella-Stepmother Game

We illustrate the flow of the validity guided-synthesis algorithm using a variation
of the minimum-backlog problem, the two player game between Cinderella and
her wicked Stepmother, first expressed by Bodlaender et al. [3].

The main objective for Cinderella (i.e. the reactive system) is to prevent a col-
lection of buckets from overflowing with water. On the other hand, Cinderella’s
Stepmother (i.e. the system’s environment) refills the buckets with a predefined
amount of water that is distributed in a random fashion between the buckets. For
the running example, we chose an instance of the game that has been previously
used in template-based synthesis [2]. In this instance, the game is described using
five buckets, where each bucket can contain up to two units of water. Cinderella
has the option to empty two adjacent buckets at each of her turns, while the
Stepmother distributes one unit of water over all five buckets. In the context of
this paper we use this example to show how specification is expressed, as well as
how we can synthesize an efficient implementation that describes reactions for
Cinderella, such that a bucket overflow is always prevented.
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Fig. 1. An Assume-Guarantee contract.

We represent the system requirements using an Assume-Guarantee Contract.
The assumptions of the contract restrict the possible inputs that the environment
can provide to the system, while the guarantees describe safe reactions of the
system to the outside world.

A (conceptually) simple example is shown in Fig. 1. The contract describes a
possible set of requirements for a specific instance of the Cinderella-Stepmother
game. Our goal is to synthesize an implementation that describes Cinderella’s
winning region of the game. Cinderella in this case is the implementation, as
shown by the middle box in Fig. 1. Cinderella’s inputs are five different values
ik, 1 ≤ k ≤ 5, determined by a random distribution of one unit of water by the
Stepmother. During each of her turns Cinderella has to make a choice denoted by
the output variable e, such that the buckets bk do not overflow during the next
action of her Stepmother. We define the contract using the set of assumptions
A (left box in Fig. 1) and the guarantee constraints G (right box in Fig. 1). For
the particular example, it is possible to construct at least one implementation
that satisfies G given A which is described in Sect. 4.3. The proof of existence
of such an implementation is the main concept behind the realizability problem,
while the automated construction of a witness implementation is the main focus
of program synthesis.

Given a proof of realizability of the contract in Fig. 1, we are seeking for an
efficient synthesis procedure that could provide an implementation. On the other
hand, consider a variation of the example, where A = true. This is a practical
case of an unrealizable contract, as there is no feasible Cinderella implementation
that can correctly react to Stepmother’s actions. An example counterexample
allows the Stepmother to pour random amounts of water into the buckets, leading
to overflow of at least one bucket during each of her turns.

3 Background

We use two disjoint sets, state and inputs, to describe a system. A straightfor-
ward and intuitive way to represent an implementation is by defining a transition
system, composed of an initial state predicate I(s) of type state → bool, as well
as a transition relation T (s, i, s′) of type state → inputs → state → bool.

Combining the above, we represent an Assume-Guarantee (AG) contract
using a set of assumptions, A : state → inputs → bool, and a set of guarantees G.
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The latter is further decomposed into two distinct subsets GI : state → bool and
GT : state → inputs → state → bool. The GI defines the set of valid initial
states, and GT contains constraints that need to be satisfied in every transition
between two states. Importantly, we do not make any distinction between the
internal state variables and the output variables in the formalism. This allows
us to use the state variables to (in some cases) simplify the specification of
guarantees since a contract might not be always defined over all variables in the
transition system.

Consequently, we can formally define a realizable contract, as one for which
any preceding state s can transition into a new state s′ that satisfies the gua-
rantees, assuming valid inputs. For a system to be ever-reactive, these new states
s′ should be further usable as preceding states in a future transition. States like
s and s′ are called viable if and only if:

Viable(s) = ∀i.(A(s, i) ⇒ ∃s′. GT (s, i, s′) ∧ Viable(s′)) (1)

This equation is recursive and we interpret it coinductively, i.e., as a greatest
fixpoint. A necessary condition, finally, is that the intersection of sets of viable
states and initial states is non-empty. As such, to conclude that a contract is
realizable, we require that

∃s.GI(s) ∧ Viable(s) (2)

The synthesis problem is therefore to determine an initial state si and function
f(s, i) such that GI(si) and ∀s, i.Viable(s) ⇒ Viable(f(s, i)).

