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Abstract. Given separation logic formulae A and C, frame inference is
the problem of checking whether A entails C and simultaneously infer-
ring residual heaps. Existing approaches on frame inference do not sup-
port inductive proofs with general inductive predicates. In this work, we
present an automatic frame inference approach for an expressive frag-
ment of separation logic. We further show how to strengthen the inferred
frame through predicate normalization and arithmetic inference. We have
integrated our approach into an existing verification system. The exper-
imental results show that our approach helps to establish a number of
non-trivial inductive proofs which are beyond the capability of all exist-
ing tools.

1 Introduction

Separation logic (SL) [20,37] has been well established for reasoning about heap-
manipulating programs (like linked-lists and trees). Often, SL is used in combi-
nation with inductive predicates to precisely specify data structures manipulated
by a program. In the last decade, a large number of SL-based verification sys-
tems have been developed [1,3,6,8,13,18,19,24,29,33,36]. In these systems, SL
is typically used to express assertions about program states. The problem of
validating these assertions can be reduced to the entailment problem in SL, i.e.,
given two SL formulas Δa and Δc, to check whether Δa |= Δc holds. Moreover,
SL provides the frame rule [20], one prominent feature to enable compositional
(a.k.a. modular) reasoning in the presence of the heap:

{P}c{Q}
FRAME RULE

{P∗F}c{Q∗F}

where c is a program, P , Q and F are SL formulas, and ∗ is the separating
conjunction in SL. Intuitively, P∗F states that P and F hold in disjoint heaps.
This conjunction allows the frame rule to guarantee that F is unchanged under
the action of c. This feature of SL is essential for scalability [6,21,44] as it allows
the proof of a program to be decomposed (and reused) into smaller ones, e.g.,
proofs of procedures. To automate the application of the frame rule, SL-based
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proof systems rely on a generalized form of the entailment, which is referred to as
frame inference [1,8,12,33,39]. That is, given Δa and Δc, to check whether Δa

entails Δc and simultaneously generate the residual heap, which is a satisfiable
frame Δf capturing properties of the memory in Δa that is not covered by
Δc. This problem, especially if Δa and Δc are constituted by general inductive
predicates, is highly non-trivial as it may require inductive reasoning. Existing
approaches [1,33] are limited to specific predicates e.g., linked lists and trees.
The systems reported in [8,12,39] do not adequately support the frame inference
problem for inductive entailments in separation logic with predicate definitions
and arithmetic.

In this work, we propose a sound approach for frame inference which aims to
enhance modular verification in an expressive SL fragment with general inductive
predicates and Presburger arithmetic. Intuitively, given an entailment Δa |= Δc,
our goal is to infer a satisfiable frame axiom Δf such that Δa |= Δc ∗ Δf holds.
Our approach works as follows. We first augment the entailment checking with
an unknown second-order variable Uf(t̄) as a place-holder of the frame, where t̄ is
a set of pointer-typed variables common in Δa and Δc. That is, the entailment
checking becomes Δa |= Δc ∗ Uf(t̄). Afterwards, the following two steps are
conducted. Firstly, we invoke a novel proof system to derive a cyclic proof for
Δa |= Δc ∗ Uf(t̄) whilst inferring a predicate which Uf must satisfy so that the
entailment is valid. We show that the cyclic proof is valid if this predicate is
satisfiable. Secondly, we strengthen the inferred frame with shape normalization
and arithmetic inference.

For the first step, we design a new cyclic proof system (e.g., based on [2,3])
with an automated cut rule so as to effectively infer the predicate on Uf. A
cyclic proof is a derivation tree whose root is the given entailment checking and
whose edges are constructed by applying SL proof rules. A derivation tree of
a cyclic proof may contain virtual back-links, each of which links a (leaf) node
back to an ancestor. Intuitively, a back-link from a node l to an internal node
i means that the proof obligation at l is induced by that at i. Furthermore, to
avoid potentially unsound cycles (i.e., self-cycles), a global soundness condition
must be imposed upon these derivations to qualify them as genuine proofs. In
this work, we develop a sequent-based cyclic proof system with a cyclic cut rule
so as to form back-links effectively and check the soundness condition eagerly.
Furthermore, we show how to extract lemmas from the proven cyclic proofs
and reuse them through lemma application for an efficient proof system. These
synthesized lemmas work as dynamic cuts in the proposed proof system.

For the second step, we strengthen the inferred predicate on the frame Uf(t̄) so
that it becomes more powerful in establishing correctness of certain programs. In
particular, the inferred frame is strengthened with predicate normalization and
arithmetic inference. The normalization includes predicate split (i.e., to expose
the spatial separation of the inferred frame) and predicate equivalence (i.e., to
relate the inferred frame with user-supplied predicates). The arithmetic inference
discovers predicates on pure properties (size, sum, height, content and bag) to
support programs which require induction reasoning on both shape and data
properties.
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Lastly, we have implemented the proposal and integrated it into a modular
verification engine. Our experiments show that our approach infers strong frames
which enhances the verification of heap-manipulating programs.

