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Abstract. There are two kinds of higher-order extensions of model
checking: HORS model checking and HFL model checking. Whilst the
former has been applied to automated verification of higher-order func-
tional programs, applications of the latter have not been well studied. In
the present paper, we show that various verification problems for func-
tional programs, including may/must-reachability, trace properties, and
linear-time temporal properties (and their negations), can be naturally
reduced to (extended) HFL model checking. The reductions yield a sound
and complete logical characterization of those program properties. Com-
pared with the previous approaches based on HORS model checking, our
approach provides a more uniform, streamlined method for higher-order
program verification.

1 Introduction

There are two kinds of higher-order extensions of model checking in the liter-
ature: HORS model checking [16,32] and HFL model checking [42]. The for-
mer is concerned about whether the tree generated by a given higher-order tree
grammar called a higher-order recursion scheme (HORS) satisfies the property
expressed by a given modal μ-calculus formula (or a tree automaton), and the
latter is concerned about whether a given finite state system satisfies the prop-
erty expressed by a given formula of higher-order modal fixpoint logic (HFL),
a higher-order extension of the modal μ-calculus. Whilst HORS model check-
ing has been applied to automated verification of higher-order functional pro-
grams [17,18,22,26,33,41,43], there have been few studies on applications of
HFL model checking to program/system verification. Despite that HFL has been
introduced more than 10 years ago, we are only aware of applications to assume-
guarantee reasoning [42] and process equivalence checking [28].

In the present paper, we show that various verification problems for higher-
order functional programs can actually be reduced to (extended) HFL model
checking in a rather natural manner. We briefly explain the idea of our reduction
below.1 We translate a program to an HFL formula that says “the program has
a valid behavior” (where the validity of a behavior depends on each verification
1 In this section, we use only a fragment of HFL that can be expressed in the modal

μ-calculus. Some familiarity with the modal μ-calculus [25] would help.
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problem). Thus, a program is actually mapped to a property, and a program
property is mapped to a system to be verified; this has been partially inspired by
the recent work of Kobayashi et al. [19], where HORS model checking problems
have been translated to HFL model checking problems by switching the roles of
models and properties.

For example, consider a simple program fragment read(x); close(x) that
reads and then closes a file (pointer) x. The transition system in Fig. 1 shows
a valid access protocol to read-only files. Then, the property that a read oper-
ation is allowed in the current state can be expressed by a formula of the form
〈read〉ϕ, which says that the current state has a read-transition, after which
ϕ is satisfied. Thus, the program read(x); close(x) being valid is expressed
as 〈read〉〈close〉true,2 which is indeed satisfied by the initial state q0 of the
transition system in Fig. 1. Here, we have just replaced the operations read
and close of the program with the corresponding modal operators 〈read〉 and
〈close〉. We can also naturally deal with branches and recursions. For example,
consider the program close(x)�(read(x); close(x)), where e1�e2 represents a
non-deterministic choice between e1 and e2. Then the property that the pro-
gram always accesses x in a valid manner can be expressed by (〈close〉true) ∧
(〈read〉〈close〉true). Note that we have just replaced the non-deterministic
branch with the logical conjunction, as we wish here to require that the program’s
behavior is valid in both branches. We can also deal with conditional branches if
HFL is extended with predicates; if b then close(x) else (read(x); close(x))
can be translated to (b ⇒ 〈close〉true) ∧ (¬b ⇒ 〈read〉〈close〉true). Let us
also consider the recursive function f defined by:

f x = close(x)�(read(x); read(x); fx),

Then, the program f x being valid can be represented by using a (greatest)
fixpoint formula:

νF.(〈close〉true) ∧ (〈read〉〈read〉F ).

If the state q0 satisfies this formula (which is indeed the case), then we know that
all the file accesses made by f x are valid. So far, we have used only the modal
μ-calculus formulas. If we wish to express the validity of higher-order programs,
we need HFL formulas; such examples are given later.

Fig. 1. File access protocol

2 Here, for the sake of simplicity, we assume that we are interested in the usage of the
single file pointer x, so that the name x can be ignored in HFL formulas; usage of
multiple files can be tracked by using the technique of [17].
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We generalize the above idea and formalize reductions from various classes
of verification problems for simply-typed higher-order functional programs with
recursion, integers and non-determinism – including verification of may/must-
reachability, trace properties, and linear-time temporal properties (and their
negations) – to (extended) HFL model checking where HFL is extended with
integer predicates, and prove soundness and completeness of the reductions.
Extended HFL model checking problems obtained by the reductions are (neces-
sarily) undecidable in general, but for finite-data programs (i.e., programs that
consist of only functions and data from finite data domains such as Booleans), the
reductions yield pure HFL model checking problems, which are decidable [42].

Our reductions provide sound and complete logical characterizations of a
wide range of program properties mentioned above. Nice properties of the logi-
cal characterizations include: (i) (like verification conditions for Hoare triples,)
once the logical characterization is obtained as an HFL formula, purely logical
reasoning can be used to prove or disprove it (without further referring to the
program semantics); for that purpose, one may use theorem provers with various
degrees of automation, ranging from interactive ones like Coq, semi-automated
ones requiring some annotations, to fully automated ones (though the latter two
are yet to be implemented), (ii) (unlike the standard verification condition gen-
eration for Hoare triples using invariant annotations) the logical characterization
can automatically be computed, without any annotations,3 (iii) standard logical
reasoning can be applied based on the semantics of formulas; for example, co-
induction and induction can be used for proving ν- and μ-formulas respectively,
and (iv) thanks to the completeness, the set of program properties character-
izable by HFL formula is closed under negations; for example, from a formula
characterizing may-reachability, one can obtain a formula characterizing non-
reachability by just taking the De Morgan dual.

Compared with previous approaches based on HORS model checking [18,
22,26,33,37], our approach based on (extended) HFL model checking provides
more uniform, streamlined methods for higher-order program verification. HORS
model checking provides sound and complete verification methods for finite-data
programs [17,18], but for infinite-data programs, other techniques such as pred-
icate abstraction [22] and program transformation [27,31] had to be combined
to obtain sound (but incomplete) reductions to HORS model checking. Fur-
thermore, the techniques were different for each of program properties, such as
reachability [22], termination [27], non-termination [26], fair termination [31],
and fair non-termination [43]. In contrast, our reductions are sound and com-
plete even for infinite-data programs. Although the obtained HFL model check-
ing problems are undecidable in general, the reductions allow us to treat various
program properties uniformly; all the verifications are boiled down to the issue
of how to prove μ- and ν-formulas (and as remarked above, we can use induction
and co-induction to deal with them). Technically, our reduction to HFL model

3 This does not mean that invariant discovery is unnecessary; invariant discovery is
just postponed to the later phase of discharging verification conditions, so that it
can be uniformly performed among various verification problems.
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checking may actually be considered an extension of HORS model checking in
the following sense. HORS model checking algorithms [21,32] usually consist of
two phases, one for computing a kind of higher-order “procedure summaries”
in the form of variable profiles [32] or intersection types [21], and the other for
nested least/greatest fixpoint computations. Our reduction from program ver-
ification to extended HFL model checking (the reduction given in Sect. 7, in
particular) can be regarded as an extension of the first phase to deal with infi-
nite data domains, where the problem for the second phase is expressed in the
form of extended HFL model checking: see [23] for more details.

The rest of this paper is structured as follows. Section 2 introduces HFL
extended with integer predicates and defines the HFL model checking problem.
Section 3 informally demonstrates some examples of reductions from program
verification problems to HFL model checking. Section 4 introduces a functional
language used to formally discuss the reductions in later sections. Sections 5, 6,
and 7 consider may/must-reachability, trace properties, and temporal properties
respectively, and present (sound and complete) reductions from verification of
those properties to HFL model checking. Section 8 discusses related work, and
Sect. 9 concludes the paper. Proofs are found in an extended version [23].

2 (Extended) HFL

In this section, we introduce an extension of higher-order modal fixpoint logic
(HFL) [42] with integer predicates (which we call HFLZ; we often drop the
subscript and write HFL, as in Sect. 1), and define the HFLZ model checking
problem. The set of integers can actually be replaced by another infinite set X
of data (like the set of natural numbers or the set of finite trees) to yield HFLX .

2.1 Syntax

For a map f , we write dom(f) and codom(f) for the domain and codomain
of f respectively. We write Z for the set of integers, ranged over by the meta-
variable n below. We assume a set Pred of primitive predicates on integers,
ranged over by p. We write arity(p) for the arity of p. We assume that Pred
contains standard integer predicates such as = and <, and also assume that, for
each predicate p ∈ Pred, there also exists a predicate ¬p ∈ Pred such that,
for any integers n1, . . . , nk, p(n1, . . . , nk) holds if and only if ¬p(n1, . . . , nk) does
not hold; thus, ¬p(n1, . . . , nk) should be parsed as (¬p)(n1, . . . , nk), but can
semantically be interpreted as ¬(p(n1, . . . , nk)).