The intuition behind our proposed algorithm in this paper relies on the dis-
covery of a fixpoint F that only contains viable states. We can determine whether
F is a fixpoint by proving the validity of the following formula:

∀s, i. (F (s) ∧ A(s, i) ⇒ ∃s′.GT (s, i, s′) ∧ F (s′))

In the case where the greatest fixpoint F is non-empty, we check whether it
satisfies GI for some initial state. If so, we proceed by extracting a witnessing
initial state and witnessing skolem function f(s, i) to determine s′ that is, by
construction, guaranteed to satisfy the specification.

To achieve both the fixpoint generation and the witness extraction, we depend
on AE-VAL, a solver for ∀∃-formulas.

3.1 Skolem Functions and Regions of Validity

We rely on the already established algorithm to decide the validity of ∀∃-formulas
and extract Skolem functions, called AE-VAL [10]. It takes as input a formula
∀x .∃y . Φ(x, y) where Φ(x, y) is quantifier-free. To decide its validity, AE-VAL

first normalizes Φ(x, y) to the form S(x) ⇒ T (x, y) and then attempts to extend
all models of S(x) to models of T (x, y). If such an extension is possible, then
the input formula is valid, and a relationship between x and y are gathered in a
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S(x)
P1(x)

P2(x)

∃y.T (x,y )

Fig. 2. Region of validity computed for an example requiring AE-VAL to iterate two
times.

Skolem function. Otherwise the formula is invalid, and no Skolem function exists.
We refer the reader to [19] for more details on the Skolem-function generation.

Our approach presented in this paper relies on the fact that during each run,
AE-VAL iteratively creates a set of formulas {Pi(x)}, such that each Pi(x) has
a common model with S(x) and Pi(x) ⇒ ∃y . T (x, y). After n iterations, AE-

VAL establishes a formula Rn(x) def=
∨n

i=1 Pi(x) which by construction implies
∃y . T (x, y). If additionally S(x) ⇒ Rn(x), the input formula is valid, and the
algorithm terminates. Figure 2 shows a Venn diagram for an example of the oppo-
site scenario: R2(x) = T1(x) ∨ T2(x), but the input formula is invalid. However,
models of each S(x) ∧ Pi(x) can still be extended to a model of T (x, y).

In general, if after n iterations S(x) ∧ T (x, y) ∧ ¬Rn(x) is unsatisfiable, then
AE-VAL terminates. Note that the formula ∀x. S(x) ∧ Rn(x) ⇒ ∃y. T (x, y) is
valid by construction at any iteration of the algorithm. We say that Rn(x) is a
region of validity, and in this work, we are interested in the maximal regions of
validity, i.e., the ones produced by disjoining all {Pi(x)} produced by AE-VAL

before termination and by conjoining it with S(x). Throughout the paper, we
assume that all regions of validity are maximal.

Lemma 1. Let Rn(x) be the region of validity returned by AE-VAL for formula
∀s. S(x) ⇒ ∃y . T (x, y). Then ∀x. S(x) ⇒ (Rn(x) ⇔ ∃y . T (x, y)).

Proof. (⇒) By construction of Rn(x).
(⇐) Suppose towards contradiction that the formula does not hold. Then

there exists x0 such that S(x0) ∧ (∃y.T (x0, y)) ∧ ¬Rn(x0) holds. But this is a
direct contradiction for the termination condition for AE-VAL. Therefore the
original formula does hold.