2 Preliminaries

In this section, we present the fragment of SL which is used as the assertion
language in this work. This fragment, described in Fig. 1, is expressive enough for
specifying and verifying properties of a variety of data structures [24–26,35,41].
We use t̄ to denote a sequence of terms and occasionally use a sequence (i.e.,
t̄) to denote a set when there is no ambiguity. A formula Φ in our language is
a disjunction of multiple clauses Δ, each of which is a conjunction of a spatial
predicate κ and a pure (non-heap) constraint π. The spatial predicate κ captures
properties of the heap whereas π captures properties of the data. κ can be an
empty heap emp, or a points-to predicate r �→c(v̄) where c is a data structure,
or a user-defined predicate P(t̄) or a spatial conjunction κ1∗κ2. null is a special
heap location. A pure constraint π is in the form of (dis)equality α (on pointers)
and Presburger arithmetic φ. We write v1 �= v2 and v �= null for ¬(v1 = v2) and
¬(v = null), respectively. We often omit the pure part of a formula Φ when it
is true . For standardizing the notations, we use uppercase letters for unknown
(to-be-inferred) predicates, (e.g., P(t̄)) and lowercase letters (e.g., p(t̄)) for known
predicates.

Fig. 1. Syntax

A user-defined (inductive) predicate P(v̄) with parameters v̄ is defined in the
form of a disjunction, i.e., pred P(v̄)≡ Φ, where each disjunct in Φ is referred to as
a branch. In each branch, variables that are not in v̄ are implicitly existentially-
quantified. We use function unfold(P(t̄)) to replace an occurrence of inductive
predicates by the disjuncts in the definition of P with actual/formal parameters
renaming. For example, the following predicates lseg and lsegn are defined to
express list segments where every node contains the same value 1, given data
structure node{int val; node next; }.

pred lseg(root,l)≡emp∧root=l ∨ ∃ q·root�→node(1,q)∗lseg(q,l);
pred lsegn(root,l,n)≡emp∧root=l∧n=0 ∨ ∃ q· root�→node(1,q)∗lsegn(q,l,n−1);

where root is the head, l the end of the segment and n the length of the segment.
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In our framework, we may have lemmas to assist program verification. A
lemma ι of the form Δl → Δr, which means that the entailment Δl |= Δr

holds. We write A↔ B, a short form of A→ B and B →A, to denote a two-way
lemma. If A↔ B, A is semantically equivalent to B. We use E and F to denote
an entailment problem.

In the following, we discuss semantics of the SL fragment. Concrete heap
models assume a fixed finite collection Node, a fixed finite collection Fields, a
disjoint set Loc of locations (i.e., heap addresses), a set of non-address values Val
such that null∈Val and Val ∩ Loc = ∅. The semantics is given by a satisfaction
relation: s,h |= Φ that forces the stack s and heap h to satisfy the constraint Φ
where h ∈ Heaps, s∈Stacks, and Φ is a formula. Heaps and Stacks are defined
as follows.

Heaps def= Loc⇀fin(Node × Fields → Val ∪ Loc)
Stacks def= Var → Val ∪ Loc

The details of semantics of this SL fragment follow the one in [25].

Fig. 2. Code of append.

3 Illustrative Example

In the following, we first discuss the limitation of the existing entailment pro-
cedures [1,8] to the frame inference problem. Given an entailment, these proce-
dures deduce it until the following subgoal is obtained: Δa�emp ∧ true . Then,
they conclude that Δa is the residual frame. However, these approaches provide
limited support for proofs of induction. While [1] provides inference rules as a
sequence of inductive reasoning for hardwired lists and trees, our previous work
[8] supports inductive proofs via user-supplied lemmas [30]. Hence, it is very
hard for these procedures to automatically infer the frame for the entailments
which require proofs of induction.

We illustrate our approach via the verification of the append method shown
in Fig. 2, which appends a singly-linked list referred to by y to the end of the
singly-linked list referred to by x. It uses the auxiliary procedure last (lines 8–
12) to obtain the pointer referring to the last node in the list. Each node object
x has a data value x->data and a next pointer x->next. For simplicity, we assume
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that every node in the x list and the y list has data value 1. The correctness
of append and last is specified using our fragment of SL with a pre-condition
(requires) and a post-condition (ensures). The auxiliary variable res denotes
the return value of the procedure. Note that these specifications refer to the
user-provided predicates lln and ll last, which are defined as follows.

pred lln(root,n) ≡ emp∧root=null∧n=0 ∨ ∃ q·root�→node(1,q)∗lln(q,n−1);

pred ll last(root,l,n) ≡ l�→node(1,null)∧root=l∧n=1

∨ ∃q· root�→node(1,q)∗ll last(q,l,n−1);

Intuitively, the predicate lln(root,n) is satisfied if root points to a singly-
linked list with n nodes. The predicate ll last(t,p,n) is satisfied if t points to a
list segment with last element p and length n. In our framework, we provide a
library of commonly used inductive predicates (and the corresponding lemmas),
including for example the definitions for list segments lseg and lsegn introduced
earlier. Given these specifications, we automatically deduce predicates on the
intermediate program states (using existing approaches [8]), shown as comments
in Fig. 2, as well as the following three entailment checks that must be established
in order to verify the absence of memory errors and the correctness of the method
append.