The syntax of HFLZ formulas is given by:

ϕ (formulas) :: = n | ϕ1 op ϕ2 | true | false | p(ϕ1, . . . , ϕk) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| X | 〈a〉ϕ | [a]ϕ | μXτ .ϕ | νXτ .ϕ | λX : σ.ϕ | ϕ1 ϕ2

τ (types) :: = • | σ → τ σ (extended types) :: = τ | int
Here, op ranges over a set of binary operations on integers, such as +, and
X ranges over a denumerable set of variables. We have extended the origi-
nal HFL [42] with integer expressions (n and ϕ1 op ϕ2), and atomic formulas
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p(ϕ1, . . . , ϕk) on integers (here, the arguments of integer operations or predicates
will be restricted to integer expressions by the type system introduced below).
Following [19], we have omitted negations, as any formula can be transformed
to an equivalent negation-free formula [30].

We explain the meaning of each formula informally; the formal semantics
is given in Sect. 2.2. Like modal μ-calculus [10,25], each formula expresses a
property of a labeled transition system. The first line of the syntax of formu-
las consists of the standard constructs of predicate logics. On the second line,
as in the standard modal μ-calculus, 〈a〉ϕ means that there exists an a-labeled
transition to a state that satisfies ϕ. The formula [a]ϕ means that after any a-
labeled transition, ϕ is satisfied. The formulas μXτ .ϕ and νXτ .ϕ represent the
least and greatest fixpoints respectively (the least and greatest X that X = ϕ)
respectively; unlike the modal μ-calculus, X may range over not only propo-
sitional variables but also higher-order predicate variables (of type τ). The λ-
abstractions λX :σ.ϕ and applications ϕ1 ϕ2 are used to manipulate higher-order
predicates. We often omit type annotations in μXτ .ϕ, νXτ .ϕ and λX : σ.ϕ, and
just write μX.ϕ, νX.ϕ and λX.ϕ.

Example 1. Consider ϕab ϕ where ϕab = μX•→•.λY : •.Y ∨ 〈a〉(X(〈b〉Y )). We
can expand the formula as follows:

ϕab ϕ = (λY. • .Y ∨ 〈a〉(ϕab(〈b〉Y )))ϕ = ϕ ∨ 〈a〉(ϕab(〈b〉ϕ))
= ϕ ∨ 〈a〉(〈b〉ϕ ∨ 〈a〉(ϕab(〈b〉〈b〉ϕ))) = · · · ,

and obtain ϕ ∨ (〈a〉〈b〉ϕ) ∨ (〈a〉〈a〉〈b〉〈b〉ϕ) ∨ · · ·. Thus, the formula means that
there is a transition sequence of the form anbn for some n ≥ 0 that leads to a
state satisfying ϕ.

Following [19], we exclude out unmeaningful formulas such as (〈a〉true)+1 by
using a simple type system. The types •, int, and σ → τ describe propositions,
integers, and (monotonic) functions from σ to τ , respectively. Note that the
integer type int may occur only in an argument position; this restriction is
required to ensure that least and greatest fixpoints are well-defined. The typing
rules for formulas are given in Fig. 2. In the figure, Δ denotes a type environment,
which is a finite map from variables to (extended) types. Below we consider only
well-typed formulas.

2.2 Semantics and HFLZ Model Checking

We now define the formal semantics of HFLZ formulas. A labeled transition
system (LTS) is a quadruple L = (U,A,−→, sinit), where U is a finite set of
states, A is a finite set of actions, −→ ⊆ U×A×U is a labeled transition relation,
and sinit ∈ U is the initial state. We write s1

a−→ s2 when (s1, a, s2) ∈ −→.
For an LTS L = (U,A,−→, sinit) and an extended type σ, we define the

partially ordered set (DL,σ,�L,σ) inductively by:

DL,• = 2U �L,•=⊆ DL,int = Z �L,int= {(n, n) | n ∈ Z}
DL,σ→τ = {f ∈ DL,σ → DL,τ | ∀x, y.(x �L,σ y ⇒ f x �L,τ f y)}
�L,σ→τ= {(f, g) | ∀x ∈ DL,σ.f(x) �L,τ g(x)}
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Δ �H n : int
(HT-Int)

Δ �H ϕi : int for each i ∈ {1, 2}
Δ �H ϕ1 op ϕ2 : int

(HT-Op)

Δ �H true : • (HT-True)

Δ �H false : • (HT-False)

arity(p) = k
Δ �H ϕi : int for each i ∈ {1, . . . , k}

Δ �H p(ϕ1, . . . , ϕk) : •
(HT-Pred)

Δ, X : σ �H X : σ
(HT-Var)

Δ �H ϕi : • for each i ∈ {1, 2}
Δ �H ϕ1 ∨ ϕ2 : • (HT-Or)

Δ �H ϕi : • for each i ∈ {1, 2}
Δ �H ϕ1 ∧ ϕ2 : •

(HT-And)
Δ �H ϕ : •

Δ �H 〈a〉ϕ : • (HT-Some)

Δ �H ϕ : •
Δ �H [a]ϕ : • (HT-All)

Δ, X : τ �H ϕ : τ

Δ �H μXτ . ϕ : τ
(HT-Mu)

Δ, X : τ �H ϕ : τ

Δ �H νXτ . ϕ : τ
(HT-Nu)

Δ, X : σ �H ϕ : τ

Δ �H λX : σ. ϕ : σ → τ
(HT-Abs)

Δ �H ϕ1 : σ → τ Δ �H ϕ2 : σ

Δ �H ϕ1 ϕ2 : τ
(HT-App)

Fig. 2. Typing rules for HFLZ formulas

Note that (DL,τ ,�L,τ ) forms a complete lattice (but (DL,int,�L,int) does not).
We write ⊥L,τ and �L,τ for the least and greatest elements of DL,τ (which are
λx̃.∅ and λx̃.U) respectively. We sometimes omit the subscript L below. Let �Δ�L
be the set of functions (called valuations) that maps X to an element of DL,σ

for each X : σ ∈ Δ. For an HFL formula ϕ such that Δ �H ϕ : σ, we define
�Δ �H ϕ : σ�L as a map from �Δ�L to Dσ, by induction on the derivation4 of
Δ �H ϕ : σ, as follows.

�Δ �H n : int�L(ρ) = n �Δ �H true : •�L(ρ) = U �Δ �H false : •�L(ρ) = ∅
�Δ �H ϕ1 op ϕ2 : int�L(ρ) = (�Δ �H ϕ1 : int�L(ρ))�op�(�Δ �H ϕ2 : int�L(ρ))
�Δ �H p(ϕ1, . . . , ϕk) : •�L(ρ) =
{

U if (�Δ �H ϕ1 : int�L(ρ), . . . , �Δ �H ϕk : int�L(ρ)) ∈ �p�
∅ otherwise

�Δ,X : σ �H X : σ�L(ρ) = ρ(X)
�Δ �H ϕ1 ∨ ϕ2 : •�L(ρ) = �Δ �H ϕ1 : •�L(ρ) ∪ �Δ �H ϕ2 : •�L(ρ)
�Δ �H ϕ1 ∧ ϕ2 : •�L(ρ) = �Δ �H ϕ1 : •�L(ρ) ∩ �Δ �H ϕ2 : •�L(ρ)

�Δ �H 〈a〉ϕ : •�L(ρ) = {s | ∃s′ ∈ �Δ �H ϕ : •�L(ρ). s a−→ s′}
�Δ �H [a]ϕ : •�L(ρ) = {s | ∀s′ ∈ U. (s a−→ s′ implies s′ ∈ �Δ �H ϕ : •�L(ρ))}
�Δ �H μXτ .ϕ : τ�L(ρ) = lfpL,τ (�Δ �H λX : τ. ϕ : τ → τ�L(ρ))

�Δ �H νXτ .ϕ : τ�L(ρ) = gfpL,τ (�Δ �H λX : τ. ϕ : τ → τ�L(ρ))

�Δ �H λX : σ. ϕ : σ → τ�L(ρ) = {(v, �Δ,X : σ �H ϕ : τ�L(ρ[X �→ v])) | v ∈ DL,σ}
�Δ �H ϕ1 ϕ2 : τ�L(ρ) = �Δ �H ϕ1 : σ → τ�L(ρ)(�Δ �H ϕ2 : σ�L(ρ))

4 Note that the derivation of each judgment Δ �H ϕ : σ is unique if there is any.
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Here, �op� denotes the binary function on integers represented by op and �p�
denotes the k-ary relation on integers represented by p. The least/greatest fix-
point operators lfpL,τ and gfpL,τ are defined by lfpL,τ (f) =

�
L,τ{x ∈ DL,τ |

f(x) �L,τ x} and gfpL,τ (f) =
⊔

L,τ{x ∈ DL,τ | x �L,τ f(x)}. Here,
⊔

L,τ and�
L,τ respectively denote the least upper bound and the greatest lower bound

with respect to �L,τ . We often omit the subscript L and write �Δ �H ϕ : σ� for
�Δ �H ϕ : σ�L. For a closed formula, i.e., a formula well-typed under the empty
type environment ∅, we often write �ϕ�L or just �ϕ� for �∅ �H ϕ : σ�L(∅).