4 Validity-Guided Synthesis from Assume-Guarantee
Contracts

Algorithm 1, named JSyn-vg (for validity guided), shows the validity-guided
technique that we use towards the automatic synthesis of implementations.
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Algorithm 1. JSyn-vg (A: assumptions, G: guarantees)
1: F (s) ← true; � Fixpoint of viable states
2: while true do
3: φ ← ∀s, i. (F (s) ∧ A(s, i) ⇒ ∃s′.GT (s, i, s′) ∧ F (s′));
4: 〈valid , validRegion,Skolem〉 ← AE-VAL(φ);
5: if valid then
6: if ∃s.GI(s) ∧ F (s) then
7: return 〈realizable,Skolem, s, F 〉;
8: else � Empty set of initial or viable states
9: return unrealizable;

10: else � Extract region of validity Q(s, i)
11: Q(s, i) ← validRegion;
12: φ′ ← ∀s. (F (s) ⇒ ∃i.A(s, i) ∧ ¬Q(s, i));
13: 〈 , violatingRegion, 〉 ← AE-VAL(φ′);
14: W (s) ← violatingRegion;
15: F (s) ← F (s) ∧ ¬W (s); � Refine set of viable states

The specification is written using the Assume-Guarantee convention that we
described in Sect. 3 and is provided as an input. The algorithm relies on AE-

VAL, for each call of which we write 〈x, y, z〉 ← AE-VAL(. . .): x specifies if
the given formula is valid or invalid , y identifies the region of validity (in both
cases), and z – the Skolem function (only in case of the validity).

The algorithm maintains a formula F (s) which is initially assigned true
(line 1). It then attempts to strengthen F (s) until it only contains viable states
(recall Eqs. 1 and 2), i.e., a greatest fixpoint is reached. We first encode Eq. 1 in
a formula φ and then provide it as input to AE-VAL (line 4) which determines
its validity (line 5). If the formula is valid, then a witness Skolem is non-empty.
By construction, it contains valid assignments to the existentially quantified
variables of φ. In the context of viability, this witness is capable of providing
viable states that can be used as a safe reaction, given an input that satisfies
the assumptions.

With the valid formula φ in hand, it remains to check that the fixpoint
intersects with the initial states, i.e., to find a model of formula in Eq. 2 by a
simple satisfiability check. If a model exists, it is directly combined with the
extracted witness and used towards an implementation of the system, and the
algorithm terminates (line 7). Otherwise, the contract is unrealizable since either
there are no states that satisfy the initial state guarantees GI , or the set of viable
states F is empty.

If φ is not true for every possible assignment of the universally quantified
variables, AE-VAL provides a region of validity Q(s, i) (line 11). At this point,
one might assume that Q(s, i) is sufficient to restrict F towards a solution. This
is not the case since Q(s, i) creates a subregion involving both state and input
variables. As such, it may contain constraints over the contract’s inputs above
what are required by A, ultimately leading to implementations that only work
correctly for a small part of the input domain.
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Fortunately, we can again use AE-VAL’s capability of providing regions of
validity towards removing inputs from Q. Essentially, we want to remove those
states from Q if even one input causes them to violate the formula on line 3. We
denote by W the violating region of Q. To construct W , AE-VAL determines
the validity of formula φ′ ← ∀s. (F (s) ⇒ ∃i.A(s, i) ∧ ¬Q(s, i)) (line 12) and
computes a new region of validity.

If φ′ is invalid, it indicates that there are still non-violating states (i.e., out-
side W ) that may lead to a fixpoint. Thus, the algorithm removes the unsafe
states from F (s) in line 15, and iterates until a greatest fixpoint for F (s) is
reached. If φ′ is valid, then every state in F (s) is unsafe, under a specific input
that satisfies the contract assumptions (since ¬Q(s, i) holds in this case), and
the specification is unrealizable (i.e., in the next iteration, the algorithm will
reach line 9).

4.1 Soundness

Lemma 2. Viable ⇒ F is an invariant for Algorithm 1.

Proof. It suffices to show this invariant holds each time F is assigned. On line 1,
this is trivial. For line 15, we can assume that Viable ⇒ F holds prior to this
line. Suppose towards contradiction that the assignment on line 15 violates the
invariant. Then there exists s0 such that F (s0), W (s0), and Viable(s0) all hold.
Since W is the region of validity for φ′ on line 12, we have W (s0) ∧ F (s0) ⇒
∃i.A(s0, i) ∧ ¬Q(s0, i) by Lemma 1. Given that W (s0) and F (s0) hold, let i0
be such that A(s0, i0) and ¬Q(s0, i0) hold. Since Q is the region of validity for
φ on line 3, we have F (s0) ∧ A(s0, i0) ∧ ∃s′.GT (s0, i0, s′) ∧ F (s′) ⇒ Q(s0, i0)
by Lemma 1. Since F (s0), A(s0, i0) and ¬Q(s0, i0) hold, we conclude that
∃s′.GT (s0, i0, s′) ∧ F (s′) ⇒ ⊥. We know that Viable ⇒ F holds prior to
line 15, thus ∃s′.GT (s0, i0, s′) ∧Viable(s′) ⇒ ⊥. But this is a contradiction since
Viable(s0) holds. Therefore the invariant holds on line 15.