E1:lln(x,i)∗lln(y,j)∧i>0 � ∃ n1·lln(x,n1)∧n1>0
E2:ll last(x,t,i)∗lln(y,j)∧i>0 � ∃ q,v·t �→node(v,q)
E3:lsegn(res,t,i−1)∗t �→node(1,y)∗lln(y,j)∧i>0 � lln(res,i+j)

E1 aims to establish a local specification at line 5 which we generate automati-
cally. E2 must be satisfied so that no null-dereference error would occur for the
assignment to t->next at line 6. E3 aims to establish that the postcondition is
met. Frame inference is necessary in order to verify the program. In particu-
lar, frame inference for E2 is crucial to construct a precise heap state after line
6, i.e., the state α in the figure, which is necessary to establish E3. Further-
more, the frame of E3 (which is inferred as emp) helps to show that this program
does not leak memory. As the entailment checks E2 and E3 require both induc-
tion reasoning and frame inference, they are challenging for existing SL proof
systems [3,8,9,12,15,31,36,40]. In what follows, we illustrate how our system
establishes a cyclic proof with frame inference for E2.

Frame Inference. Our frame inference starts with introducing an unknown predi-
cate (a second-order variable) U1(x,t,q,v,y)1 as the initial frame, which is a place-
holder for a heap predicate on variables x, t, q and y (i.e., variables referred to
in E2). That is, E2 is transformed to the following entailment checking problem:

F2: ll last(x,t,i)∗lln(y,j)∧i>0 �L0 ∃q,v·t �→node(v,q)∗U1(x,t,q,v,y)

where L0 is a set of induction hypotheses and sound lemmas. This set is accu-
mulated automatically during the proof search and used for constructing cyclic
1 In implementation, we add # annotation into instantiated variables and non-heap

variables to guide proof search which are not shown here.
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proofs and lemma application. If a hypothesis is proven, it becomes a lemma and
may be applied latter during the proof search. in this example, initially L0 = ∅.
The proposed proof system derives a cyclic proof for the entailment problem
and, at the same time, infers a set of constraints R for U1(x,t,q,v,y) such that
the proof is valid if the system R is satisfiable. Each constraint in R has the
form of logical implication i.e., Δb ⇒ U(v̄) where Δb is the body and U(v̄) is the
head (a second-order variable). For F2, the following two constraints are inferred,
denoted by σ1 and σ2.

σ1: lln(y,j)∧t=x∧q=null∧v=1 ⇒ U1(x,t,q,v,y)
σ2: x2 �→node(1,x)∗U1(x,t,q,v,y) ⇒ U1(x2,t,q,v,y)

We then use a decision procedure (e.g., S2SATSL [25,26] or [4]) to check
the satisfiability of σ1∧σ2. Note that we write a satisfiable definition of
(Δ1⇒U(v̄))∧(Δ2⇒U(v̄)) in the equivalent form of U(v̄)≡ Δ1∨Δ2. For instance,
the above constraints are written as:

U1(root,t,q,v,y) ≡ lln(y,j)∧root=t∧q=null∧v=1
∨ ∃q1·root�→node(1,q1)∗U1(q1,t,q,v,y);

Note that, in the above definition of U1, the separation of those heap-lets referred
to by root, y and q is not explicitly captured. Additionally, relations over the
sizes are also missing. Such information is necessary in order to establish the
left-hand side of E3. The successful verification of E3 in turn establishes the post-
condition of method append. In the following we show how to strengthen the
inferred frame.

Frame Strengthening. We strengthen U1 with spatial separation constraints on
the pointer variables root, y and q. To explicate the spatial separation among
these pointers, our system generates the following equivalent lemma and splits
U1 into two disjoint heap regions (with ∗ conjunction):

U1(root,t,q,v,y) ≡ U2(root,t)∗lln(y,j)∧q=null∧v=1

where U2 is a new auxiliary predicate with an inferred definition:

U2(root,t) ≡ emp∧root=t ∨ ∃ q1· root�→node(1,q1)∗U2(q1,t)
Next, our system detects that U2 is equivalent to the user-defined predicate
lseg, and generates the lemma: U2(root,t)↔lseg(root,t). Relating U2 to lseg

enhances the understanding of the inferred predicates. Furthermore, as shown in
[9], this relation helps to reduce the requirements of induction reasoning among
equivalent inductive predicates with different names. Substituting U2 with the
equivalent lseg, U1 becomes:

U1(root,t,q,v,y) ≡ lseg(root,t)∗lln(y,j)∧q=null∧v=1

This definition states that frame U1 holds in two disjoint heaps: one list segment
pointed to by root and a list pointed to by y. After substitution the entailment
F2 becomes

ll last(x,t,i)∗lln(y,j)∧i>0 �L0 t�→node(1,null)∗lseg(x,t)∗lln(y,j)
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Next, we further strengthen the frame with pure properties, which is neces-
sary to successfully establish the left hand side of E3. In particular, we generate
constraints to capture that the numbers of allocated heaps in the left hand
side and the right hand side of F2 are identical. Our system obtains these con-
straints through two phases. First, it automatically augments an argument for
each inductive predicate in F2 to capture its size property. Concretely, it detects
that while predicates ll last and lln have such size argument already, the shape-
based frame lseg has not. As so, it extends lseg(root,t) to obtain the predicate
lsegn(root,t,m) where the size property is captured by parameter m. Now, we
substitute the lsegn into F2 to obtain:

ll last(x,t,i)∗lln(y,j)∧i>0 �L0 ∃k·t �→node(1,null)∗lsegn(x,t,k)∗lln(y,j)

After that, we apply the same three steps of frame inference to generate the
size constraint: constructing unknown predicates, proving entailment and infer-
ring a set of constraints and checking satisfiability. For the first step, the above
entailment is enriched with one unknown (pure) predicate: P1(i,j,k) which is the
place-holder for arithmetical constraints among size variables i, j and k. The
augmented entailment checking is:

ll last(x,t,i)∗lln(y,j)∧i>0
�L0 ∃k·lsegn(x,t,k)∗t �→node(1,null)∗lln(y,j)∧P1(i,j,k)

Secondly, our system successfully derives a proof for the above entailment
under condition that the following disjunctive set of two constraints is satisfiable.