Example 2. For the LTS Lfile in Fig. 1, we have:

�νX•.(〈close〉true ∧ 〈read〉X)� =
gfpL,•(λx ∈ DL,•.�X : • � 〈close〉true ∧ 〈read〉X : •�({X �→ x})) = {q0}.

In fact, x = {q0} ∈ DL,• satisfies the equation: �X : • � 〈close〉true∧ 〈read〉X :
•�L({X �→ x}) = x, and x = {q0} ∈ DL,• is the greatest such element.

Consider the following LTS L1:

�������	q0
a ��

�������	q1
b ��

�������	q2
c

��

and ϕab (〈c〉true) where ϕab is the one introduced in Example 1. Then,
�ϕab (〈c〉true)�L1 = {q0, q2}.

Definition 1 (HFLZ model checking). For a closed formula ϕ of type •,
we write L, s |= ϕ if s ∈ �ϕ�L, and write L |= ϕ if sinit ∈ �ϕ�L. HFLZ model
checking is the problem of, given L and ϕ, deciding whether L |= ϕ holds.

The HFLZ model checking problem is undecidable, due to the presence of
integers; in fact, the semantic domain DL,σ is not finite for σ that contains int.
The undecidability is obtained as a corollary of the soundness and completeness
of the reduction from the may-reachability problem to HFL model checking
discussed in Sect. 5. For the fragment of pure HFL (i.e., HFLZ without integers,
which we write HFL∅ below), the model checking problem is decidable [42].

The order of an HFLZ model checking problem L
?

|= ϕ is the highest
order of types of subformulas of ϕ, where the order of a type is defined by:
order(•) = order(int) = 0 and order(σ → τ) = max(order(σ) + 1, order(τ)).
The complexity of order-k HFL∅ model checking is k-EXPTIME complete [1],
but polynomial time in the size of HFL formulas under the assumption that the
other parameters (the size of LTS and the largest size of types used in formulas)
are fixed [19].

Remark 1. Though we do not have quantifiers on integers as primitives, we can
encode them using fixpoint operators. Given a formula ϕ : int → •, we can
express ∃x : int.ϕ(x) and ∀x : int.ϕ(x) by (μXint→•.λx : int.ϕ(x) ∨ X(x − 1) ∨
X(x + 1))0 and (νXint→•.λx : int.ϕ(x) ∧ X(x − 1) ∧ X(x + 1))0 respectively.
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2.3 HES

As in [19], we often write an HFLZ formula as a sequence of fixpoint equations,
called a hierarchical equation system (HES).

Definition 2. An (extended) hierarchical equation system (HES) is a pair
(E , ϕ) where E is a sequence of fixpoint equations, of the form: Xτ1

1 =α1

ϕ1; · · · ;Xτn
n =αn

ϕn, where αi ∈ {μ, ν}. We assume that X1 : τ1, . . . , Xn : τn �H

ϕi : τi holds for each i ∈ {1, . . . , n}, and that ϕ1, . . . , ϕn, ϕ do not contain any
fixpoint operators.

The HES Φ = (E , ϕ) represents the HFLZ formula toHFL(E , ϕ)
defined inductively by: toHFL(ε, ϕ) = ϕ and toHFL(E ;Xτ =α ϕ′, ϕ) =
toHFL([αXτ .ϕ′/X]E , [αXτ .ϕ′/X]ϕ). Conversely, every HFLZ formula can be
easily converted to an equivalent HES. In the rest of the paper, we often rep-
resent an HFLZ formula in the form of HES, and just call it an HFLZ for-
mula. We write �Φ� for �toHFL(Φ)�. An HES (Xτ1

1 =α1 ϕ1; · · · ;Xτn
n =αn

ϕn, ϕ)
can be normalized to (Xτ0

0 =ν ϕ;Xτ1
1 =α1 ϕ1; · · · ;Xτn

n =αn
ϕn,X0) where

τ0 is the type of ϕ. Thus, we sometimes call just a sequence of equations
Xτ0

0 =ν ϕ;Xτ1
1 =α1 ϕ1; · · · ;Xτn

n =αn
ϕn an HES, with the understand-

ing that “the main formula” is the first variable X0. Also, we often write
Xτ x1 · · · xk =α ϕ for the equation Xτ =α λx1. · · · λxk.ϕ. We often omit type
annotations and just write X =α ϕ for Xτ =α ϕ.

Example 3. The formula νX.μY.〈b〉X∨〈a〉Y (which means that the current state
has a transition sequence of the form (a∗b)ω) is expressed as the following HES:

((X =ν Y ;Y =μ 〈b〉X ∨ 〈a〉Y ), X) .

3 Warming Up

To help readers get more familiar with HFLZ and the idea of reductions, we give
here some variations of the examples of verification of file-accessing programs
in Sect. 1, which are instances of the “resource usage verification problem” [15].
General reductions will be discussed in Sects. 5, 6 and 7, after the target language
is set up in Sect. 4.

Consider the following OCaml-like program, which uses exceptions.

let readex x = read x; (if * then () else raise Eof) in
let rec f x = readex x; f x in
let d = open_in "foo" in try f d with Eof -> close d

Here, * represents a non-deterministic boolean value. The function readex reads
the file pointer x, and then non-deterministically raises an end-of-file (Eof) excep-
tion. The main expression (on the third line) first opens file “foo”, calls f to read
the file repeatedly, and closes the file upon an end-of-file exception. Suppose, as
in the example of Sect. 1, we wish to verify that the file “foo” is accessed following
the protocol in Fig. 1.

First, we can remove exceptions by representing an exception handler as a
special continuation [6]:
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let readex x h k = read x; (if * then k() else h()) in
let rec f x h k = readex x h (fun _ -> f x h k) in
let d = open_in "foo" in f d (fun _ -> close d) (fun _ -> ())

Here, we have added to each function two parameters h and k, which represent
an exception handler and a (normal) continuation respectively.

Let Φ be (E , F true (λr.〈close〉true) (λr.true)) where E is:

Readex x h k =ν 〈read〉(k true ∧ h true);
F x h k =ν Readex x h (λr.F x h k).

Here, we have just replaced read/close operations with the modal operators
〈read〉 and 〈close〉, non-deterministic choice with a logical conjunction, and the
unit value ( ) with true. Then, Lfile |= Φ if and only if the program performs only
valid accesses to the file (e.g., it does not access the file after a close operation),
where Lfile is the LTS shown in Fig. 1. The correctness of the reduction can be
informally understood by observing that there is a close correspondence between
reductions of the program and those of the HFL formula above, and when the
program reaches a read command read x, the corresponding formula is of the
form 〈read〉 · · ·, meaning that the read operation is valid in the current state;
a similar condition holds also for close operations. We will present a general
translation and prove its correctness in Sect. 6.

Let us consider another example, which uses integers:

let rec f y x k = if y=0 then (close x; k())
else (read x; f (y-1) x k) in

let d = open_in "foo" in f n d (fun _ -> ())

Here, n is an integer constant. The function f reads x y times, and then calls the
continuation k. Let L′

file be the LTS obtained by adding to Lfile a new state q2

and the transition q1
end−→ q2 (which intuitively means that a program is allowed

to terminate in the state q1), and let Φ′ be (E ′, F n true (λr.〈end〉true)) where
E ′ is:

F y x k =μ (y = 0 ⇒ 〈close〉(k true)) ∧ (y �= 0 ⇒ 〈read〉(F (y − 1) x k)).

Here, p(ϕ1, . . . , ϕk) ⇒ ϕ is an abbreviation of ¬p(ϕ1, . . . , ϕk) ∨ ϕ. Then, L′
file |=

Φ′ if and only if (i) the program performs only valid accesses to the file, (ii) it
eventually terminates, and (iii) the file is closed when the program terminates.
Notice the use of μ instead of ν above; by using μ, we can express liveness
properties. The property L′

file |= Φ′ indeed holds for n ≥ 0, but not for n < 0. In
fact, F n x k is equivalent to false for n < 0, and 〈read〉n〈close〉(k true) for
n ≥ 0.
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4 Target Language

This section sets up, as the target of program verification, a call-by-name5 higher-
order functional language extended with events. The language is essentially the
same as the one used by Watanabe et al. [43] for discussing fair non-termination.