Theorem 1. The realizable and unrealizable results of Algorithm 1 are
sound.

Proof. If Algorithm 1 terminates, then the formula for φ on line 3 is valid.
Rewritten, F satisfies the formula

∀s. F (s) ⇒ (∀i. A(s, i) ⇒ ∃s′.GT (s, i, s′) ∧ F (s′)) . (3)

Let the function f be defined over state predicates as

f = λV.λs. ∀i. A(s, i) ⇒ ∃s′.GT (s, i, s′) ∧ V (s′). (4)

State predicates are equivalent to subsets of the state space and form a lattice
in the natural way. Moreover, f is monotone on this lattice. From Eq. 3 we have
F ⇒ f(F ). Thus F is a post-fixed point of f . In Eq. 1, Viable is defined as
the greatest fixed-point of f . Thus f ⇒ Viable by the Knaster-Tarski theorem.
Combining this with Lemma 2, we have F = Viable. Therefore the check on
line 7 is equivalent to the check in Eq. 2 for realizability.
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Fig. 3. An Assume-Guarantee contract for the Cinderella-Stepmother game in Lustre.

4.2 Termination on Finite Models

Lemma 3. Every loop iteration in Algorithm 1 either terminates or removes at
least one state from F .

Proof. It suffices to show that at least one state is removed from F on line 15.
That is, we want to show that F ∩ W �= ∅ since this intersection is what is
removed from F by line 15.

If the query on line 4 is valid, then the algorithm terminates. If not, then
there exists a state s∗ and input i∗ such that F (s∗) and A(s∗, i∗) such that
there is no state s′ where both G(s∗, i∗, s′) and F (s′) hold. Thus, ¬Q(s∗, i∗),
and s∗ ∈ violatingRegion, so W �= ∅. Next, suppose towards contradiction that
F ∩ W = ∅ and W �= ∅. Since W is the region of validity for φ′ on line 12,
we know that F lies completely outside the region of validity and therefore
∀s. ¬∃i.A(s, i) ∧ ¬Q(s, i) by Lemma 1. Rewritten, ∀s, i. A(s, i) ⇒ Q(s, i). Note
that Q is the region of validity for φ on line 3. Thus A is completely contained
within the region of validity and formula φ is valid. This is a contradiction since if
φ is valid then line 15 will not be executed in this iteration of the loop. Therefore
F ∩ W �= ∅ and at least one state is removed from F on line 15.

Theorem 2. For finite models, Algorithm 1 terminates.

Proof. Immediately from Lemma 3 and the fact that AE-VAL terminates on
finite models [10].

4.3 Applying JSYN-VG to the Cinderella-Stepmother Game

Figure 3 shows one possible interpretation of the contract designed for the
instance of the Cinderella-Stepmother game that we introduced in Sect. 2. The
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contract is expressed in Lustre [18], a language that has been extensively used
for specification as well as implementation of safety-critical systems, and is the
kernel language in SCADE, a popular tool in model-based development. The
contract is defined as a Lustre node game, with a global constant C denoting the
bucket capacity. The node describes the game itself, through the problem’s input
and output variables. The main input is Stepmother’s distribution of one unit
of water over five different input variables, i1 to i5. While the node contains a
sixth input argument, namely e, this is in fact used as the output of the system
that we want to implement, representing Cinderella’s choice at each of her turns.