σ3: i=1∧k=0 ⇒ P1(i,j,k)
σ4: i1=i−1∧k1=k−1∧i>0∧P1(i1,j,k1) ⇒ P1(i,j,k)

Fig. 3. Basic inference rules for entailment procedure (where gsc is global soundness
condition)
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Lastly, to check whether the σ3∧σ4 is satisfiable, we automatically compute the
closure form for σ3∧σ4 as: P1(i,j,k) ≡ k=i−1∧i>0. This formula is satisfiable and
substituted into the frame as: lsegn(x,t,k)∗lln(y,j)∧q=null∧v=1∧k=i−1∧i>0.

4 Frame Inference

In this section, we present our approach for frame inference in detail. Given an
entailment Δa � Δc, where Δa is the antecedent (LHS) and Δc is the consequence
(RHS), our system attempts to infer a frame Δf such that when a frame is
successfully inferred, the validity of the entailment Δa � Δc∗Δf is established
at the same time.

Our approach has three main steps. Firstly, we enrich RHS with an unknown
predicate in the form of U(v̄) to form the entailment Δa �L Δc∗U(v̄) where v̄
includes all free pointer-typed variables of Δa and Δc and L is the union of
a set of user-supplied lemmas and a set of induction hypotheses (initially ∅).
Among these, the parameters are annotated with # following the principle that
instantiation (and subtraction) must be done before inference. The detail is as
follows: (i) all common variables of Δa and Δc are #-annotated; (ii) points-to
pointers of Δc are #-annotated; (iii) the remaining pointers are not #-annotated.
In the implementation, inference of frame predicates is performed incrementally
such that shape predicates are inferred prior to pure ones. Secondly, we construct
a proof of the entailment and infer a set of constraints R for U(v̄). Thirdly, we
check the satisfiability of R using the decision procedure in [25,26].

In the following, we present our entailment checking procedure with a set of
proof rules shown in Figs. 3 and 4. For each rule, the obligation is at the bottom
and its reduced form is on the top. In particular, the rules in Fig. 3 are used for
entailment proving (i.e., to establish a cyclic proof) and the rules in Fig. 4 are
used for predicate inference.

Fig. 4. Inference rules with predicate synthesis.

Given an entailment check in the form of Δa �L Δc, the rules shown in Fig. 3
are designed to subtract the heap (via the rules [M] and [PRED−M]) on both sides
until their heaps are empty. After that, it checks the validity for the implication
of two pure formulas by using an SMT solver, like Z3 [27], as shown in rule
[EMP]. Algorithmically, this entailment checking is performed as follows.
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– Matching. The rules [M] and [PRED−M] are used to match up identified heap
chains. Starting from identified root pointers, the procedure keeps matching
all their reachable heaps. It unifies corresponding fields of matched roots
by using the following auxiliary function freeEQ(ρ): freeEQ([ui/vi]ni=1) =∧n

i=1{ui = vi}.
– Unfolding. The rules [LU] and [RU] are used to derive alternative heap

chains. While rule [LU] presents the unfolding in the antecedent, [RU] in the
consequent.

– Applying Lemma. Rule [CCUT] derives yet other alternative heap chains.
For LHS which has at least one UD predicate, we attempt to apply a lemma
as an alternative search using [CCUT] rule. We notice that as we assume that
a lemma which is supplied by the user is valid, applying this lemma does not
requires the global condition.

Cyclic Proof. The proof rules in Fig. 3 are designed to establish cyclic proofs. In
the following, we briefly describe a cyclic proof technique enhancing the proposal
in [2].

Definition 1 (Pre-proof). A pre-proof of entailment E is a pair (Ti, L) where
Ti is a derivation tree and L is a back-link function such that: the root of Ti is
E; for every edge from Ei to Ej in Ti, Ei is a conclusion of an inference rule
with a premise Ej. There is a back-link between Ec and El if there exists L(El)
= Ec (i.e., Ec = El θ with some substitution θ) ; and for every leaf El, El is an
axiom rule (without conclusion).

If L(El) = Ec, El (resp. Ec) is referred as a bud (resp. companion).

Definition 2 (Trace). Let (Ti, L) be a pre-proof of Δa �L Δc; (Δai
�Li

Δci)i≥0

be a path of Ti. A trace following (Δai
�Li

Δci)i≥0 is a sequence (αi)i≥0 such that
each αi (for all i≥ 0) is an instance of the predicate P(t̄) in the formula Δai

,
and either:

– αi+1 is the subformula containing an instance of P(t̄) in Δai+1 ;
– or Δai

�Li
Δci is the conclusion of an unfolding rule, αi is an instance pred-

icate P(t̄) in Δai
and αi+1 is a subformula Δ[t̄/v̄] which is a definition rule

of the inductive predicate P(v̄). i is a progressing point of the trace.

To ensure that a pre-proof is sound, a global soundness condition must be
imposed to guarantee well-foundedness.

