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Abstract. Data science software plays an increasingly important role
in critical decision making in fields ranging from economy and finance
to biology and medicine. As a result, errors in data science applications
can have severe consequences, especially when they lead to results that
look plausible, but are incorrect. A common cause of such errors is when
applications erroneously ignore some of their input data, for instance due
to bugs in the code that reads, filters, or clusters it.

In this paper, we propose an abstract interpretation framework to
automatically detect unused input data. We derive a program semantics
that precisely captures data usage by abstraction of the program’s oper-
ational trace semantics and express it in a constructive fixpoint form.
Based on this semantics, we systematically derive static analyses that
automatically detect unused input data by fixpoint approximation.

This clear design principle provides a framework that subsumes exist-
ing analyses; we show that secure information flow analyses and a form of
live variables analysis can be used for data usage, with varying degrees
of precision. Additionally, we derive a static analysis to detect single
unused data inputs, which is similar to dependency analyses used in the
context of backward program slicing. Finally, we demonstrate the value
of expressing such analyses as abstract interpretation by combining them
with an existing abstraction of compound data structures such as arrays
and lists to detect unused chunks of the data.

1 Introduction

In the past few years, data science has grown considerably in importance and
now heavily influences many domains, ranging from economy and finance to
biology and medicine. As we rely more and more on data science for making
decisions, we become increasingly vulnerable to programming errors.

Programming errors can cause frustration, especially when they lead to a
program failure after hours of computation. However, programming errors that
do not cause failures can have more serious consequences as code that produces
an erroneous but plausible result gives no indication that something went wrong.
A notable example is the paper “Growth in a Time of Debt” published in 2010 by
economists Reinhart and Rogoff, which was widely cited in political debates and
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Fig. 1. Overview of the program semantics presented in the paper. The dependency
semantics, derived by abstraction of the trace semantics, is sound and complete for
data usage. Further sound but not complete abstractions are shown on the right.

was later demonstrated to be flawed. Notably, one of the flaws was a program-
ming error, which entirely excluded some data from the analysis [23]. Its critics
hold that this paper led to unjustified adoption of austerity policies for coun-
tries with various levels of public debt [30]. Programming errors in data analysis
code for medical applications are even more critical [27]. It is thus paramount
to achieve a high level of confidence in the correctness of data science code.

The likelihood that a programming error causes some input data to remain
unused is particularly high for data science applications, where data goes through
long pipelines of modules that acquire, filter, merge, and manipulate it. In this
paper, we propose an abstract interpretation [14] framework to automatically
detect unused input data. We characterize when a program uses (some of) its
input data using the notion of dependency between the input data and the out-
come of the program. Our notion of dependency accounts for non-determinism
and non-termination. Thus, it encompasses notions of dependency that arise in
many different contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces,
by partitioning the operational trace semantics of a program based on its out-
come (cf. outcome semantics in Fig. 1), and a further abstraction ignores inter-
mediate state computations (cf. dependency semantics in Fig. 1). Starting the
development of the semantics from the operational trace semantics enables a
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uniform mathematical reasoning about programs semantics and program prop-
erties (Sect. 3). In particular, since input data usage is not a trace property or a
subset-closed property [11] (Sect. 4), we show that a formulation of the semantics
using sets of sets of traces is necessary for a sound validation of input data usage
via fixpoint approximation [28].

This clear design principle provides a unifying framework for reasoning about
existing analyses based on dependencies. We survey existing analyses and iden-
tify key design decisions that limit or facilitate their applicability to input data
usage, and we assess their precision. We show that non-interference analyses [6]
are sound for proving that a terminating program does not use any of its input
data; although this is too strong a property in general. We prove that strongly
live variable analysis [20] is sound for data usage even for non-terminating pro-
grams, albeit it is imprecise with respect to implicit dependencies between pro-
gram variables. We then derive a more precise static analysis similar to depen-
dency analyses used in the context of backward program slicing [37]. Finally, we
demonstrate the value of expressing these analyses as abstract interpretations
by combining them with an existing abstraction of compound data structures
such as arrays and lists [16]. This allows us to detect unused chunks of the input
data, and thus apply our work to realistic data science applications.

2 Trace Semantics

The semantics of a program is a mathematical characterization of its behavior
when executed for all possible input data. We model the operational semantics
of a program as a transition system 〈Σ, τ〉 where Σ is a (potentially infinite) set
of program states and the transition relation τ ⊆ Σ × Σ describes the possible
transitions between states [12,14]. Note that this model allows representing pro-
grams with (possibly unbounded) non-determinism. The set Ω

def= {s ∈ Σ | ∀s′ ∈
Σ : 〈s, s′〉 �∈ τ} is the set of final states of the program.

In the following, let Σn def= {s0 · · · sn−1 | ∀i < n : si ∈ Σ} be the set of
all sequences of exactly n program states. We write ε to denote the empty
sequence, i.e., Σ0 def= {ε}. Let Σ� def=

⋃
n∈N

Σn be the set of all finite sequences,

Σ+ def= Σ� \ Σ0 be the set of all non-empty finite sequences, Σω be the set
of all infinite sequences, Σ+∞ def= Σ+ ∪ Σω be the set of all non-empty finite
or infinite sequences and Σ�∞ def= Σ� ∪ Σω be the set of all finite or infi-
nite sequences of program states. In the following, we write σσ′ for the con-
catenation of two sequences σ, σ′ ∈ Σ�∞ (with σε = εσ = σ, and σσ′ = σ

when σ ∈ Σω), T+ def= T ∩ Σ+ and Tω def= T ∩ Σω for the selection of the
non-empty finite sequences and the infinite sequences of T ∈ P (Σ�∞), and
T ; T ′ def= {σsσ′ | s ∈ Σ ∧ σs ∈ T ∧ sσ′ ∈ T ′} for the merging of two sets of
sequences T ∈ P (Σ+) and T ′ ∈ P (Σ+∞), when a finite sequence in T termi-
nates with the initial state of a sequence in T ′.