We specify the system’s inputs i1, . . . , i5 using the REALIZABLE statement
and define the contract’s assumptions over them: A(i1, . . . , i5) = (

∧5
k=1 ik >=

0.0) ∧ (
∑5

k=1 ik = 1.0). The assignment to boolean variable guarantee (distin-
guished via the PROPERTY statement) imposes the guarantee constraints on the
buckets’ states through the entire duration of the game, using the local vari-
ables b1 to b5. Initially, each bucket is empty, and with each transition to a new
state, the contents depend on whether Cinderella chose the specific bucket, or
an adjacent one. If so, the value of each bk at the next turn becomes equal to
the value of the corresponding input variable ik. Formally, for the initial state,
GI(C, b1, . . . , b5) = (

∧5
k=1 bk = 0.0)∧(

∧5
k=1 bk ≤ C), while the transitional guar-

antee is GT ([C, b1, . . . , b5, e], i1, . . . , i5, [C ′, b′
1, . . . , b

′
5, e

′]) = (
∧5

k=1 b′
k = ite(e =

k ∨ e = kprev, ik, bk + ik) ∧ (
∧5

k=1 b′
k ≤ C ′), where kprev = 5 if k = 1, and

kprev = k − 1 otherwise. Interestingly, the lack of explicit constraints over e,
i.e. Cinderella’s choice, permits the action of Cinderella skipping her current
turn, i.e. she does not choose to empty any of the buckets. With the addition
of the guarantee (e = 1) ∨ . . . ∨ (e = 5), the contract is still realizable, and
the implementation is verifiable, but Cinderella is not allowed to skip her turn
anymore.

If the bucket was not covered by Cinderella’s choice, then its contents are
updated by adding Stepmother’s distribution to the volume of water that the
bucket already had. The arrow (->) operator distinguishes the initial state (on
the left) from subsequent states (on the right), and variable values in the previ-
ous state can be accessed using the pre operator. The contract should only be
realizable if, assuming valid inputs given by the Stepmother (i.e. positive values
to input variables that add up to one water unit), Cinderella can keep reacting
indefinitely, by providing outputs that satisfy the guarantees (i.e. she empties
buckets in order to prevent overflow in Stepmother’s next turn). We provide the
contract in Fig. 3 as input to Algorithm 1 which then iteratively attempts to
construct a fixpoint of viable states, closed under the transition relation.

Initially F = true, and we query AE-VAL for the validity of formula
∀i1, . . . , i5, b1, . . . , b5 . A(i1, . . . , i5) ⇒ ∃b′

1, . . . , b
′
5, e .GT (i1, . . . , i5, b1, . . . , b5, b′

1,
. . . , b′

5, e). Since F is empty, there are states satisfying A, for which there is no
transition to GT . In particular, one such counterexample identified by AE-VAL

is represented by the set of assignments cex = {. . . , b4 = 3025, i4 = 0.2, b′
4 =

3025.2, . . .}, where the already overflown bucket b4 receives additional water du-
ring the transition to the next state, violating the contract guarantees. In addition,
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AE-VAL provides us with a region of validity Q(i1, . . . , i5, b1, . . . , b5), a for-
mula for which ∀i1, . . . , i5, b1, . . . , b5 . A(i1, . . . , i5) ∧ Q(i1, . . . , i5, b1, . . . , b5) ⇒
∃b′

1, . . . , b
′
5, e .GT (i1, . . . , i5, b1, . . . , b5, b′

1, . . . , b
′
5, e) is valid. Precise encoding of Q

is too large to be presented in the paper; intuitively it contains some constraints on
i1, . . . , i5 and b1, . . . , bk which are stronger than A and which block the inclusion
of violating states such as the one described by cex .

Since Q is defined over both state and input variables, it might contain con-
straints over the inputs, which is an undesirable side-effect. In the next step,
AE-VAL decides the validity of formula ∀b1, . . . , b5 .∃i1, . . . , i5 . A(i1, . . . , i5) ∧
¬Q(i1, . . . , i5, b1, . . . , b5) and extracts a violating region W over b1, . . . , b5. Pre-
cise encoding of W is also too large to be presented in the paper; and intuitively
it captures certain steps in which Cinderella may not take the optimal action.
Blocking them leads us eventually to proving the contract’s realizability.