Definition 3 (Cyclic proof). A pre-proof (Ti, L) of Δa �L Δc is a cyclic proof
if, for every infinite path (Δai

�Li
Δci)i≥0 of Ti, there is a tail of the path

p=(Δai
�Li

Δci)i≥n such that there is a trace following p which has infinitely
progressing points.

Brotherston et al. proved [2] that Δa � Δc holds if there is a cyclic proof of
Δa �∅ Δc where Δa and Δc do not contain any unknown predicate.

In the following, we explain how cyclic proofs are constructed using the proof
rules shown in Fig. 3. [LU] and [CCUT] are the most important rules for forming
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back-links and then pre-proof construction. While rule [LU] accumulates possible
companions and stores them in historical sequents L, [CCUT] links a bud with
a companion using some substitutions as well as checks the global soundness
condition eagerly. Different to the original cyclic system [3], our linking back
function only considers companions selected in the set of historical sequents
L. Particularly, Δl→Δr ∈ L is used as an intelligent cut as follows. During
proof search, a subgoal (i.e., Δa1∗Δa2 �L Δc) may be matched with the above
historical sequent to form a cycle and close the proof branch using the following
principle. First, Δl � Δr is used as an induction hypothesis. As so, we have
Δlρ∗Δa2 |= Δrρ∗Δa2 where ρ are substitutions including those for avoiding
clashing of variables between Δr and Δa2 . If both Δa1∗Δa2 �L Δlρ∗Δa2 and
Δrρ∗Δa2 �L Δc are proven, then we have:

Δa1∗Δa2 =⇒ Δlρ∗Δa2 =⇒ Δrρ∗Δa2 =⇒ Δc.

Thus, the subgoal Δa1∗Δa2 �L Δc holds. We remark that if a hypothesis is
proven, it can be applied as a valid lemma subsequently.

In our system, often a lemma includes universally quantified variables. We
thus show a new mechanism to instantiate those lemmas that include universally
quantified variables. We denote constraints with universal variables as universal
guards ∀G. A universal guard ∀G is equivalent to an infinite conjunction

∧
ρ G[ρ].

Linking a leaf with universal guards is not straightforward. For illustration, let us
consider the following bud B0 and the universally quantified companion/lemma
C0 ∈ L.

B0:lsegn(root,null, n)∧n=10 �L ∃r·lsegn(root,r,3)∗lsegn(r,null, 7)
C0:∀a,b·lsegn(root,null, n)∧n=a+b∧a≥0∧b≥0

→ ∃r·lsegn(root,r,a)∗lsegn(r,null, b)

As shown in rule [CCUT], to link B0 back to C0, the LHS of these two entail-
ments must be implied through some substitution. To obtain that, we propose
lemma instantiation, a sound solution for universal lemma application. Based
on the constraints in the LHS of the bud, our technique instantiates a univer-
sally quantified guard (of the selected companion/lemma) before linking it back.
Concretely, we replace the universal guard by a finite set of its instances; an
instantiation of a formula ∀v̄G(t̄) is G(t̄)[w̄/v̄] for some vector of terms w̄. These
instances are introduced based on the instantiations in both LHS and RHS of
the corresponding bud e.g., n= 10 ∧ a= 3 ∧ b = 7 in B0.

Frame Inference. The two inference rules shown in Fig. 4 are designed specifically
to infer constraints for frame. In these rules, �(w̄, π) is an auxiliary function that
existentially quantifies free variables in π that are not in the set w̄. This function
extracts relevant arithmetic constraints to define data contents of the unknown
predicates. R(r,t̄) is either r �→c(t̄) or a known (defined) predicate P(r,t̄), or an
unknown predicate U′(r,t̄,w̄#). The # in the unknown predicates is used to guide
inference and proof search. We only infer on pointers without #-annotation.
Uf(w̄, t̄′) is another unknown predicate which is generated to infer the shape of
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pointers w̄. Inferred pointers are annotated with # to avoid double inference. A
new unknown predicate Uf is generated only if there exists at least one parameter
not to be annotated with # (i.e., w̄∪t̄′ �=∅). To avoid conflict between the inference
rules and the other rules (e.g., unfolding and matching), root pointers of a heap
formula must be annotated with # in unknown predicates. For example, in our
system while x�→c1(y)∗U1(x#,y) is legal, x�→c1(y)∗U1(x, y) is illegal. Our system
applies subtraction on the heap pointed to by x rather than inference for the
following check: x�→c1(null)�Lx�→c1(y)∗U1(x#,y).

Soundness. The soundness of the inference rules in Fig. 3 has been shown
in unfold-and-match systems for general inductive predicates [3,8]. In the
following, we present the soundness of the inference rules in Fig. 4. We
introduce the notation R(Γ ) to denote a set of predicate definitions
Γ = {U1(v̄1)≡ Φ1, ..Un(v̄n)≡ Φn} satisfying the set of constraints R. That is, for
all constraints Δl ⇒ Δr ∈ R, (i) Γ contains states (si, hi), a predicate defini-
tion for each unknown predicate appearing in Δl and Δr; (ii) by interpreting all
unknown predicates according to Γ , then it is provable that Δl implies Δr (i.e.,
there exists si ⊆ s, hi ⊆ h for i ∈ {1..n}, and s, h |= Δl implies s, h |= Δr),
written as Γ : Δl � Δr.