4.1 Syntax and Typing

We assume a finite set Ev of names called events, ranged over by a, and a
denumerable set of variables, ranged over by x, y, . . .. Events are used to express
temporal properties of programs. We write x̃ (˜t, resp.) for a sequence of variables
(terms, resp.), and write |x̃| for the length of the sequence.

A program is a pair (D, t) consisting of a set D of function definitions {f1 x̃1 =
t1, . . . , fn x̃n = tn} and a term t. The set of terms, ranged over by t, is defined
by:

t:: = ( ) | x | n | t1 op t2 | event a; t | if p(t′1, . . . , t
′
k) then t1 else t2

| t1t2 | t1�t2.

Here, n and p range over the sets of integers and integer predicates as in HFL
formulas. The expression event a; t raises an event a, and then evaluates t.
Events are used to encode program properties of interest. For example, an asser-
tion assert(b) can be expressed as if b then ( ) else (event fail;Ω), where
fail is an event that expresses an assertion failure and Ω is a non-terminating
term. If program termination is of interest, one can insert “event end” to every
termination point and check whether an end event occurs. The expression t1�t2
evaluates t1 or t2 in a non-deterministic manner; it can be used to model, e.g.,
unknown inputs from an environment. We use the meta-variable P for programs.
When P = (D, t) with D = {f1 x̃1 = t1, . . . , fn x̃n = tn}, we write funs(P ) for
{f1, . . . , fn} (i.e., the set of function names defined in P ). Using λ-abstractions,
we sometimes write f = λx̃.t for the function definition f x̃ = t. We also regard
D as a map from function names to terms, and write dom(D) for {f1, . . . , fn}
and D(fi) for λx̃i.ti.

Any program (D, t) can be normalized to (D ∪ {main = t},main) where
main is a name for the “main” function. We sometimes write just D for a
program (D,main), with the understanding that D contains a definition of
main.

We restrict the syntax of expressions using a type system. The set of simple
types, ranged over by κ, is defined by:

κ:: = � | η → κ η:: = κ | int.

The types �, int, and η → κ describe the unit value, integers, and functions
from η to κ respectively. Note that int is allowed to occur only in argument

5 Call-by-value programs can be handled by applying the CPS transformation before
applying the reductions to HFL model checking.



Higher-Order Program Verification via HFL Model Checking 721

positions. We defer typing rules to [23], as they are standard, except that we
require that the righthand side of each function definition must have type �; this
restriction, as well as the restriction that int occurs only in argument positions,
does not lose generality, as those conditions can be ensured by applying CPS
transformation. We consider below only well-typed programs.

4.2 Operational Semantics

We define the labeled transition relation t
�−→D t′, where � is either ε or an

event name, as the least relation closed under the rules in Fig. 3. We implicitly
assume that the program (D, t) is well-typed, and this assumption is maintained
throughout reductions by the standard type preservation property. In the rules
for if-expressions, �t′i� represents the integer value denoted by t′i; note that the
well-typedness of (D, t) guarantees that t′i must be arithmetic expressions con-
sisting of integers and integer operations; thus, �t′i� is well defined. We often

omit the subscript D when it is clear from the context. We write t
�1···�k−→ ∗

D t′ if

t
�1−→D · · · �k−→D t′. Here, ε is treated as an empty sequence; thus, for example,

we write t
ab−→∗

D t′ if t
a−→D

ε−→D
b−→D

ε−→D t′.

Fig. 3. Labeled transition semantics

For a program P = (D, t0), we define the set Traces(P )(⊆ Ev∗ ∪ Evω) of
traces by:

Traces(D, t0) = {�0 · · · �n−1 ∈ ({ε} ∪ Ev)∗ | ∀i ∈ {0, . . . , n − 1}.ti
�i−→D ti+1}

∪{�0�1 · · · ∈ ({ε} ∪ Ev)ω | ∀i ∈ ω.ti
�i−→D ti+1}.

Note that since the label ε is regarded as an empty sequence, �0�1�2 = aa if
�0 = �2 = a and �1 = ε, and an element of ({ε} ∪ Ev)ω is regarded as that of
Ev∗ ∪ Evω. We write FinTraces(P ) and InfTraces(P ) for Traces(P ) ∩ Ev∗

and Traces(P ) ∩ Evω respectively. The set of full traces FullTraces(D, t0)(⊆
Ev∗ ∪ Evω) is defined as:

{�0 · · · �n−1 ∈ ({ε} ∪ Ev)∗ | tn = ( ) ∧ ∀i ∈ {0, . . . , n − 1}.ti
�i−→D ti+1}

∪{�0�1 · · · ∈ ({ε} ∪ Ev)ω | ∀i ∈ ω.ti
�i−→D ti+1}.
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Example 4. The last example in Sect. 1 is modeled as Pfile = (D, f ( )), where
D = {f x = (event close; ( ))�(event read; event read; f x)}. We have:

Traces(P ) = {readn | n ≥ 0} ∪ {read2nclose | n ≥ 0} ∪ {readω}
FinTraces(P ) = {readn | n ≥ 0} ∪ {read2nclose | n ≥ 0}
InfTraces(P ) = {readω} FullTraces(P ) = {read2nclose | n ≥ 0} ∪ {readω}.

5 May/Must-Reachability Verification

Here we consider the following problems:

– May-reachability: “Given a program P and an event a, may P raise a?”
– Must-reachability: “Given a program P and an event a, must P raise a?”

Since we are interested in a particular event a, we restrict here the event set
Ev to a singleton set of the form {a}. Then, the may-reachability is formalized

as a
?∈ Traces(P ), whereas the must-reachability is formalized as “does every

trace in FullTraces(P ) contain a?” We encode both problems into the validity
of HFLZ formulas (without any modal operators 〈a〉 or [a]), or the HFLZ model
checking of those formulas against a trivial model (which consists of a single state
without any transitions). Since our reductions are sound and complete, the char-
acterizations of their negations –non-reachability and may-non-reachability– can
also be obtained immediately. Although these are the simplest classes of prop-
erties among those discussed in Sects. 5, 6 and 7, they are already large enough
to accommodate many program properties discussed in the literature, including
lack of assertion failures/uncaught exceptions [22] (which can be characterized as
non-reachability; recall the encoding of assertions in Sect. 4), termination [27,29]
(characterized as must-reachability), and non-termination [26] (characterized as
may-non-reachability).

5.1 May-Reachability

As in the examples in Sect. 3, we translate a program to a formula that says
“the program may raise an event a” in a compositional manner. For example,
event a; t can be translated to true (since the event will surely be raised imme-
diately), and t1�t2 can be translated to t†1 ∨ t†2 where t†i is the result of the
translation of ti (since only one of t1 and t2 needs to raise an event).

Definition 3. Let P = (D, t) be a program. ΦP,may is the HES (D†may , t†may),
where D†may and t†may are defined by:

{f1 x̃1 = t1, . . . , fn x̃n = tn}†may =
(

f1 x̃1 =μ t1
†may ; · · · ; fn x̃n =μ tn

†may
)

( )†may = false x†may = x n†may = n (t1 op t2)
†may = t1

†may op t2
†may

(if p(t′1, . . . , t
′
k) then t1 else t2)

†may =
(p(t′1

†may , . . . , t′k
†may) ∧ t1

†may) ∨ (¬p(t′1
†may , . . . , t′k

†may) ∧ t2
†may)

(event a; t)†may = true (t1t2)
†may = t1

†mayt2
†may (t1�t2)

†may = t1
†may ∨ t2

†may .
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Note that, in the definition of D†may , the order of function definitions in D does
not matter (i.e., the resulting HES is unique up to the semantic equality), since
all the fixpoint variables are bound by μ.

Example 5. Consider the program:

Ploop = ({loop x = loop x}, loop(event a; ( ))).

It is translated to the HES Φloop = (loop x =μ loop x, loop(true)). Since loop ≡
μloop.λx.loop x is equivalent to λx.false, Φloop is equivalent to false. In fact,
Ploop never raises an event a (recall that our language is call-by-name).

Example 6. Consider the program Psum = (Dsum ,main) where Dsum is:

main = sum n (λr.assert(r ≥ n))
sum x k = if x = 0 then k 0 else sum (x − 1) (λr.k(x + r))

Here, n is some integer constant, and assert(b) is the macro introduced in Sect. 4.
We have used λ-abstractions for the sake of readability. The function sum is a
CPS version of a function that computes the summation of integers from 1 to
x. The main function computes the sum r = 1 + · · · + n, and asserts r ≥ n. It is
translated to the HES ΦP2,may = (Esum ,main) where Esum is:

main =μ sum n (λr.(r ≥ n ∧ false) ∨ (r < n ∧ true));
sum x k =μ (x = 0 ∧ k 0) ∨ (x �= 0 ∧ sum (x − 1) (λr.k(x + r))).