From this point on, the algorithm continues following the steps explained
above. In particular, it terminates after one more refinement, at depth 2. At
that point, the refined version of φ is valid, and AE-VAL constructs a witness
containing valid reactions to environment behavior. In general, the witness is
described through the use of nested if-then-else blocks, where the conditions
are subsets of the antecedent of the implication in formula φ, while the body
contains valid assignments to state variables to the corresponding subset.

5 Implementation and Evaluation

The implementation of the algorithm has been added to a branch of the
JKind [13] model checker1. JKind officially supports synthesis using a k-
inductive approach, named JSyn [19]. For clarity, we named our validity-guided
technique JSyn-vg (i.e., validity-guided synthesis). JKind uses Lustre [18] as
its specification and implementation language. JSyn-vg encodes Lustre speci-
fications in the language of linear real and integer arithmetic (LIRA) and com-
municates them to AE-VAL

2. Skolem functions returned by AE-VAL get then
translated into an efficient and practical implementation. To compare the qual-
ity of implementations against JSyn, we use SMTLib2C, a tool that has been
specifically developed to translate Skolem functions to C implementations3.

5.1 Experimental Results

We evaluated JSyn-vg by synthesizing implementations for 124 contracts 4 origi-
nated from a broad variety of contexts. Since we have been unable to find past
work that contained benchmarks directly relevant to our approach, we propose a
comprehensive collection of contracts that can be used by the research community
for future advancements in reactive system synthesis for contracts that rely on
infinite theories. Our benchmarks are split into three categories:
1 The JKind fork with JSyn-vg is available at https://goo.gl/WxupTe.
2 The AE-VAL tool is available at https://goo.gl/CbNMVN.
3 The SMTLib2C tool is available at https://goo.gl/EvNrAU.
4 All of the benchmark contracts can be found at https://goo.gl/2p4sT9.

https://goo.gl/WxupTe
https://goo.gl/CbNMVN
https://goo.gl/EvNrAU
https://goo.gl/2p4sT9
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• 59 contracts correspond to various industrial projects, such as a Quad-
Redundant Flight Control System, a Generic Patient Controlled Analgesia
infusion pump, as well as a collection of contracts for a Microwave model,
written by graduate students as part of a software engineering class;

• 54 contracts were initially used for the verification of existing handwritten
implementations [16];

• 11 models contain variations of the Cinderella-Stepmother game, as well as
examples that we created.

All of the synthesized implementations were verified against the original con-
tracts using JKind.

The goal of this experiment was to determine the performance and generality
of the JSyn-vg algorithm. We compared against the existing JSyn algorithm,
and for the Cinderella model, we compared against [2] (this was the only syn-
thesis problem in the paper). We examined the following aspects:

• time required to synthesize an implementation;
• size of generated implementations in lines of code (LoC);
• execution speed of generated C implementations derived from the synthesis

procedure; and
• number of contracts that could be synthesized by each approach.

Since JKind already supports synthesis through JSyn, we were able to directly
compare JSyn-vg against JSyn’s k-inductive approach. We ran the experiments
using a computer with Intel Core i3-4010U 1.70 GHz CPU and 16 GB RAM.

A listing of the statistics that we tracked while running experiments is pre-
sented in Table 1. Fig. 4a shows the time allocated by JSyn and JSyn-vg to
solve each problem, with JSyn-vg outperforming JSyn for the vast major-
ity of the benchmark suite, often times by a margin greater than 50%. Fig. 4b
on the other hand, depicts small differences in the overall size between the
synthesized implementations. While it would be reasonable to conclude that
there are no noticeable improvements, the big picture is different: solutions by
JSyn-vg always require just a single Skolem function, but solutions by JSyn

may require several (k − 1 to initialize the system, and one for the inductive
step). In our evaluation, JSyn proved the realizability of the majority of bench-
marks by constructing proofs of length k = 0, which essentially means that the
entire space of states is an inductive invariant. However, several spikes in Fig. 4b
refer to benchmarks, for which JSyn constructed a proof of length k > 0, which
was significantly longer that the corresponding proof by JSyn-vg. Interestingly,
we also noticed cases where JSyn implementations are (insignificantly) shorter.
This provides us with another observation regarding the formulation of the prob-
lem for k = 0 proofs. In these cases, JSyn proves the existence of viable states,
starting from a set of pre-initial states, where the contract does not need to
hold. This has direct implications to the way that the ∀∃-formulas are cons-
tructed in JSyn’s underlying machinery, where the assumptions are “baked”
into the transition relation, affecting thus the performance of AE-VAL.