Given a transition system 〈Σ, τ〉, a trace is a non-empty sequence of program
states described by the transition relation τ , that is, 〈s, s′〉 ∈ τ for each pair of
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Fig. 2. First fixpoint iterates of the trace semantics Λ.

consecutive states s, s′ ∈ Σ in the sequence. The set of final states Ω and the
transition relation τ can be understood as sets of traces of length one and length
two, respectively. The trace semantics Λ ∈ P (Σ+∞) generated by a transition
system 〈Σ, τ〉 is the union of all finite traces that are terminating with a final
state in Ω, and all infinite traces. It can be expressed as a least fixpoint in the
complete lattice 〈P (Σ+∞) ,�,�,
, Σω, Σ+〉 [12]:

Λ = lfp� Θ

Θ(T ) def= Ω ∪ (τ ; T )
(1)

where the computational order is T1 � T2
def= T+

1 ⊆ T+
2 ∧ Tω

1 ⊇ Tω
2 . Figure 2

illustrates the first fixpoint iterates. The fixpoint iteration starts from the set
of all infinite sequences of program states. At each iteration, the final program
states in Ω are added to the set, and sequences already in the set are extended
by prepending transitions to them. In this way, we add increasingly longer finite
traces, and we remove infinite sequences of states with increasingly longer pre-
fixes not forming traces. In particular, the i-th iterate builds all finite traces of
length less than or equal to i, and selects all infinite sequences whose prefixes
of length i form traces. At the limit we obtain all infinite traces and all finite
traces that terminate in a final state in Ω. Note that Λ is suffix-closed.

The trace semantics Λ fully describes the behavior of a program. However, to
reason about a particular property of a program, it is not necessary to consider
all aspects of its behavior. In fact, reasoning is facilitated by the design of a
semantics that abstracts away from irrelevant details about program executions.
In the next sections, we define our property of interest and use abstract inter-
pretation [14] to systematically derive, by successive abstractions of the trace
semantics, a semantics that precisely captures such a property.

3 Input Data Usage

A property is specified by its extension, that is, the set of elements having such a
property [14,15]. Thus, properties of program traces in Σ+∞ are sets of traces in
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P (Σ+∞), and properties of programs with trace semantics in P (Σ+∞) are sets
of sets of traces in P (P (Σ+∞)). Accordingly, a program P satisfies a property
H ∈ P (P (Σ+∞)) if and only if its semantics [[P ]] ∈ P (Σ+∞) belongs to H:

P |= H ⇔ [[P ]] ∈ H (2)

Some program properties are defined in terms of individual program traces
and can be equivalently expressed as trace properties. This is the case for the
traditional safety [26] and liveness [4] properties of programs. In such a case, a
program P satisfies a trace property T if and only if all traces in its semantics
[[P ]] belong to the property: P |= T ⇔ [[P ]] ⊆ T .

Program properties that establish a relation between different program traces
cannot be expressed as trace properties [11]. Examples are security properties
such as non-interference [21,35]. In this paper, we consider a closely related but
more general property called input data usage, which expresses that the outcome
of a program does not depend on (some of) its input data. The notion of outcome
accounts for non-determinism as well as non-termination. Thus, our notion of
dependency encompasses non-interference as well as notions of dependency that
arise in many other contexts [1,9]. We further explore this in Sects. 8 to 10.

Let each program P with trace semantics [[P ]] have a set IP of input variables
and a set OP of output variables1. For simplicity, we can assume that these
variables are all of the same type (e.g., boolean variables) and their values are
all in a set V of possible values (e.g., V = {t, f} where t is the boolean value
true and f is the boolean value false). Given a trace σ ∈ [[P ]], we write σ[0] to
denote its initial state and σ[ω] to denote its outcome, that is, its final state if
the trace is finite or ⊥ if the trace is infinite. The input variables at the initial
states of the traces of a program store the values of its input data: we write
σ[0](i) to denote the value of the input data stored in the input variable i at the
initial state of the trace σ, and σ1[0] �=i σ2[0] to denote that the initial states
of two traces σ1 and σ2 disagree on the value of the input variable i but agree
on the values of all other variables. The output variables at the final states of
the finite traces of a program store its result: we write σ[ω](o) to denote the
result stored in the output variable o at the final state of a finite trace σ. We
can now formally define when an input variable i ∈ IP is unused with respect to
a program with trace semantics [[P ]] ∈ P (Σ+∞):

unusedi([[P ]]) def= ∀σ ∈ [[P ]], v ∈ V: σ[0](i) �= v ⇒
∃σ′ ∈ [[P ]] : σ′[0] �=i σ[0] ∧ σ′[0](i) = v ∧ σ[ω] = σ′[ω]

(3)

Intuitively, an input variable i is unused if all feasible program outcomes (e.g.,
the outcome σ[ω] of a trace σ) are feasible from all possible initial values of i
(i.e., for all possible initial values v of i that differ from the initial value of i
in σ, there exists a trace with initial value v for i that has the same outcome
σ[ω]). In other words, the outcome of the program is the same independently of
1 The approach can be easily extended to infinite inputs and/or outputs via abstrac-

tions such as the one later presented in Sect. 11.
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1 eng l i s h = input ( )
2 math = input ( )
3 s c i e n c e = input ( )
4 bonus = input ( )
5

6 pass ing = True
7 i f not eng l i s h : e n g l i s h = False # eng l i s h should be pass ing
8 i f not math : pas s ing = bonus
9 i f not math : pas s ing = bonus # math should be s c i e n c e

10

11 print ( pas s ing )

Fig. 3. Simple program to check if a student has passed three school subjects. The
programmer has made two mistakes at line 7 and at line 9, which cause the input data
stored in the variables english and science to be unused.

the initial value of the input variable i. Note that this definition accounts for
non-determinism (since it considers each program outcome independently) and
non-termination (since a program outcome can be ⊥).

Example 1. Let us consider the simple program P in Fig. 3. Based on the input
variables english, math, and science (cf. lines 1–3), the program is supposed
to check if a student has passed all three considered school subjects and store
the result in the output variable passing (cf. line 11). For mathematics and
science, the student is allowed a bonus based on the input variable bonus (cf.
line 8 and 9). However, the programmer has made two mistakes at line 7 and at
line 9, which cause the input variables english and science to be unused.