Lemma 1. Given the entailment judgement Δa �{} Δc � R, if there is Γ such
that R(Γ ), the entailment Γ :Δa�Δc holds.

The soundness of the predicate synthesis requires that if definitions generated
for unknown predicates are satisfiable, then the entailment is valid.

Theorem 1. Given the entailment judgement Δa �∅ Δc�R Δa(Γ )� Δc(Γ )
holds if there exists a solution Γ of R.

Theorem 1 follows from the soundness of the rules in Fig. 3 and Lemma 1.

5 Extensions

In this section, we present two ways to strengthen the inferred frame, by inferring
pure properties and by normalizing inductive predicates.

Pure Constraint Inference. The inferred frame is strengthened with pure con-
straints following two phases. We first enrich the shape-base frame with pure
properties such as size, height, sum, set of addresses/values, and their combi-
nations. After that, we apply the same three steps in Sect. 4 to infer relational
assumptions on the new pure properties. Lastly, we check satisfiability of these
assumptions using FixCalc [34].

In the following, we describe how to infer size properties given a set
of dependent predicates. We can similarly infer properties on height, set of
addresses and values properties. We first extend an inductive predicate with
a size function to capture size properties. That is, given an inductive predicate
P(v̄)≡

∨
Δi, we generate a new predicate Pn with a new size parameter n as:

Pn(v̄, n)≡
∨

(Δi∧n= sizeF (Δi)) where function sizeF is inductively defined as
follows.
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sizeF (r �→c(t̄))=1 sizeF (∃v̄· κ∧π)=sizeF (κ)
sizeF (emp)=0 sizeF (κ1∗κ2)=sizeF (κ1)+sizeF (κ2)
sizeF (P(t̄))=ts where ts∈t̄ and ts is a size parameter

To support pure properties, we extend the proposed cyclic proof system with
bi-abduction for pure constraints which was presented in [43]. In particular,
we adopt the abduction rules to generate relational assumptions over the pure
properties in LHS and RHS. These rules are applied exhaustively until no more
unknown predicates occur.

Normalization. We aim to relate the inferred frame to existing user-provided
predicates if possible as well as to explicate the heap separation (a.k.a. pointer
non-aliasing) which may be implicitly constrained through predicates. Partic-
ularly, we present a lemma synthesis mechanism to explore relations between
inductive predicates. Our system processes each inductive predicate in four
steps. First, it generates heap-only conjectures (with quantifiers). Secondly, it
enriches these conjectures with unknown predicates. Thirdly, it invokes the pro-
posed entailment procedure to prove these conjectures, infer definitions for the
unknown predicates and synthesize the lemmas. Last, it strengthens the inferred
lemma with pure inference.

In the following, we present two types of normalization. This first type is
to generate equivalence lemmas. This normalization equivalently matches a new
generated predicate to an existing predicate in a given predicate library. Under
the assumption that a library of predicates is provided together with advanced
knowledge (i.e., lemmas in [1]) to enhance completeness. This normalization
helps to reuse this knowledge for the new synthesized predicates, and poten-
tially enhance the completeness of the proof system. Intuitively, given a set S

of inductive predicates and another inductive predicate P (which is not in S),
we identify all predicates in S which are equivalent to P. Heap-only conjecture
is generated to explore the equivalent relation between two predicates, e.g., in
the case of P(x, v̄) and Q(x, w̄): ∀v̄·P(root, v̄)→∃w̄·Q(root, w̄). The shared root
parameter x has been identified by examining all permutations of root param-
eters of the two predicates. Moreover, our system synthesizes lemmas incre-
mentally for the combined domains of shape and pure properties. For exam-
ple, with lln and lsegn, our system generates the following lemma afterwards:
lsegn(root,null,n)↔lln(root,n).

The other type of normalization is to generate separating lemmas. This nor-
malization aims to expose hidden separation of heaps in inductive definitions.
This paragraph explores parallel or consequence separate relations over inductive
predicates parameters. Two parameters of a predicate are parallel separating if
they are both root parameters e.g., r1 and r2 of the predicate zip2 as follows.

zip2(r1,r2,n) ≡ emp∧r1=null∧r2=null∧n=0
∨ r1 �→c1(q1)∗r2 �→c1(q2)∗zip2(q1,q2,n−2);

Two arguments of a predicate are consequence separating if one is a root param-
eter and another is reachable from the root in all base formulas derived by
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unfolding the predicate (e.g., those of the predicate ll last). We generate these
separating lemmas to explicate separation globally. As a result, the separation of
actual parameters is externally visible to analyses. This visible separation enables
strong updates in a modular heap analysis or frame inference in modular ver-
ification. Suppose r1, r2 are consequence or parallel parameters in Q(r1, r2, w̄),
heap conjecture is generated as:

Q(r1, r2, w̄) → Q1(r1)∗Q2(r2)∗Q3(w̄)

This technique could be applied to synthesize spit/join lemmas to trans-
form predicates into the fragment of linearly compositional predicates [14,
15]. For example, our system splits the predicate zip2 into two separating
singly-lined lists through the following equivalent lemma: zip2(root,r2,n) ↔
lln(root,n)∗lln(r2,n).