Here, n is treated as a constant. Since the shape of the formula does not depend
on the value of n, the property “an assertion failure may occur for some n” can
be expressed by ∃n.ΦP2,may. ��

The following theorem states that ΦP,may is a complete characterization of
the may-reachability of P .

Theorem 1. Let P be a program. Then, a ∈ Traces(P ) if and only if L0 |=
ΦP,may for L0 = ({s	}, ∅, ∅, s	).

A proof of the theorem above is found in [23]. We only provide an outline. We
first show the theorem for recursion-free programs and then lift it to arbitrary
programs by using the continuity of functions represented in the fixpoint-free
fragment of HFLZ formulas. To show the theorem for recursion-free programs,
we define the reduction relation t −→D t′ by:

fx̃ = u ∈ D |x̃| = |˜t|
E[f ˜t] −→D E[[˜t/x̃]u]

(�t′1�, . . . , �t
′
k�) ∈ �p�

E[if p(t′1, . . . , t
′
k) then t1 else t2] −→D E[t1]

(�t′1�, . . . , �t
′
k�) �∈ �p�

E[if p(t′1, . . . , t
′
k) then t1 else t2] −→D E[t2]

Here, E ranges over the set of evaluation contexts given by E:: = [ ] | E�t
| t�E | event a;E. The reduction relation differs from the labeled transition
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relation given in Sect. 4, in that � and event a; · · · are not eliminated. By the def-
inition of the translation, the theorem holds for programs in normal form (with
respect to the reduction relation), and the semantics of translated HFL formulas
is preserved by the reduction relation; thus the theorem holds for recursion-free
programs, as they are strongly normalizing.

5.2 Must-Reachability

The characterization of must-reachability can be obtained by an easy modifica-
tion of the characterization of may-reachability: we just need to replace branches
with logical conjunction.

Definition 4. Let P = (D, t) be a program. ΦP,must is the HES (D†must , t†must),
where D†must and t†must are defined by:

{f1 x̃1 = t1, . . . , fn x̃n = tn}†must =
(

f1 x̃1 =μ t1
†must ; · · · ; fn x̃n =μ tn

†must
)

( )†must = false x†must = x n†must = n (t1 op t2)
†must = t1

†must op t2
†must

(if p(t′1, . . . , t
′
k) then t1 else t2)

†must =
(p(t′1

†must , . . . , t′k
†must) ⇒ t1

†must) ∧ (¬p(t′1
†must , . . . , t′k

†must) ⇒ t2
†must)

(event a; t)†must = true (t1t2)
†must = t1

†mustt2
†must (t1�t2)

†must = t1
†must ∧ t2

†must .

Here, p(ϕ1, . . . , ϕk) ⇒ ϕ is a shorthand for ¬p(ϕ1, . . . , ϕk) ∨ ϕ.

Example 7. Consider Ploop = (D, loopmn) where D is:

loop x y = if x ≤ 0 ∨ y ≤ 0 then (event end; ( ))
else (loop (x − 1) (y ∗ y))�(loop x (y − 1))

Here, the event end is used to signal the termination of the program. The function
loop non-deterministically updates the values of x and y until either x or y
becomes non-positive. The must-termination of the program is characterized by
ΦPloop,must

= (E , loopmn) where E is:

loop x y =μ (x ≤ 0 ∨ y ≤ 0 ⇒ true)
∧(¬(x ≤ 0 ∨ y ≤ 0) ⇒ (loop (x − 1) (y ∗ y)) ∧ (loop x (y − 1))).

We write Musta(P ) if every π ∈ FullTraces(P ) contains a. The following
theorem, which can be proved in a manner similar to Theorem 1, guarantees that
ΦP,must is indeed a sound and complete characterization of the must-reachability.

Theorem 2. Let P be a program. Then, Musta(P ) if and only if L0 |= ΦP,must

for L0 = ({s	}, ∅, ∅, s	).
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6 Trace Properties

Here we consider the verification problem: “Given a (non-ω) regular language
L and a program P , does every finite event sequence of P belong to L? (i.e.

FinTraces(P )
?⊆ L)” and reduce it to an HFLZ model checking problem. The

verification of file-accessing programs considered in Sect. 3 may be considered an
instance of the problem.

Here we assume that the language L is closed under the prefix operation;
this does not lose generality because FinTraces(P ) is also closed under the
prefix operation. We write AL = (Q,Σ, δ, q0, F ) for the minimal, deterministic
automaton with no dead states (hence the transition function δ may be partial).
Since L is prefix-closed and the automaton is minimal, w ∈ L if and only if
δ̂(q0, w) is defined (where δ̂ is defined by: δ̂(q, ε) = q and δ̂(q, aw) = δ̂(δ(q, a), w)).
We use the corresponding LTS LL = (Q,Σ, {(q, a, q′) | δ(q, a) = q′}, q0) as the
model of the reduced HFLZ model checking problem.

Given the LTS LL above, whether an event sequence a1 · · · ak belongs to L

can be expressed as LL

?

|= 〈a1〉 · · · 〈ak〉true. Whether all the event sequences

in {aj,1 · · · aj,kj
| j ∈ {1, . . . , n}} belong to L can be expressed as LL

?

|=
∧

j∈{1,...,n}〈aj,1〉 · · · 〈aj,kj
〉true. We can lift these translations for event sequences

to the translation from a program (which can be considered a description of a
set of event sequences) to an HFLZ formula, as follows.

Definition 5. Let P = (D, t) be a program. ΦP,path is the HES (D†path , t†path),
where D†path and t†path are defined by:

{f1 x̃1 = t1, . . . , fn x̃n = tn}†path =
(

f1 x̃1 =ν t1
†path ; · · · ; fn x̃n =ν tn

†path)

( )†path = true x†path = x n†path = n (t1 op t2)
†path = t1

†path op t2
†path

(if p(t′1, . . . , t
′
k) then t1 else t2)

†path =
(p(t′1

†path , . . . , t′k
†path) ⇒ t1

†path) ∧ (¬p(t′1
†path , . . . , t′k

†path) ⇒ t2
†path)

(event a; t)†path = 〈a〉t†path (t1t2)
†path = t1

†patht2†path (t1�t2)
†path = t1

†path ∧ t2
†path .

Example 8. The last program discussed in Sect. 3 is modeled as P2 =
(D2, f m g), where m is an integer constant and D2 consists of:

f y k = if y = 0 then (event close; k ( )) else (event read; f (y − 1) k)
g r = event end; ( )

Here, we have modeled accesses to the file, and termination as events. Then,
ΦP2,path = (EP2,path, f m g) where EP2,path is:6

f n k =ν (n = 0 ⇒ 〈close〉(k true)) ∧ (n �= 0 ⇒ 〈read〉(f (n − 1) k))
g r =ν 〈end〉true.

Let L be the prefix-closure of read∗ · close · end. Then LL is L′
file in Sect. 3, and

FinTraces(P2)⊆L can be verified by checking LL|=ΦP2,path. ��
6 Unlike in Sect. 3, the variables are bound by ν since we are not concerned with the

termination property here.
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Theorem 3. Let P be a program and L be a regular, prefix-closed language.
Then, FinTraces(P ) ⊆ L if and only if LL |= ΦP,path.

As in Sect. 5, we first prove the theorem for programs in normal form, and
then lift it to recursion-free programs by using the preservation of the semantics
of HFLZ formulas by reductions, and further to arbitrary programs by using the
(co-)continuity of the functions represented by fixpoint-free HFLZ formulas. See
[23] for a concrete proof.

7 Linear-Time Temporal Properties

This section considers the following problem: “Given a program P and an ω-
regular word language L, does InfTraces(P )∩L = ∅ hold?”. From the viewpoint
of program verification, L represents the set of “bad” behaviors. This can be
considered an extension of the problems considered in the previous sections.

The reduction to HFL model checking is more involved than those in the
previous sections. To see the difficulty, consider the program P0:

({f = if c then (event a; f) else (event b; f)}, f) ,

where c is some boolean expression. Let L be the complement of (a∗b)ω, i.e.,
the set of infinite sequences that contain only finitely many b’s. Following Sect. 6
(and noting that InfTraces(P )∩L = ∅ is equivalent to InfTraces(P ) ⊆ (a∗b)ω

in this case), one may be tempted to prepare an LTS like the one in Fig. 4 (which
corresponds to the transition function of a (parity) word automaton accepting
(a∗b)ω), and translate the program to an HES ΦP0 of the form:

(f =α (c ⇒ 〈a〉f) ∧ (¬c ⇒ 〈b〉f), f) ,

where α is μ or ν. However, such a translation would not work. If c = true,
then InfTraces(P0) = aω, hence InfTraces(P0) ∩ L �= ∅; thus, α should be μ
for ΦP0 to be unsatisfied. If c = false, however, InfTraces(P0) = bω, hence
InfTraces(P0) ∩ L = ∅; thus, α must be ν for ΦP0 to be satisfied.