188 A. Katis et al.

Table 1. Benchmark statistics.

JSyn JSyn-vg

Problems solved 113 124

Performance (avg - seconds) 5.72 2.78

Performance (max - seconds) 352.1 167.55

Implementation Size (avg - Lines of Code) 72.88 70.66

Implementation Size (max - Lines of Code) 2322 2142

Implementation Performance (avg - ms) 57.84 56.32

Implementation Performance (max - ms) 485.88 459.95

Table 2. Cinderella-Stepmother results.

Game JSyn-vg ConSynth [2]

Impl. Size Impl. Performance Time Time Time

(LoC) (ms) (Z3) (Barcelogic)

Cind (C = 3) 204 128.09 4.5 s 3.2 s 1.2 s

Cind2 (C = 3) 2081 160.87 28.7 s

Cind (C = 2) 202 133.04 4.7 s 1m 52 s 1m 52 s

Cind2 (C = 2) 1873 182.19 27.2 s

Fig. 4. Experimental results.
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One last statistic that we tracked was the performance of the synthesized C
implementations in terms of execution time, which can be seen in Fig. 4c. The
performance was computed as the mean of 1000000 iterations of executing each
implementation using random input values. According to the figure as well as
Table 1, the differences are minuscule on average.

Figure 4 does not cover the entirety of the benchmark suite. From the original
124 problems, eleven of them cannot be solved by JSyn’s k-inductive approach.
Four of these files are variations of the Cinderella-Stepmother game using dif-
ferent representations of the game, as well as two different values for the bucket
capacity (2 and 3). Using the variation in Fig. 3 as an input to JSyn, we receive
an “unrealizable” answer, with the counterexample shown in Fig. 5. Reading
through the feedback provided by JSyn, it is apparent that the underlying SMT
solver is incapable of choosing the correct buckets to empty, leading eventually
to a state where an overflow occurs for the third bucket. As we already discussed
though, a winning strategy exists for the Cinderella game, as long as the bucket
capacity C is between 1.5 and 3. This provides an excellent demonstration of the
inherent weakness of JSyn for determining unrealizability. JSyn-vg’s validity-
guided approach, is able to prove the realizability for these contracts, as well as
synthesize an implementation for each.

Table 2 shows how JSyn-vg performed on the four contracts describing the
Cinderella-Stepmother game. We used two different interpretations for the game,
and exercised both for the cases where the bucket capacity C is equal to 2
and 3. Regarding the synthesized implementations, their size is analogous to
the complexity of the program (Cinderella2 contains more local variables and
a helper function to empty buckets). Despite this, the implementation perfor-
mance remains the same across all implementations. Finally for reference, the
table contains the results from the template-based approach followed in Con-

synth [2]. From the results, it is apparent that providing templates yields better
performance for the case of C = 3, but our approach overperforms Consynth

when it comes to solving the harder case of C = 2. Finally, the original paper for
Consynth also explores the synthesis of winning strategies for Stepmother using
the liveness property that a bucket will eventually overflow. While JKind does
not natively support liveness properties, we successfully synthesized an imple-
mentation for Stepmother using a bounded notion of liveness with counters. We
leave an evaluation of this category of specifications for future work.

Overall, JSyn-vg’s validity-guided approach provides significant advantages
over the k-inductive technique followed in JSyn, and effectively expands JKind’s
solving capabilities regarding specification realizability. On top of that, it pro-
vides an efficient “hands-off” approach that is capable of solving complex games.
The most significant contribution, however, is the applicability of this approach,
as it is not tied to a specific environment since it can be extended to support
more theories, as well as categories of specification.
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Fig. 5. Spurious counterexample for Cinderella-Stepmother example using JSyn

6 Related Work

The work presented in this paper is closely related to approaches that attempt to
construct infinite-state implementations. Some focus on the continuous interac-
tion of the user with the underlying machinery, either through the use of temp-
lates [2,28], or environments where the user attempts to guide the solver by
choosing reactions from a collection of different interpretations [26]. In contrast,
our approach is completely automatic and does not require human ingenuity to
find a solution. Most importantly, the user does not need to be deeply familiar
with the problem at hand.