6 Implementation and Experiments

We have implemented the proposed ideas into a procedure called S2ENT for entail-
ment checking and frame inference, based on the SLEEK [8]. S2ENT relies on the
SMT solver Z3 [27] to check satisfiability of arithmetical formulas. We have
also integrated S2ENT into the verifier S2 [24]. We have conducted two sets of
experiments to evaluate the effectiveness and efficiency of S2ENT. The first set
of experiments are conducted on a set of inductive entailment checking prob-
lems gathered from previous publications [1,5,9]. We compare S2ENT with the
state-of-the-art tools to see how many of these problems can be solved. In the
second set of experiments, we apply S2ENT to conduct modular verification of a
set of non-trivial programs. The experiments are conducted on a machine with
the Intel i3-M370 (2.4 GHz) processor and 3 GB of RAM.

Entailment Proving. In Table 1, we evaluate S2ENT on a set of 36 valid entailment
problems that require induction reasoning techniques. In particular, Ent 1–5
were taken from Smallfoot [1], Ent 6–19 from CyclicSL [3,5], Ent 20–28 from
[9], and Ent 29–36 were generated by us. We evaluate S2ENT against the existing
proof systems presented for user-defined predicates. While the tools reported
in [8,12,36] could handle a subset of these benchmarks if users provide auxiliary
lemmas/axioms, [15] was designed neither for those inductive predicates in Ent
6–28 nor frame problems in Ent 29–36. The only two tools which we can compare
S2ENT with are CyclicSL [3] and songbird [40].

The experimental results are presented in Table 1. The second column shows
the entailment problems. Column bl captures the number of back-links in cyclic
proofs generated by S2ENT. We observe that most of problems require only one
back-link in the cyclic proofs, except that Ent 4 requires two back-links and
Ent 13–15 of mutual inductive odd-even singly linked lists require three back-
links. The last three columns show the results of CyclicSL, songbird and S2ENT

respectively. Each cell shown in these columns is either CPU times (in seconds)
if the tool proves successfully, or TO if the tool runs longer than 30 s, or X if the
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Table 1. Inductive entailment checks

tool returns a false positive, or NA if the entailment is beyond the capability of
the tool. In summary, out of the 36 problems, CyclicSL solves 18 (with one TO
- Ent 4); songbird solves 25 (with two false positive - Ent 17 and 27 and one
TO - Ent 23); and S2ENT solves all 36 problems.

In Table 1, each entailment check in Ent 1–19 has emp as frame axioms (their
LHS and RHS have the same heaps). Hence, they may be handled by exist-
ing inductive proof systems like [3,9,15,40]. In particular, Ent 1–19 include
shape-only predicates. The results show that CyclicSL and songbird ran a
bit faster than S2ENT in most of the their successful cases. It is expected as
S2ENT requires additional steps for frame inference. Each entailment check in Ent
20–28 includes inductive predicates with pure properties (e.g., size and sorted-
ness). While CyclicSL can provide inductive reasoning for arithmetic and heap
domains separately [5], there is no system proposed for cyclic proofs in the com-
bined domain. Hence, these problems are beyond the capability of CyclicSL.
Ent 20 which requires mutual induction reasoning is the motivating example
of songbird (agumented with size property) [40]. In particular, sortll repre-
sents a sorted list with smallest value min, and tll is a binary tree whose nodes
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point to their parents and leaves are linked by a linked list [19,24]. S2ENT solves
each entailment incrementally: shape-based frame and then pure properties. The
results show that S2ENT was more effective and efficient than songbird.

Each entailment check in Ent 29–36 requires both inductive reasoning and
frame inference. These checks are beyond the capability of all existing entailment
procedures for SL. S2ENT generates frame axioms for inductive reasoning. The
experiments show that the proposed proof system can support efficient and effec-
tive reasoning on both shape and numeric domains as well as inductive proofs
and frame inference.

Modular Verification for Memory Safety. We enhance the existing program ver-
ifier S2 [24] with S2ENT to automatically verify a range of heap-manipulating
programs. We evaluate the enhanced S2 on the C library Glib open source [16]
which includes non-GUI code from the GTK+ toolkit and the GNOME desktop
environment. We conduct experiments on heap-manipulating files, i.e., singly-
linked lists (gslist.c), doubly-linked lists (glist.c), balanced binary trees (gtree.c)
and N-ary trees (gnode.c). These files contain fairly complex algorithms (e.g.,
sortedness) and the data structures used in gtree.c and gnode.c are very complex.

Table 2. Experiments on Glib library

LOC #Pr wo. w.
#

√
Sec. #syn #

√
Sec.

gslist.c 698 52 41 8.93 126 47 12.47
glist.c 784 51 39 19.41 132 46 30.01
gtree.c 1204 40 36 57.31 96 36 60.88
gnode.c 1128 65 52 37.78 174 53 53.40

Some procedures of gslist.c
and glist.c were evaluated
by tools presented in [9,
31,36] where the user had
to manually provide a large
number of lemmas to sup-
port the tool. Furthermore,
the verification in [9] is
semi-automatic, i.e., ver-
ification conditions were

manually generated. Besides the tool in [9], tools in [31,36] were no longer avail-
able for comparison.

In Table 2 we show, for each file the number of lines of code (excluding
comments) LOC and the number of procedures #Pr. We remark that these
procedures include tail-recursive procedures which are translated from loops.
The columns (#

√
) (and sec.) show the number of procedures (and time in

seconds) for which S2 can verify memory safety without (wo.) and with (w.)
S2ENT. Column #syn shows the number of synthesized lemmas that used the
technique in Sect. 5. With the lemma synthesis, the number of procedures that
can be successfully verified increases from 168 (81%) to 182 (88%) with a time
overhead of 28% (157 s/123 s).