Let us now consider the input variable science. The trace semantics of the
program (simplified to consider only the variables science and passing) is:

[[P ]]science = {(t ) . . . (tt), (t ) . . . (tf), (f ) . . . (ft), (f ) . . . (ff)}

where each state (v1v2) shows the boolean value v1 of science and v2 of passing,
and denotes any boolean value. We omitted the trace suffixes for brevity. The
input variable science is unused, since each result value (t or f) for passing is
feasible from all possible initial values of science. Note that all other outcomes
of the program (i.e., non-termination) are not feasible.

Let us now consider the input variable math. The trace semantics of the
program (now simplified to only consider math and passing) is the following:

[[P ]]math = {(t ) . . . (tt), (f ) . . . (ft), (f ) . . . (ff)}

In this case, the input variable math is used since only the initial state (f ) yields
the result value f for passing (in the final state (ff)). �

The input data usage property N can now be formally defined as follows:

N def=
{
[[P ]] ∈ P

(
Σ+∞)

| ∀i ∈ IP : unusedi([[P ]])
}

(4)

which states that the outcome of a program does not depend on any input data.
In practice one is interested in weaker input data usage properties for a subset



An Abstract Interpretation Framework for Data Usage 689

J of the input variables, i.e., NJ
def= {[[P ]] ∈ P (Σ+∞) | ∀i ∈ J ⊆ IP : unusedi

([[P ]])}.
In the following, we use abstract interpretation to reason about input data

usage. In the next section, we discuss the challenges to the application of the
standard abstract interpretation framework that emerge from the fact that input
data usage cannot be expressed as a trace property.

4 Sound Input Data Usage Validation

In the standard framework of abstract interpretation, one defines a semantics
that precisely captures a property S of interest by abstraction of the trace seman-
tics Λ [12]. Then, further abstractions Λ� provide sound over-approximations
γ(Λ�) of Λ (by means of a concretization function γ): Λ ⊆ γ(Λ�). For a trace
property, an over-approximation γ([[P ]]�) of the semantics [[P ]] of a program P
allows a sound validation of the property: since [[P ]] ⊆ γ([[P ]]�), we have that
γ([[P ]]�) ⊆ S ⇒ [[P ]] ⊆ S and so, if γ([[P ]]�) ⊆ S, we can conclude that P |= S
(cf. Sect. 3). This conclusion is also valid for all other subset-closed properties
[11]: since by definition γ([[P ]]�) ∈ S ⇒ ∀T ⊆ γ([[P ]]�) : T ∈ S, we have that
γ([[P ]]�) ∈ S ⇒ [[P ]] ∈ S (and so we can conclude that P |= S). However, for pro-
gram properties that are not subset-closed, we have that γ([[P ]]�) ∈ S �⇒ [[P ]] ∈ S
[28] and so we cannot conclude that P |= S, even if γ([[P ]]�) ∈ S (cf. Eq. 2).

We have seen in the previous section that input data usage is not a trace
property. The example below shows that it is not a subset-closed property either.

Example 2. Let us consider again the program P and its semantics [[P ]]science
and [[P ]]math shown in Example 1. We have seen in Example 1 that the semantics
[[P ]]science belongs to the data usage property N : [[P ]]science ∈ N . Let us consider
now the following subset T of [[P ]]science:

T = {(t ) . . . (tt), (f ) . . . (ft), (f ) . . . (ff)}

In this case, the input variable science is used. Indeed, we can observe that T
coincides with [[P ]]math (except for the considered input variable). Thus T �∈ N
even though T ⊆ [[P ]]science. �

Since input data usage is not subset-closed, we are in the unfortunate sit-
uation that we cannot use the standard abstract interpretation framework to
soundly prove that a program does not use (some of) its input data using an
over-approximation of the semantics of the program: γ([[P ]]�) ∈ NJ �⇒ [[P ]] ∈ NJ .

We solve this problem in the next section, by lifting the trace semantics
[[P ]] ∈ P (Σ+∞) of a program P (i.e., a set of traces) to a set of sets of traces
�P � ∈ P (P (Σ+∞)) [28]. In this setting, a program P satisfies a property H if
and only if its semantics �P � is a subset of H:

P |= H ⇔ �P � ⊆ H (5)
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As we will explain in the next section, now an over-approximation γ(�P ��) of
�P � allows again a sound validation of the property: since �P � ⊆ γ(�P ��), we
have that γ(�P ��) ⊆ H ⇒ �P � ⊆ H (and so we can conclude that P |= H).

More specifically, in the next section, we define a program semantics �P � that
precisely captures which subset J of the input variables is unused by a program
P . In later sections, we present further abstractions �P �� that over-approximate
the subset of the input variables that may be used by P , and thus allows a sound
validation of an under-approximation J� of J : γ(�P ��) ⊆ NJ� ⇒ �P � ⊆ NJ� . In
other words, this means that every input variable reported as unused by an
abstraction is indeed not used by the program.

5 Outcome Semantics

We lift the trace semantics Λ to a set of sets of traces by partitioning. The
partitioning abstraction αQ : P (Σ+∞) → P (P (Σ+∞)) of a set of traces T is:

αQ(T ) def= {T ∩ C | C ∈ Q} (6)

where Q ∈ P (P (Σ+∞)) is a partition of sequences of program states.
More specifically, to reason about input data usage of a program P , we lift

the trace semantics [[P ]] to �P � by partitioning it into sets of traces that yield the
same program outcome. The key insight behind this idea is that, given an input
variable i, the initial states of all traces in a partition give all initial values for i
that yield a program outcome; the variable i is unused if and only if these initial
values are all the possible values for i (or the set of values is empty because the
outcome is unfeasible, cf. Eq. 3). Thus, if the trace semantics [[P ]] of a program
P belongs to the input data usage property NJ , then each partition in �P � must
also belong to NJ , and vice versa: we have that [[P ]] ∈ NJ ⇔ �P � ⊆ NJ , which
is precisely what we want (cf. Eq. 5).