Fig. 4. LTS for (a∗b)ω

The example above suggests that we actually need to distinguish between the
two occurrences of f in the body of f ’s definition. Note that in the then- and
else-clauses respectively, f is called after different events a and b. This difference
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is important, since we are interested in whether b occurs infinitely often. We
thus duplicate f , and replace the program with the following program Pdup :

({fb = if c then (event a; fa) else (event b; fb),
fa = if c then (event a; fa) else (event b; fb)}, fb).

For checking InfTraces(P0) ∩ L = ∅, it is now sufficient to check that fb is
recursively called infinitely often. We can thus obtain the following HES:

((fb =ν (c ⇒ 〈a〉fa) ∧ (¬c ⇒ 〈b〉fb); fa =μ (c ⇒ 〈a〉fa) ∧ (¬c ⇒ 〈b〉fb)), fb).

Note that fb and fa are bound by ν and μ respectively, reflecting the fact that
b should occur infinitely often, but a need not. If c = true, the formula is
equivalent to νfb.〈a〉μfa.〈a〉fa, which is false. If c = false, then the formula is
equivalent to νfb.〈b〉fb, which is satisfied by by the LTS in Fig. 4.

The general translation is more involved due to the presence of higher-order
functions, but, as in the example above, the overall translation consists of two
steps. We first replicate functions according to what events may occur between
two recursive calls, and reduce the problem InfTraces(P ) ∩ L

?= ∅ to a problem
of analyzing which functions are recursively called infinitely often, which we call
a call-sequence analysis. We can then reduce the call-sequence analysis to HFL
model checking in a rather straightforward manner (though the proof of the
correctness is non-trivial). The resulting HFL formula actually does not contain
modal operators.7 So, as in Sect. 5, the resulting problem is the validity checking
of HFL formulas without modal operators.

In the rest of this section, we first introduce the call-sequence analysis prob-
lem and its reduction to HFL model checking in Sect. 7.1. We then show how to
reduce the temporal verification problem InfTraces(P ) ∩ L

?= ∅ to an instance
of the call-sequence analysis problem in Sect. 7.2.

7.1 Call-Sequence Analysis

We define the call-sequence analysis and reduce it to an HFL model-checking
problem. As mentioned above, in the call-sequence analysis, we are interested in
analyzing which functions are recursively called infinitely often. Here, we say that

g is recursively called from f , if f s̃
ε−→D [s̃/x̃]tf

˜�−→∗
D g ˜t, where f x̃ = tf ∈ D

and g “originates from” tf (a more formal definition will be given in Definition 6
below). For example, consider the following program Papp , which is a twisted
version of Pdup above.

({apphx = hx,
fb x = if x > 0 then (event a; app fa (x − 1)) else (event b; app fb 5),
fa x = if x > 0 then (event a; app fa (x − 1)) else (event b; app fb 5)}, fb 5).

7 In the example above, we can actually remove 〈a〉 and 〈b〉, as information about
events has been taken into account when f was duplicated.
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Then fa is “recursively called” from fb in fb 5 a−→∗
D app fa 4 ε−→∗

D fa 4 (and so is
app). We are interested in infinite chains of recursive calls f0f1f2 · · ·, and which
functions may occur infinitely often in each chain. For instance, the program
above has the unique infinite chain (fbf

5
a )ω, in which both fa and fb occur

infinitely often. (Besides the infinite chain, the program has finite chains like
fb app; note that the chain cannot be extended further, as the body of app does
not have any occurrence of recursive functions: app, fa and fb.)

We define the notion of “recursive calls” and call-sequences formally below.

Definition 6 (Recursive call relation, call sequences). Let P = (D, f1 s̃)
be a program, with D = {fi x̃i = ui}1≤i≤n. We define D
 := D∪{f 


i x̃ = ui}1≤i≤n

where f 

1, . . . , f



n are fresh symbols. (Thus, D
 has two copies of each function

symbol, one of which is marked by �.) For the terms ˜ti and ˜tj that do not contain

marked symbols, we write fi ˜ti�Dfj ˜tj if (i) [˜ti/x̃i][f


1/f1, . . . , f



n/fn]ui

˜�−→∗
D�f



j
˜t′j

and (ii) ˜tj is obtained by erasing all the marks in ˜t′j. We write Callseq(P ) for
the set of (possibly infinite) sequences of function symbols:

{f1 g1 g2 · · · | f1 s̃�Dg1 ˜t1�Dg2 ˜t2�D · · · }.
We write InfCallseq(P ) for the subset of Callseq(P ) consisting of infinite
sequences, i.e., Callseq(P ) ∩ {f1, . . . , fn}ω.

For example, for Papp above, Callseq(P ) is the prefix closure of {(fbf
5
a )ω}∪

{s · app | s is a non-empty finite prefix of (fbf
5
a )ω}, and InfCallseq(P ) is the

singleton set {(fbf
5
a )ω}.

Definition 7 (Call-sequence analysis). A priority assignment for a pro-
gram P is a function Ω : funs(P ) → N from the set of function symbols of P
to the set N of natural numbers. We write |=csa (P,Ω) if every infinite call-
sequence g0g1g2 · · · ∈ InfCallseq(P ) satisfies the parity condition w.r.t. Ω, i.e.,
the largest number occurring infinitely often in Ω(g0)Ω(g1)Ω(g2) . . . is even.
Call-sequence analysis is the problem of, given a program P with a priority
assignment Ω, deciding whether |=csa (P,Ω) holds.

For example, for Papp and the priority assignment Ωapp = {app �→ 3, fa �→
1, fb �→ 2}, |=csa (Papp , Ωapp) holds.

The call-sequence analysis can naturally be reduced to HFL model checking
against the trivial LTS L0 = ({s	}, ∅, ∅, s	) (or validity checking).

Definition 8. Let P = (D, t) be a program and Ω be a priority assignment for
P . The HES Φ(P,Ω),csa is (D†csa , t†csa ), where D†csa and t†csa are defined by:

{f1 x̃1 = t1, . . . , fn x̃n = tn}†csa =
(

f1 x̃1 =α1 t1
†csa ; · · · ; fn x̃n =αn

tn
†csa )

( )†csa = true x†csa = x n†csa = n (t1 op t2)
†csa = t1

†csa op t2
†csa

(if p(t′1, . . . , t
′
k) then t1 else t2)

†csa =
(p(t′1

†csa , . . . , t′k
†csa ) ⇒ t1

†csa ) ∧ (¬p(t′1
†csa , . . . , t′k

†csa ) ⇒ t2
†csa )

(event a; t)†csa = t†csa (t1 t2)
†csa = t1

†csa t2
†csa (t1�t2)

†csa = t1
†csa ∧ t2

†csa .
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Here, we assume that Ω(fi) ≥ Ω(fi+1) for each i ∈ {1, . . . , n − 1}, and αi = ν
if Ω(fi) is even and μ otherwise.

The following theorem states the soundness and completeness of the reduc-
tion. See [23] for a proof.

Theorem 4. Let P be a program and Ω be a priority assignment for P . Then
|=csa (P,Ω) if and only if L0 |= Φ(P,Ω),csa .

Example 9. For Papp and Ωapp above, (Papp , Ωapp)†csa = (E , fb 5), where: E is:

apphx =μ hx; fb x =ν (x > 0 ⇒ app fa (x − 1)) ∧ (x ≤ 0 ⇒ app fb 5);
fa x =μ (x > 0 ⇒ app fa (x − 1)) ∧ (x ≤ 0 ⇒ app fb 5).

Note that L0 |= (Papp , Ωapp)†csa holds.

7.2 From Temporal Verification to Call-Sequence Analysis

This subsection shows a reduction from the temporal verification problem

InfTraces(P ) ∩ L
?= ∅ to a call-sequence analysis problem

?

|=csa (P ′, Ω).
For the sake of simplicity, we assume without loss of generality that every

program P = (D, t) in this section is non-terminating and every infinite reduc-
tion sequence produces infinite events, so that FullTraces(P ) = InfTraces(P )
holds. We also assume that the ω-regular language L for the temporal verification
problem is specified by using a non-deterministic, parity word automaton [10].
We recall the definition of non-deterministic, parity word automata below.