Iterative strengthening of candidate formulas is also used in abductive infer-
ence [8] of loop invariants. Their approach generates candidate invariants as maxi-
mum universal subsets (MUS) of quantifier-free formulas of the form φ ⇒ ψ.
While a MUS may be sufficient to prove validity, it may also mislead the invari-
ant search, so the authors use a backtracking procedure that discovers new sub-
sets while avoiding spurious results. By comparison, in our approach the regions
of validity are maximal and therefore backtracking is not required. More impor-
tantly, reactive synthesis requires mixed-quantifier formulas, and it requires that
inputs are unconstrained (other than by the contract assumptions), so substan-
tial modifications to the MUS algorithm would be necessary to apply the approach
of [8] for reactive synthesis.

The concept of synthesizing implementations by discovering fixpoints was
mostly inspired by the IC3/PDR [4,9], which was first introduced in the context
of verification. Work from Cimatti et al. effectively applied this idea for the
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parameter synthesis in the HyComp model checker [5,6]. Discovering fixpoints
to synthesize reactive designs was first extensively covered by Piterman et al. [23]
who proved that the problem can be solved in cubic time for the class of GR(1)
specifications. The algorithm requires the discovery of least fixpoints for the
state variables, each one covering a greatest fixpoint of the input variables. If
the specification is realizable, the entirety of the input space is covered by the
greatest fixpoints. In contrast, our approach computes a single greatest fixpoint
over the system’s outputs and avoids the partitioning of the input space. As the
tools use different notations and support different logical fragments, practical
comparisons are not straightforward, and thus are left for the future.

More recently, Preiner et al. presented work on model synthesis [24], that
employs a counterexample-guided refinement process [25] to construct and check
candidate models. Internally, it relies on enumerative learning, a syntax-based
technique that enumerates expressions, checks their validity against ground test
cases, and proceeds to generalize the expressions by constructing larger ones.
In contrast, our approach is syntax-insensitive in terms of generating regions of
validity. In general, enumeration techniques such as the one used in ConSynth’s
underlying E-HSF engine [2] is not an optimal strategy for our class of problems,
since the witnesses constructed for the most complex contracts are described by
nested if-then-else expressions of depth (i.e. number of branches) 10–20, a point
at which space explosion is difficult to handle since the number of candidate
solutions is large.

7 Conclusion and Future Work

We presented a novel and elegant approach towards the synthesis of reactive sys-
tems, using only the knowledge provided by the system specification expressed in
infinite theories. The main goal is to converge to a fixpoint by iteratively blocking
subsets of unsafe states from the problem space. This is achieved through the
continuous extraction of regions of validity which hint towards subsets of states
that lead to a candidate implementation.

This is the first complete attempt, to the best of our knowledge, on handling
valid subsets of a ∀∃-formula to construct a greatest fixpoint on specifications
expressed using infinite theories. We were able to prove its effectiveness in prac-
tice, by comparing it to an already existing approach that focuses on constructing
k-inductive proofs of realizability. We showed how the new algorithm performs
better than the k-inductive approach, both in terms of performance as well as the
soundness of results. In the future, we would like to extend the applicability of
this algorithm to other areas in formal verification, such as invariant generation.
Another interesting goal is to make the proposed benchmark collection available
to competitions such as SYNTCOMP, by establishing a formal extension for
the TLSF format to support infinite-state problems [17]. Finally, a particularly
interesting challenge is that of mapping infinite theories to finite counterparts,
enabling the synthesis of secure and safe implementations.
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Data Availability Statement. The datasets generated during and/or analyzed

during the current study are available in the figshare repository: https://doi.org/10.

6084/m9.figshare.5904904.v1 [20].
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