Let T+
o=v denote the subset of the finite sequences of program states in T ∈

P (Σ+∞) with value v for the output variable o in their outcome (i.e., their
final state): T+

o=v
def= {σ ∈ T+ | σ[ω](o) = v}. We define the outcome partition

O ∈ P (P (Σ+∞)) of sequences of program states:

O
def=

{
Σ+

o1=v1,...,ok=vk
| v1, . . . , vk ∈ V

}
∪ {Σω}

where V is the set of possible values of the output variables o1, . . . , ok (cf. Sect. 3).
The partition contains all sets of finite sequences that agree on the values of the
output variables in their outcome, and all infinite sequences of program states
(i.e., all sequences with outcome ⊥). We instantiate αQ above with the outcome
partition to obtain the outcome abstraction α• : P (Σ+∞) → P (P (Σ+∞)):

α•(T ) def=
{
T+

o1=v1,...,ok=vk
| v1, . . . , vk ∈ V

}
∪ {Tω} (7)
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Example 3. The program P of Example 1 has only one output variable passing
with boolean value t or f. Let us consider again the trace semantics [[P ]]math
shown in Example 1. Its outcome abstraction α•([[P ]]math) is:

α•([[P ]]math) = {∅, {(f ) . . . (ff)} , {(t ) . . . (tt), (f ) . . . (ft)}}

Note that all traces with different result values for the output variable passing
belong to different sets of traces (i.e., partitions) in α•([[P ]]math). The empty set
corresponds to the (unfeasible) non-terminating outcome of the program. �

We can now use the outcome abstraction α• to define the outcome semantics
Λ• ∈ P (P (Σ+∞)) as an abstraction of the trace semantics Λ:

Definition 1. The outcome semantics Λ• ∈ P (P (Σ+∞)) is defined as:

Λ•
def= α•(Λ) (8)

where α• is the outcome abstraction (cf. Eq. 7) and Λ ∈ P (Σ+∞) is the trace
semantics (cf. Eq. 1).

The outcome semantics contains the set of all infinite traces and all sets of finite
traces that agree on the value of the output variables in their outcome.

In the following, we express the outcome semantics Λ• in a constructive
fixpoint form. This allows us to later derive further abstractions of Λ• by fixpoint
transfer and fixpoint approximation [12]. Given a set of sets of traces S, we
write S+

o=v
def= {T ∈ S | T = T+

o=v} for the selection of the sets of traces in S

that agree on the value v of the output variable o in their outcome, and Sω def=
{T ∈ S | T = Tω} for the selection of the sets of infinite traces in S. When S+

o=v

(resp. Sω) contains a single set of traces T , we abuse notation and write S+
o=v

(resp. Sω) to also denote T . The following result gives a fixpoint definition of
Λ• in the complete lattice 〈P (P (Σ+∞)) ,�·,�· ,
· , {Σω, ∅} , {∅, Σ+}〉, where the
computational order �· is defined (similarly to �, cf. Sect. 2) as:

S1 �· S2
def=

∧

v1,...,vk∈V

S1
+
o1=v1,...,ok=vk

⊆ S2
+
o1=v1,...,ok=vk

∧ Sω
1 ⊇ Sω

2

Theorem 1. The outcome semantics Λ• ∈ P (P (Σ+∞)) can be expressed as a
least fixpoint in 〈P (P (Σ+∞)) ,�·,�· ,
· , {Σω, ∅} , {∅, Σ+}〉 as:

Λ• = lfp�· Θ•

Θ•(S) def= {Ωo1=v1,...,ok=vk
| v1, . . . , vk ∈ V} ∪· {τ ; T | T ∈ S}

(9)

where S1 ∪· S2
def=

{
S1

+
o1=v1,...,ok=vk

∪ S2
+
o1=v1,...,ok=vk

| v1, . . . , vk ∈ V
}
∪Sω

1 ∪Sω
2 .

Figure 4 illustrates the first fixpoint iterates of the outcome semantics for a
single output variable o. The fixpoint iteration starts from the partition contain-
ing the set of all infinite sequences of program states and the empty set (which



692 C. Urban and P. Müller

S0 =

{{
Σω

}
, ∅

}

S1 =

{{
Ωo=v

} ∣∣∣∣∣ v ∈ V

}
∪

{{
τ Σω

}}

S2 =

{{
Ωo=v

}
∪

{
τ Ωo=v

} ∣
v ∈ V

}
∪

{{
τ τ Σω

}}

Fig. 4. First iterates of the outcome semantics Λ• for a single output variable o.

represents an empty set of finite traces). At the first iteration, the empty set is
replaced with a partition of the final states Ω based on the value v of the output
variable o, while the infinite sequences are extended by prepending transitions
to them (similarly to the trace semantics, cf. Eq. 1). At the next iterations, all
sequences contained in each partition are further extended, and the final states
that agree on the value v of o are again added to the matching set of traces that
agree on v in their outcome. At the limit, we obtain a partition containing the
set of all infinite traces and all sets of finite traces that agree on the value v of
the output variable o in their outcome.

To prove Theorem 1 we first need to show that the outcome abstraction α•
preserves least upper bounds of non-empty sets of sets of traces.

Lemma 1. The outcome abstraction α• is Scott-continuous.

Proof. We need to show that for any non-empty ascending chain C of sets of
traces with least upper bound �C, we have that α•(�C) = �· {α•(T ) | T ∈ C},
that is, α•(�C) is the least upper bound of α•(C), the image of C via α•.

First, we know that α• is monotonic, i.e., for any two sets of traces T1 and
T2 we have T1 � T2 ⇒ α•(T1) �· α•(T2). Since �C is the least upper bound of
C, for any set T in C we have that T � �C and, since α• is monotonic, we have
that α•(T ) �· α•(�C). Thus α(�C) is an upper bound of {α•(T ) | T ∈ C}.