Definition 9 (Parity automaton). A non-deterministic parity word automa-
ton is a quintuple A = (Q,Σ, δ, qI , Ω) where (i) Q is a finite set of states; (ii)
Σ is a finite alphabet; (iii) δ, called a transition function, is a total map from
Q × Σ to 2Q; (iv) qI ∈ Q is the initial state; and (v) Ω ∈ Q → N is the priority
function. A run of A on an ω-word a0a1 · · · ∈ Σω is an infinite sequence of states
ρ = ρ(0)ρ(1) · · · ∈ Qω such that (i) ρ(0) = qI , and (ii) ρ(i + 1) ∈ δ(ρ(i), ai) for
each i ∈ ω. An ω-word w ∈ Σω is accepted by A if, there exists a run ρ of A on
w such that max{Ω(q) | q ∈ Inf(ρ)} is even, where Inf(ρ) is the set of states
that occur infinitely often in ρ. We write L(A) for the set of ω-words accepted
by A.

For technical convenience, we assume below that δ(q, a) �= ∅ for every q ∈ Q and
a ∈ Σ; this does not lose generality since if δ(q, a) = ∅, we can introduce a new
“dead” state qdead (with priority 1) and change δ(q, a) to {qdead}. Given a parity
automaton A, we refer to each component of A by QA, ΣA, δA, qI,A and ΩA.

Example 10. Consider the automaton Aab = ({qa, qb}, {a, b}, δ, qa, Ω), where δ is
as given in Fig. 4, Ω(qa) = 0, and Ω(qb) = 1. Then, L(Aab) = (a∗b)ω = (a∗b)∗aω.
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The goal of this subsection is, given a program P and a parity word automaton
A, to construct another program P ′ and a priority assignment Ω for P ′, such
that InfTraces(P ) ∩ L(A) = ∅ if and only if |=csa (P ′, Ω).

Note that a necessary and sufficient condition for InfTraces(P ) ∩ L(A) = ∅
is that no trace in InfTraces(P ) has a run whose priority sequence satisfies
the parity condition; in other words, for every sequence in InfTraces(P ), and
for every run for the sequence, the largest priority that occurs in the associated
priority sequence is odd. As explained at the beginning of this section, we reduce
this condition to a call sequence analysis problem by appropriately duplicating
functions in a given program. For example, recall the program P0:

({f = if c then (event a; f) else (event b; f)}, f) .

It is translated to P ′
0:

({fb = if c then (event a; fa) else (event b; fb),
fa = if c then (event a; fa) else (event b; fb)}, fb),

where c is some (closed) boolean expression. Since the largest priorities encoun-
tered before calling fa and fb (since the last recursive call) respectively are 0
and 1, we assign those priorities plus 1 (to flip odd/even-ness) to fa and fb

respectively. Then, the problem of InfTraces(P0) ∩ L(A) = ∅ is reduced to
|=csa (P ′

0, {fa �→ 1, fb �→ 2}). Note here that the priorities of fa and fb represent
summaries of the priorities (plus one) that occur in the run of the automa-
ton until fa and fb are respectively called since the last recursive call; thus, the
largest priority of states that occur infinitely often in the run for an infinite trace
is equivalent to the largest priority that occurs infinitely often in the sequence of
summaries (Ω(f1)−1)(Ω(f2)−1)(Ω(f3)−1) · · · computed from a corresponding
call sequence f1f2f3 · · ·.

Due to the presence of higher-order functions, the general reduction is more
complicated than the example above. First, we need to replicate not only function
symbols, but also arguments. For example, consider the following variation P1

of P0 above:

({g k = if c then (event a; k) else (event b; k), f = g f}, f) .

Here, we have just made the calls to f indirect, by preparing the function g.
Obviously, the two calls to k in the body of g must be distinguished from each
other, since different priorities are encountered before the calls. Thus, we dupli-
cate the argument k, and obtain the following program P ′

1:

({g ka kb = if c then (event a; ka) else (event b; kb), fa = g fa fb, fb = g fa fb}, fa).

Then, for the priority assignment Ω = {fa �→ 1, fb �→ 2, g �→ 1}, InfTraces(P1)∩
L(Aab) = ∅ if and only if |=csa (P ′

1, Ω). Secondly, we need to take into account
not only the priorities of states visited by A, but also the states themselves.
For example, if we have a function definition f h = h(event a; f h), the largest
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priority encountered before f is recursively called in the body of f depends on
the priorities encountered inside h, and also the state of A when h uses the argu-
ment event a; f (because the state after the a event depends on the previous
state in general). We, therefore, use intersection types (a la Kobayashi and Ong’s
intersection types for HORS model checking [21]) to represent summary infor-
mation on how each function traverses states of the automaton, and replicate
each function and its arguments for each type. We thus formalize the translation
as an intersection-type-based program transformation; related transformation
techniques are found in [8,11,12,20,38].

Definition 10. Let A = (Q,Σ, δ, qI , Ω) be a non-deterministic parity word
automaton. Let q and m range over Q and the set codom(Ω) of priorities respec-
tively. The set TypesA of intersection types, ranged over by θ, is defined by:

θ:: = q | ρ → θ ρ:: = int | ∧

1≤i≤k(θi,mi)

We assume a certain total order < on TypesA × N, and require that in
∧

1≤i≤k(θi,mi), (θi,mi) < (θj ,mj) holds for each i < j.

We often write (θ1,m1) ∧ · · · ∧ (θk,mk) for
∧

1≤i≤k(θi,mi), and � when k = 0.
Intuitively, the type q describes expressions of simple type �, which may be evalu-
ated when the automaton A is in the state q (here, we have in mind an execution
of the product of a program and the automaton, where the latter takes events
produced by the program and changes its states). The type (

∧

1≤i≤k(θi,mi)) → θ
describes functions that take an argument, use it according to types θ1, . . . , θk,
and return a value of type θ. Furthermore, the part mi describes that the argu-
ment may be used as a value of type θi only when the largest priority visited since
the function is called is mi. For example, given the automaton in Example 10, the
function λx.(event a;x) may have types (qa, 0) → qa and (qa, 0) → qb, because
the body may be executed from state qa or qb (thus, the return type may be any
of them), but x is used only when the automaton is in state qa and the largest
priority visited is 1. In contrast, λx.(event b;x) have types (qb, 1) → qa and
(qb, 1) → qb.

Using the intersection types above, we shall define a type-based transforma-
tion relation of the form Γ �A t : θ ⇒ t′, where t and t′ are the source and target
terms of the transformation, and Γ , called an intersection type environment, is a
finite set of type bindings of the form x : int or x : (θ,m,m′). We allow multiple
type bindings for a variable x except for x :int (i.e. if x :int ∈ Γ , then this must
be the unique type binding for x in Γ ). The binding x : (θ,m,m′) means that x
should be used as a value of type θ when the largest priority visited is m; m′ is
auxiliary information used to record the largest priority encountered so far.

The transformation relation Γ �A t : θ ⇒ t′ is inductively defined by
the rules in Fig. 5. (For technical convenience, we have extended terms with
λ-abstractions; they may occur only at top-level function definitions.) In the
figure, [k] denotes the set {i ∈ N | 1 ≤ i ≤ k}. The operation Γ ↑ m used in the
figure is defined by:

Γ ↑ m = {x : int | x : int ∈ Γ} ∪ {x : (θ,m1,max(m2,m)) | x : (θ,m1,m2) ∈ Γ}
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The operation is applied when the priority m is encountered, in which case the
largest priority encountered is updated accordingly. The key rules are IT-Var,
IT-Event, IT-App, and IT-Abs. In IT-Var, the variable x is replicated for
each type; in the target of the translation, xθ,m and xθ′,m′ are treated as different
variables if (θ,m) �= (θ′,m′). The rule IT-Event reflects the state change caused
by the event a to the type and the type environment. Since the state change may
be non-deterministic, we transform t for each of the next states q1, . . . , qn, and
combine the resulting terms with non-deterministic choice. The rule IT-App
and IT-Abs replicates function arguments for each type. In addition, in IT-
App, the operation Γ ↑ mi reflects the fact that t2 is used as a value of type θi

after the priority mi is encountered. The other rules just transform terms in a
compositional manner. If target terms are ignored, the entire rules are close to
those of Kobayashi and Ong’s type system for HORS model checking [21].

Fig. 5. Type-based transformation rules for terms

We now define the transformation for programs. A top-level type environment
Ξ is a finite set of type bindings of the form x : (θ,m). Like intersection type
environments, Ξ may have more than one binding for each variable. We write
Ξ �A t : θ to mean {x : (θ,m, 0) | x : (θ,m) ∈ Ξ} �A t : θ. For a set D of function
definitions, we write Ξ �A D ⇒ D′ if dom(D′) = { fθ,m | f : (θ,m) ∈ Ξ } and
Ξ �A D(f) : θ ⇒ D′(fθ,m) for every f :(θ,m) ∈ Ξ. For a program P = (D, t), we
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write Ξ �A P ⇒ (P ′, Ω′) if P ′ = (D′, t′), Ξ �A D ⇒ D′ and Ξ �A t : qI ⇒ t′,
with Ω′(fθ,m) = m+1 for each fθ,m ∈ dom(D′). We just write �A P ⇒ (P ′, Ω′)
if Ξ �A P ⇒ (P ′, Ω′) holds for some Ξ.