A closer look shows that with S2ENT we are able to verify a number of chal-
lenging methods in gslist.c and glist.c. By generating separating lemmas, S2ENT
successfully infers shape specifications of methods manipulating the last ele-
ment of lists (i.e., g slist concat in gslist.c and g list append in glist.c). By
generating equivalence lemmas, matching a newly-inferred inductive predicate
with predefined predicates in S2 is now extended beyond the shape-only domain.
Moreover, the experimental results also show that the enhanced S2 were able to
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verify 41/52 procedures in gslist.c and 39/51 procedures in glist.c. In comparison,
while the tool in [9] could semi-automatically verify 11 procedures in gslist.c and
6 procedures in glist.c, with user-supplied lemmas the tool in [31] could verify
22 procedures in gslist.c and 10 procedures in glist.c.

7 Related Work and Conclusion

This work is related to three groups of work. The first group are those on entail-
ment procedures in SL. Initial proof systems in SL mainly focus on a decid-
able fragment combining linked lists (and trees) [1,7,11,13,14,17,22,29,32,33].
Recently, Iosif et al. extend the decidable fragment to restricted inductive predi-
cates [19]. Timos et al. [42] present a comprehensive summary on computational
complexity for entailments in SL with inductive predicates. Smallfoot [1] and
GRASShopper [33] provide systematic approaches for frame inference but with
limited support for (general) inductive predicates. Extending these approaches
to support general inductive predicates is non-trivial. GRASShopper is limited
to a GRASS-reducible class of inductive predicates. While Smallfoot system has
been designed to allow the use of general inductive predicates, the inference rules
in Smallfoot are hardwired for list predicates only and a set of new rules must be
developed for a proof system targeting general inductive predicates. SLEEK [8]
and jStar [12] support frame inference with a soundness guarantee for general
inductive predicates. However, they provide limited support for induction using
user-supplied lemmas [12,30]. Our work, like [8,36], targets an undecidable SL
fragment including (arbitrary) inductive predicates and numerical constraints;
we trade completeness for expressiveness. In addition to what are supported in
[8,36], we support frame inference with inductive reasoning in SL by providing
a system of cyclic proofs.

The second group is work on inductive reasoning. Lemmas are used to
enhance the inductive reasoning of heap-based programs [5,12,30]. They are
used as alternative unfoldings beyond predicates’ definitions [5,30], external
inference rules [12], or intelligent generalization to support inductive reason-
ing [3]. Unfortunately, the mechanisms in these systems require users to supply
those additional lemmas that might be needed during a proof. SPEN [15] syn-
thesizes lemmas to enhance inductive reasoning for some inductive predicates
with bags of values. However, it is designed to support some specific classes of
inductive predicates and it is difficult to extend it to cater for general induc-
tive predicates. For a solution to inductive reasoning in SL, Smallfoot [1,3,5]
presents subtraction rules that are consequent from a set of lemmas of lists and
trees. Brotherston et al. propose cyclic proof system for the entailment problem
[2,3]. Similarly, the circularity rule has been introduced in matching logic [38],
Constraint Logic Programming [9] and separation logic combined with predicate
definitions and arithmetic [40]. Furthermore, work in [39] supports frame infer-
ence based on an ad-hoc mechanism, using a simple unfolding and matching. Like
[3,9,40], our system also uses historical sequents at case split steps as induction
hypotheses. Beyond these systems [3,9,15,40], S2ENT infers frames for inductive
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proofs systematically; and thus it gives a better support for modular verification
of heap-manipulating programs. Moreover, we show how we can incrementally
support inductive reasoning for the combination of heap and pure domains. In
contrast, there are no formalized discussions in [5,9,40] about inductive reason-
ing for the combined domains; while [5] supports these domains separately, [9,40]
only demonstrates their support through experimental results.

The third group is on lemma synthesis. In inductive reasoning, auxiliary lem-
mas are generated to discover theorems (e.g. [10,23,28]). The key elements of
these techniques are heuristics used to generate equivalent lemmas for sets of
given functions, constants and datatypes. In our work, we introduce lemma syn-
thesis to strengthen the inductive constraints. To support theorem discovery, we
synthesize equivalent and separating lemmas. This mechanism can be extended
to other heuristics to enhance the completeness of modular verification.

Conclusion. We have presented a novel approach to frame inference for inductive
entailments in SL with inductive predicates and arithmetic. The core of our
proposal is the system of lemma synthesis through cyclic proofs in which back-
links are formed using the cut rule. Moreover, we have presented two extensions
to strengthen the inferred frames. Our evaluation indicates that our system is
able to infer frame axioms for inductive entailment checking that are beyond the
capability of the existing systems.

Acknowledgements. This research is partially supported by project T2MOE1704
from Ministry of Education, Singapore.
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32. Pérez, J.A.N., Rybalchenko, A.: Separation logic + superposition calculus = heap
theorem prover. In: PLDI, pp. 556–566 (2011)

33. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 54

34. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77505-8 26

35. Qin, S., He, G., Chin, W.-N., Craciun, F., He, M., Ming, Z.: Automated specifi-
cation inference in a combined domain via user-defined predicates. Sci. Comput.
Program. 148(C), 189–212 (2017)
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