To show that α(�C) is the least upper bound of α•(C), we need to show that
for any other upper bound U of α•(C) we have α•(�C) �· U . Let us assume by
absurd that α•(�C) ��· U . Then, there exists T1 ∈ α•(�C) and T2 ∈ U such that
T1 �� T2: T+

1 ⊃ T+
2 or Tω

1 ⊂ Tω
2 . Let us assume that T+

1 ⊃ T+
2 . By definition of

α•, we observe that T1 is a partition of �·C and, since �·C is the least upper bound
of C, U cannot be an upper bound of α•(C) (since T2 does not contain enough
finite traces). Similarly, if Tω

1 ⊂ Tω
2 , then U cannot be an upper bound of α•(C)

(since T2 contains too many infinite traces). Thus, we must have α•(�C) �· U
and we can conclude that α(�C) is the least upper bound of α•(C). 
�

We can now prove Theorem 1 by Kleenian fixpoint transfer [12].
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Proof (Sketch). The proof follows by Kleenian fixpoint transfer. We have that
〈P (P (Σ+∞)) ,�·,�· ,
· , {Σω, ∅} , {∅, Σ+}〉 is a complete lattice and that φ+∞ (cf.
Eq. 1) and Θ• (cf. Eq. 8) are monotonic function. Additionally, we have that the
outcome abstraction α• (cf. Eq. 7) is Scott-continuous (cf. Lemma 1) and such
that α•(Σω) = {Σω, ∅} and α• ◦ φ+∞ = Θ• ◦ α•. Then, by Kleenian fixpoint
transfer, we have that α•(Λ) = α•(lfp� φ+∞) = lfp�· Θ•. Thus, we can conclude
that Λ• = lfp�· Θ•. 
�

Finally, we show that the outcome semantics Λ• is sound and complete for
proving that a program does not use (a subset of) its input variables.

Theorem 2. A program does not use a subset J of its input variables if and
only if its outcome semantics Λ• is a subset of NJ :

P |= NJ ⇔ Λ• ⊆ NJ

Proof (Sketch). The proof follows immediately from the definition of NJ (cf.
Eq. 3 and Sect. 4) and the definition of Λ• (cf. Eq. 8). 
�

Example 4. Let us consider again the program P and its semantics [[P ]]science
shown in Example 1. The corresponding outcome semantics α•([[P ]]science) is:

α•([[P ]]science) = {∅, {(t ) . . . (tf), (f ) . . . (ff)} , {(t ) . . . (tt), (f ) . . . (ft)}}

Note that all sets of traces in α•([[P ]]science) belong to N{science}: the initial
states of all traces in a non-empty partition contain all possible initial values (t
or f) for the input variable science. Thus, P satisfies N{science} and, indeed,
the input variable science is unused by P . �

As discussed in Sect. 4, we now can again use the standard framework of
abstract interpretation to soundly over-approximate Λ• and prove that a pro-
gram does not use (some of) its input data. In the next section, we propose
an abstraction that remains sound and complete for input data usage. Further
sound but not complete abstractions are presented in later sections.

6 Dependency Semantics

We observe that, to reason about input data usage, it is not necessary to consider
all intermediate state computations between the initial state of a trace and its
outcome. Thus, we can further abstract the outcome semantics Λ• into a set Λ�
of (dependency) relations between initial states and outcomes of a set of traces.

We lift the abstraction defined for this purpose on sets of traces [12] to
α� : P (P (Σ+∞)) → P (P (Σ × Σ⊥)) on sets of sets of traces:

α�(S) def= {{〈σ[0], σ[ω]〉 ∈ Σ × Σ⊥ | σ ∈ T} | T ∈ S} (10)

where Σ⊥
def= Σ ∪ {⊥}. The dependency abstraction α� ignores all intermediate

states between the initial state σ[0] and the outcome σ[ω] of all traces σ in
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all partitions T of S. Observe that a trace σ that consists of a single state
s is abstracted as a pair 〈s, s〉. The corresponding dependency concretization
function γ� : P (P (Σ × Σ⊥)) → P (P (Σ+∞)) over-approximates the original
sets of traces by inserting arbitrary intermediate states:

γ�(S) def=
{
T ∈ P

(
Σ+∞)

| {〈σ[0], σ[ω]〉 ∈ Σ × Σ⊥ | σ ∈ T} ∈ S
}

(11)

Example 5. Let us consider again the program of Example 1 and its outcome
semantics α•([[P ]]math) shown in Example 3. Its dependency abstraction is:

α�(α•([[P ]]math)) = {∅, {〈f , ff〉} , {〈t ,tt〉, 〈f , ft〉}}

which explicitly ignores intermediate program states. �
Using α�, we now define the dependency semantics Λ� ∈ P (P (Σ+∞)) as

an abstraction of the outcome semantics Λ•.

Definition 2. The dependency semantics Λ� ∈ P (P (Σ+∞)) is defined as:

Λ�
def= α�(Λ•) (12)

where Λ• ∈ P (P (Σ+∞)) is the outcome semantics (cf. Eq. 8) and α� is the
dependency abstraction (cf. Eq. 10).

Neither the Kleenian fixpoint transfer nor the Tarskian fixpoint transfer can
be used to obtain a fixpoint definition for the dependency semantics, but we
have to proceed by union of disjoint fixpoints [12]. To this end, we observe that
the outcome semantics Λ• can be equivalently expressed as follows:

Λ• = Λ+
• ∪ Λω

• = lfp�·
∅ Θ+

• ∪ lfp�·
{Σω} Θω

•

Θ+
• (S) def= {Ωo1=v1,...,ok=vk

| v1, . . . , vk ∈ V} ∪· {τ ; T | T ∈ S}

Θω
• (S) def= {τ ; T | T ∈ S}

(13)

where Λ+
• and Λω

• separately compute the set of all sets of finite traces that agree
on their outcome, and the set of all infinite traces, respectively.

In the following, given a set of traces T ∈ P (Σ+∞) and its dependency abstrac-
tion α�(T ), we abuse notation and write T+ (resp. Tω) to also denote α�(T )+ def=
α�(T ) ∩ (Σ × Σ) (resp. α�(T )ω def= α�(T ) ∩ (Σ × {⊥})). Similarly, we reuse the
symbols for the computational order �·, least upper bound �· , and greatest lower
bound 
· , instead of their abstractions. We can now use the Kleenian and Tarskian
fixpoint transfer to separately derive fixpoint definitions of α�(Λ+

• ) and α�(Λω
• )

in 〈P (P (Σ × Σ⊥)) ,�·,�· ,
· , {Σ × {⊥} , ∅} , {∅, Σ × Σ}〉.