Example 11. Consider the automaton Aab in Example 10, and the program P2 =
(D2, f 5) where D2 consists of the following function definitions:

g k = (event a; k)�(event b; k),
f x = if x > 0 then g (f(x − 1)) else (event b; f 5).

Let Ξ be: {g : ((qa, 0) ∧ (qb, 1) → qa, 0), g : ((qa, 0) ∧ (qb, 1) → qb, 0), f : (int →
qa, 0), f : (int → qb, 1)}. Then, Ξ �A P1 ⇒ ((D′

2, fint→qa,0 5), Ω) where:

D′
2 = {g(qa,0)∧(qb,1)→qa,0 kqa,0 kqb,1 = tg, g(qa,0)∧(qb,1)→qb,0 kqa,0 kqb,1 = tg,

fint→qa,0 xint = tf,qa , fint→qb,1 xint = tf,qb}
tg = (event a; kqa,0)�(event b; kqb,1),
tf,q = if xint > 0 then

g(qa,0)∧(qb,1)→q,0 (fint→qa,0(xint − 1)) (fint→qb,1(xint − 1))
else (event b; fint→qb,1 5), (for each q ∈ {qa, qb})

Ω = {g(qa,0)∧(qb,1)→qa,0 �→ 1, g(qa,0)∧(qb,1)→qb,0 �→ 1, fint→qa,0 �→ 1, fint→qb,1 �→ 2}.

Notice that f , g, and the arguments of g have been duplicated. Further-
more, whenever fθ,m is called, the largest priority that has been encountered
since the last recursive call is m. For example, in the then-clause of fint→qa,0,
fint→qb,1(x−1) may be called through g(qa,0)∧(qb,1)→qa,0. Since g(qa,0)∧(qb,1)→qa,0

uses the second argument only after an event b, the largest priority encountered
is 1. This property is important for the correctness of our reduction.

The following theorems below claim that our reduction is sound and com-
plete, and that there is an effective algorithm for the reduction: see [23] for
proofs.

Theorem 5. Let P be a program and A be a parity automaton. Suppose that
Ξ �A P ⇒ (P ′, Ω). Then InfTraces(P )∩L(A) = ∅ if and only if |=csa (P ′, Ω).

Theorem 6. For every P and A, one can effectively construct Ξ, P ′ and Ω
such that Ξ �A P ⇒ (P ′, Ω).

The proof of Theorem 6 above also implies that the reduction from temporal
property verification to call-sequence analysis can be performed in polynomial
time. Combined with the reduction from call-sequence analysis to HFL model
checking, we have thus obtained a polynomial-time reduction from the temporal

verification problem InfTraces(P )
?⊆ L(A) to HFL model checking.

8 Related Work

As mentioned in Sect. 1, our reduction from program verification problems to
HFL model checking problems has been partially inspired by the translation of
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Kobayashi et al. [19] from HORS model checking to HFL model checking. As in
their translation (and unlike in previous applications of HFL model checking [28,
42]), our translation switches the roles of properties and models (or programs)
to be verified. Although a combination of their translation with Kobayashi’s
reduction from program verification to HORS model checking [17,18] yields an
(indirect) translation from finite-data programs to pure HFL model checking
problems, the combination does not work for infinite-data programs. In contrast,
our translation is sound and complete even for infinite-data programs. Among the
translations in Sects. 5, 6 and 7, the translation in Sect. 7.2 shares some similarity
to their translation, in that functions and their arguments are replicated for
each priority. The actual translations are however quite different; ours is type-
directed and optimized for a given automaton, whereas their translation is not.
This difference comes from the difference of the goals: the goal of [19] was to
clarify the relationship between HORS and HFL, hence their translation was
designed to be independent of an automaton. The proof of the correctness of
our translation in Sect. 7 is much more involved due to the need for dealing with
integers. Whilst the proof of [19] could reuse the type-based characterization of
HORS model checking [21], we had to generalize arguments in both [19,21] to
work on infinite-data programs.

Lange et al. [28] have shown that various process equivalence checking prob-
lems (such as bisimulation and trace equivalence) can be reduced to (pure) HFL
model checking problems. The idea of their reduction is quite different from ours.
They reduce processes to LTSs, whereas we reduce programs to HFL formulas.

Major approaches to automated or semi-automated higher-order program
verification have been HORS model checking [17,18,22,27,31,33,43], (refine-
ment) type systems [14,24,34–36,39,41,44], Horn clause solving [2,7], and their
combinations. As already discussed in Sect. 1, compared with the HORS model
checking approach, our new approach provides more uniform, streamlined meth-
ods. Whilst the HORS model checking approach is for fully automated verifi-
cation, our approach enables various degrees of automation: after verification
problems are automatically translated to HFLZ formulas, one can prove them
(i) interactively using a proof assistant like Coq (see [23]), (ii) semi-automatically,
by letting users provide hints for induction/co-induction and discharging the rest
of proof obligations by (some extension of) an SMT solver, or (iii) fully auto-
matically by recasting the techniques used in the HORS-based approach; for
example, to deal with the ν-only fragment of HFLZ, we can reuse the tech-
nique of predicate abstraction [22]. For a more technical comparison between
the HORS-based approach and our HFL-based approach, see [23].

As for type-based approaches [14,24,34–36,39,41,44], most of the refinement
type systems are (i) restricted to safety properties, and/or (ii) incomplete. A
notable exception is the recent work of Unno et al. [40], which provides a rela-
tively complete type system for the classes of properties discussed in Sect. 5. Our
approach deals with a wider class of properties (cf. Sects. 6 and 7). Their “rel-
ative completeness” property relies on Godel coding of functions, which cannot
be exploited in practice.
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The reductions from program verification to Horn clause solving have recently
been advocated [2–4] or used [34,39] (via refinement type inference problems)
by a number of researchers. Since Horn clauses can be expressed in a fragment
of HFL without modal operators, fixpoint alternations (between ν and μ), and
higher-order predicates, our reductions to HFL model checking may be viewed
as extensions of those approaches. Higher-order predicates and fixpoints over
them allowed us to provide sound and complete characterizations of properties
of higher-order programs for a wider class of properties. Bjørner et al. [4] pro-
posed an alternative approach to obtaining a complete characterization of safety
properties, which defunctionalizes higher-order programs by using algebraic data
types and then reduces the problems to (first-order) Horn clauses. A disadvan-
tage of that approach is that control flow information of higher-order programs
is also encoded into algebraic data types; hence even for finite-data higher-order
programs, the Horn clauses obtained by the reduction belong to an undecidable
fragment. In contrast, our reductions yield pure HFL model checking problems
for finite-data programs. Burn et al. [7] have recently advocated the use of higher-
order (constrained) Horn clauses for verification of safety properties (i.e., which
correspond to the negation of may-reachability properties discussed in Sect. 5.1 of
the present paper) of higher-order programs. They interpret recursion using the
least fixpoint semantics, so their higher-order Horn clauses roughly corresponds
to a fragment of the HFLZ without modal operators and fixpoint alternations.
They have not shown a general, concrete reduction from safety property verifi-
cation to higher-order Horn clause solving.

The characterization of the reachability problems in Sect. 5 in terms of formu-
las without modal operators is a reminiscent of predicate transformers [9,13] used
for computing the weakest preconditions of imperative programs. In particular,
[5] and [13] respectively used least fixpoints to express weakest preconditions for
while-loops and recursions.

9 Conclusion

We have shown that various verification problems for higher-order functional
programs can be naturally reduced to (extended) HFL model checking prob-
lems. In all the reductions, a program is mapped to an HFL formula expressing
the property that the behavior of the program is correct. For developing verifica-
tion tools for higher-order functional programs, our reductions allow us to focus
on the development of (automated or semi-automated) HFLZ model checking
tools (or, even more simply, theorem provers for HFLZ without modal operators,
as the reductions of Sects. 5 and 7 yield HFL formulas without modal opera-
tors). To this end, we have developed a prototype model checker for pure HFL
(without integers), which will be reported in a separate paper. Work is under
way to develop HFLZ model checkers by recasting the techniques [22,26,27,43]
developed for the HORS-based approach, which, together with the reductions
presented in this paper, would yield fully automated verification tools. We have
also started building a Coq library for interactively proving HFLZ formulas,
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as briefly discussed in [23]. As a final remark, although one may fear that our
reductions may map program verification problems to “harder” problems due
to the expressive power of HFLZ, it is actually not the case at least for the
classes of problems in Sects. 5 and 6, which use the only alternation-free frag-
ment of HFLZ. The model checking problems for μ-only or ν-only HFLZ are
semi-decidable and co-semi-decidable respectively, like the source verification
problems of may/must-reachability and their negations of closed programs.
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