Lemma 2. The abstraction Λ+
�

def= α�(Λ+
• ) ∈ P (P (Σ × Σ)) can be expressed

as a least fixpoint in 〈P (P (Σ × Σ⊥)) ,�·,�· ,
· , {Σ × {⊥} , ∅} , {∅, Σ × Σ}〉 as:

Λ+
� = lfp�·

{∅} Θ+
�

Θ+
�(S) def= {Ωo1=v1,...,ok=vk

× Ωo1=v1,...,ok=vk
| v1, . . . , vk ∈ V} ∪· {τ ◦ R | R ∈ S}

(14)
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Proof (Sketch). By Kleenian fixpoint transfer (cf. Theorem 17 in [12]). 
�

Lemma 3. The abstraction Λω
�

def= α�(Λω
• ) ∈ P (P (Σ × Σ)) can be expressed

as a least fixpoint in 〈P (P (Σ × Σ⊥)) ,�·,�· ,
· , {Σ × {⊥} , ∅} , {∅, Σ × Σ}〉 as:

Λω
� = lfp�·

{Σ×{⊥}} Θω
�

Θω
�(S) def= {τ ◦ R | R ∈ S}

(15)

Proof (Sketch). By Tarskian fixpoint transfer (cf. Theorem 18 in [12]). 
�

The fixpoint iteration for Λ+
� starts from the set containing only the empty

relation. At the first iteration, the empty relation is replaced by all relations
between pairs of final states that agree on the values of the output variables.
At each next iteration, all relations are combined with the transition relation
to obtain relations between initial and final states of increasingly longer traces.
At the limit, we obtain the set of all relations between the initial and the final
states of a program that agree on the final value of the output variables. The
fixpoint iteration for Λω

� starts from the set containing (the set of) all pairs of
states and the ⊥ outcome, and each iteration discards more and more pairs with
initial states that do not belong to infinite traces of the program.

Now we can use Lemmas 2 and 3 to express the dependency semantics Λ�
in a constructive fixpoint form (as the union of Λ+

� and Λω
�).

Theorem 3. The dependency semantics Λ� ∈ P (P (Σ × Σ⊥)) can be expressed
as a least fixpoint in 〈P (P (Σ × Σ⊥)) ,�·,�· ,
· , {Σ × {⊥} , ∅} , {∅, Σ × Σ}〉 as:

Λ� = Λ+
� ∪ Λω

� = lfp�·
{Σ×{⊥},∅} Θ�

Θ�(S) def= {Ωo1=v1,...,ok=vk
× Ωo1=v1,...,ok=vk

| v1, . . . , vk ∈ V} ∪· {τ ◦ R | R ∈ S}
(16)

Proof (Sketch). The proof follows immediately from Lemmas 2 and 3. 
�

Finally, we show that the dependency semantics Λ� is sound and complete
for proving that a program does not use (a subset of) its input variables.

Theorem 4. A program does not use a subset J of its input variables if and
only if the image via γ� of its dependency semantics Λ� is a subset of NJ :

P |= NJ ⇔ γ�(Λ�) ⊆ NJ

Proof (Sketch). The proof follows from the definition of Λ� (cf. Eq. 12) and γ�
(cf. Eq. 11), and from Theorem 2. 
�

Example 6. Let us consider again the program P and its outcome semantics
α•([[P ]]science) from Example 4. The corresponding dependency semantics is:

α�(α•([[P ]]science)) = {∅, {〈t ,tf〉, 〈f , ff〉} , {〈t ,tt〉, 〈f , ft〉}}
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and, by definition of γ�, we have that its concretization γ�(α�(α•([[P ]]science)))
is an over-approximation of α•([[P ]]science). In particular, since intermediate state
computations are irrelevant for deciding the input data usage property, all sets
of traces in γ�(α�(α•([[P ]]science))) are over-approximations of exactly one set
in α•([[P ]]science) with the same set of initial states and outcome. Thus, in this
case, we can observe that all sets of traces in γ�(α�(α•([[P ]]science))) belong to
N{science} and correctly conclude that P does not use the variable science. �

At this point we have a sound and complete program semantics that captures
only the minimal information needed to decide which input variables are unused
by a program. In the rest of the paper, we present various static analyses for
input data usage by means of sound abstractions of this semantics, which under-
approximate (resp. over-approximate) the subset of the input variables that are
unused (resp. used) by a program.

7 Input Data Usage Abstractions

We introduce a simple sequential programming language with boolean variables,
which we use for illustration throughout the rest of the paper:

e ::= v | x | not e | e and e | e or e (expressions)
s ::= skip | x = e | if e : s else : s | while e : s | s s (statements)

where v ranges over boolean values, and x ranges over program variables. The
skip statement, which does nothing, is a placeholder useful, for instance, for
writing a conditional if statement without an else branch: if e : s else : skip.
In the following, we often simply write if e : s instead of if e : s else : skip.
Note that our work is not limited by the choice of a particular programming
language, as the formal treatment in previous sections is language independent.

In Sects. 8 and 9, we show that existing static analyses based on dependencies
[6,20] are abstractions of the dependency semantics Λ�. We define each abstrac-
tion Λ� over a partially ordered set 〈A,�A〉 called abstract domain. More specifi-
cally, for each program statement s, we define a transfer function Θ�[[s]] : A → A,
and the abstraction Λ� is the composition of the transfer functions of all state-
ments in a program. We derive a more precise static analysis similar to depen-
dency analyses used for program slicing [37] in Sect. 10. Finally, Sect. 11 demon-
strates the value of expressing such analyses as abstract domains by combining
them with an existing abstraction of compound data structures such as arrays
and lists [16] to detect unused chunks of input data.

8 Secure Information Flow Abstractions

Secure information flow analysis [18] aims at proving that a program will not leak
sensitive information. Most analyses focus on proving non-interference [35] by
classifying program variables into different security levels [17], and ensuring the
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absence of information flow from variables with higher security level to variables
with lower security level. The most basic classification comprises a low security
level L, and a high security level H: program variables classified as L are public
information, while variables classified as H are private information.

In our context, if we classify input variables as H and all other variables as L,
possiblistic non-interference [21] coincides with the input data usage property N
(cf. Eq. 4) restricted to consider only terminating programs. However, in general,
(possibilistic) non-interference is too strong for our purposes as it requires that
none of the input variables is used by a program. We illustrate this using as
an example a non-interference analysis recently proposed by Assaf et al. [6]
that is conveniently formalized in the framework of abstract interpretation. We
briefly present here a version of the originally proposed analysis, simplified to
consider only the security levels L and H, and we point out the significance of
the definitions for input data usage.

Let L def= {L,H} be the set of security levels, and let the set X of all program
variables be partitioned into a set XL of variables classified as L and a set XH

of variables classified as H (i.e., the input variables). A dependency constraint
L � x expresses that the current value of the variable x depends only on the
initial values of variables having at most security level L (i.e., it does not depend
on the initial value of any of the input variables). The non-interference analysis
ΛF proposed by Assaf et al. is a forward analysis in the lattice 〈P (F) ,�F,�F〉
where F def= {L � x | x ∈ X} is the set of all dependency constraints, S1 �F

S2
def= S1 ⊇ S2, and S1 �F S2

def= S1 ∩ S2. The transfer function ΘF[[s]] : P (F) →
P (F) for each statement s in our simple programming language is defined as
follows:

ΘF[[skip]](S) def= S

ΘF[[x = e]](S) def= {L � y ∈ S | y �= x} ∪ {L � x | VF[[e]]S}

ΘF[[if e : s1 else : s2]](S) def=

{
ΘF[[s1]](S) �F ΘF[[s2]](S) if VF[[e]]S
{L � x ∈ S | x �∈ w(s1) ∪ w(s2)} otherwise

ΘF[[while e : s]](S) def= lfp�F
S ΘF[[if e : s else : skip]]

ΘF[[s1 s2]](S) def= ΘF[[s2]] ◦ ΘF[[s1]](S)

where w(s) denotes the set of variables modified by the statement s, and VF[[e]]S
determines whether a set of dependencies S guarantees that the expression e has
a unique value independently of the initial value of the input variables. For a
variable x, VF[[x]]S is true if and only if L � x ∈ S. Otherwise, VF[[e]]S is
defined recursively on the structure of e, and it is always true for a boolean
value v [6]. An assignment x = e discards all dependency constraints related
to the assigned variable x, and adds constraints L � x if e has a unique value
independently of the initial values of the input variables. This captures an explicit
flow of information between e and x. A conditional statement if e : s1 else : s2
joins the dependency constraints obtained from s1 and s2, if e does not depend
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on the initial values of the input variables (i.e., VF[[e]]S is true). Otherwise, it
discards all dependency constraints related to the variables modified in either of
its branches. This captures an implicit flow of information from e. The initial
set of dependencies contains a constraint L � x for each variable x that is not
an input variable. We exemplify the analysis below.

Example 7. Let us consider again the program P from Example 1 (stripped of
the input and print statements, which are not present in our simple language):

1 passing = True

2 if not english: english = False # english should be passing

3 if not math: passing = bonus

4 if not math: passing = bonus # math should be science

The analysis begins from the set of dependency constraints {L � passing},
which classifies input variables as H and all other variables as L. The assignment
at line 1 leaves the set unchanged as the value of the expression True on the
right-hand side of the assignment does not depend on the initial value of the
input variables. The set remains unchanged by the conditional statement at line
2, even though the boolean condition depends on the input variable english,
because the variable passing is not modified. Finally, at line 3 and 4, the anal-
ysis captures an explicit flow of information from the input variable bonus and
an implicit flow of information from the input variable math. Thus, the set of
dependency constraints becomes empty at line 3, and remains empty at line 4.

Observe that, in this case, non-interference does not hold since the result of
the program depends on some of the input variables. Therefore, the analysis is
only able to conclude that at least one of the input variables may be used by
the program, but it cannot determine which input variables are unused. �

The example shows that non-interference is too strong a property in general.
Of course, one could determine which input variables are unused by running
multiple instances of the non-interference analysis ΛF, each one of them classify-
ing a single different input variable as H and all other variables as L. However,
this becomes cumbersome in a data science application where a program reads
and manipulates a large amount of input data.

Moreover, we emphasize that our input data usage property is more general
than (possibilistic) non-interference since it also considers non-termination. We
are not aware of any work on termination-sensitive possibilistic non-interference.

Example 8. Let us modify the program P shown in Example 7 as follows:
1 pass ing = True
2 while not eng l i s h : e n g l i s h = False

In this case, since the loop at line 2 does not modify the output variable passing,
the non-interference analysis ΛF will leave the initial set of dependency con-
straints {L � passing} unchanged, meaning that the result of the program does
not depend on any of its input variables. However, the input variable english
is used since its value influences the outcome of the program: the program ter-
minates if english is true, and does not terminate otherwise. �
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The example demonstrates that the analysis is unsound for a non-terminating
program.2 We show that the non-interference analysis ΛF is sound for proving
that a program does not use any of its input variables, only if the program is
terminating. We define the concretization function γF : P (F) → P (P (Σ × Σ)):

γF(S) def= {R ∈ P (Σ × Σ) | αF(R) �F S} (17)

The abstraction function αF : P (P (Σ × Σ)) → P (F) maps each relation R
between states of a program to the corresponding set of dependency constraints:
αF(R) def= {L � x | x ∈ XL ∧ ∀i ∈ XH : unusedi,x(R)}, where unusedi,x is the
relational abstraction of unusedi (cf. Eq. 3) in which we compare only the result
stored in the variable x (i.e., we compare σ[ω](o) and σ′[ω](o), instead of σ[ω]
and σ′[ω] as in Eq. 3).

Theorem 5. A terminating program does not use any of its input variables if
the image via γ� ◦ γF of its non-interference abstraction ΛF is a subset of N :

γ�(γF(ΛF)) ⊆ N ⇒ P |= N

Proof. Let us assume that γ�(γF(ΛF)) ⊆ N . By definition of γF (cf. Eq. 17),
since the program is terminating, we have that Λ� ⊆ γF(ΛF) and, by mono-
tonicity of the concretization function γ� (cf. Eq. 11), we have that γ�(Λ�) ⊆
γ�(γF(ΛF)). Thus, since γ�(γF(ΛF)) ⊆ N , we have that γ�(Λ�) ⊆ N . The
conclusion follows from Theorem 4. 
�

Note that the termination of the program is necessary for the proof of The-
orem 5. Indeed, for a non-terminating program, we have that Λ� �⊆ γF(ΛF)
(since Λ� includes relational abstractions of infinite traces that are missing
from γF(ΛF)) and thus we cannot conclude the proof.

This result shows that the non-interference analysis ΛF is an abstraction of
the dependency semantics Λ� presented earlier. However, we remark that the
same result applies to all other instances in this important class of analysis [5,25,
etc.], which are therefore subsumed by our framework.

9 Strongly Live Variable Abstraction

Strongly live variable analysis [20] is a variant of the classic live variable analysis
[32] performed by compilers to determine, for each program point, which vari-
ables may be potentially used before they are assigned to. A variable is strongly
live if it is used in an assignment to another strongly live variable, or if is used in
a statement other than an assignment. Otherwise, a variable is considered faint.

2 The case of a program using an input variable and then always diverging is not
problematic because the analysis would be imprecise but still sound.
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Strongly live variable analysis ΛX is a backward analysis in the complete
lattice 〈P (X) ,⊆,∪,∩, ∅,X〉, where X is the set of all program variables. The
transfer function ΘX[[s]] : P (X) → P (X) for each statement s is defined as:

ΘX[[skip]](S) def= S

ΘX[[x = e]](S) def=

{
(S \ {x}) ∪ vars(e) x ∈ S

S otherwise

ΘX[[if b : s1 else : s2]](S) def= vars(b) ∪ ΘX[[s1]](S) ∪ ΘX[[s2]](S)

ΘX[[while b : s]](S) def= vars(b) ∪ ΘX[[s]](S)

ΘX[[s1 s2]](S) def= ΘX[[s1]] ◦ ΘX[[s2]](S)

where vars(e) is the set of variables in the expression e. For input data usage, the
initial set of strongly live variables contains the output variables of the program.

Example 9. Let us consider again the program P shown in Example 7. The
strongly live variable analysis begins from the set {passing} containing the out-
put variable passing. At line 3, the set of strongly live variables is {math, bonus}
since bonus is used in an assignment to the strongly live variable passing, and
math is used in the condition of the if statement. Finally, at line 1, the set of
strongly live variables is {english, math, bonus} because english is used in the
condition of the if statement at line 2. Thus, strongly live variable analysis is
able to conclude that the input variable science is unused. However, it is not
precise enough to determine that the variable english is also unused. �

The imprecision of the analysis derives from the fact that it does not capture
implicit flows of information precisely (cf. Sect. 8) but only over-approximates
their presence. Thus, the analysis is unable to detect when a conditional state-
ment, for instance, modifies only variables that have no impact on the outcome
of a program; a situation likely to arise due to a programming error, as shown in
the previous example. However, in virtue of this imprecise treatment of implicit
flows, we can show that strongly live variable analysis is sound for input data
usage, even for non-terminating programs.

We define the concretization function γX : P (X) → P (P (Σ × Σ⊥)) as:

γX(S) def= {R ∈ Σ × Σ⊥ | ∀i ∈ X \ S : unusedi(R)} (18)

where we abuse notation and use unusedi (cf. Eq. 3) to also denote its depen-
dency abstraction (cf. Eq. 10). We now show that strongly live variable analysis
is sound for proving that a program does not use the faint variables.

Theorem 6. A program does not use a subset J of its input variables if the
image via γ� ◦ γX of its strongly live variable abstraction ΛX is a subset of NJ :

γ�(γX(ΛX)) ⊆ NJ ⇒ P |= NJ
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Proof. Let us assume that γ�(γX(ΛX)) ⊆ NJ . By definition of γX (cf. Eq. 18),
we have that Λ� ⊆ γX(ΛX) and, by monotonicity of γ� (cf. Eq. 11), we have
that γ�(Λ�) ⊆ γ�(γX(ΛX)). Thus, since γ�(γX(ΛX)) ⊆ NJ , we have that
γ�(Λ�) ⊆ NJ . The conclusion follows from Theorem 4. 
�

This result shows that also strongly live variable analysis is subsumed by our
framework as it is an abstraction of the dependency semantics Λ�.

10 Syntactic Dependency Abstractions

In the following, we derive a more precise data usage analysis based on syntactic
dependencies between program variables. For simplicity, the analysis does not
take program termination into account, but we discuss possible solutions at the
end of the section. Due to space limitations, we only provide a terse description
of the abstraction and refer to [36] for further details.

U

B W

N

Fig. 5. Hasse diagram for the complete lattice 〈usage, �usage, �usage, �usage, N, U〉.

In order to capture implicit dependencies from variables appearing in boolean
conditions of conditional and while statements, we track when the value of a
variable is used or modified in a statement based on the level of nesting of the
statement in other statements. More formally, each program variable maps to a
value in the complete lattice shown in Fig. 5: the values U (used) and N (not-
used) respectively denote that a variable may be used and is not used at the
current nesting level; the values B (below) and W (overwritten) denote that
a variable may be used at a lower nesting level, and the value W additionally
indicates that the variable is modified at the current nesting level.

A variable is used (i.e., maps to U) if it is used in an assignment to another
variable that is used in the current or a lower nesting level (i.e., a variable that
maps to U or B). We define the operator assign[[x = e]] to compute the effect
of an assignment on a map m : X → usage, where X is the set of all variables:

assign[[x = e]](m) def= λy.

⎧
⎪⎨

⎪⎩

W y = x ∧ y �∈ vars(e) ∧ m(x) ∈ {U,B}
U y ∈ vars(e) ∧ m(x) ∈ {U,B}
m(y) otherwise

(19)

The assigned variable is overwritten (i.e., maps to W ), unless it is used in e.
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Another reason for a variable to be used is if it appears in the boolean
condition e of a statement that uses another variable or modifies another used
variable (i.e., there exists a variable x that maps to U or W ):

filter[[e]](m) def= λy.

{
U y ∈ vars(e) ∧ ∃x ∈ X: m(x) ∈ {U,W}
m(y) otherwise

(20)

We maintain a stack of these maps that grows or shrinks based on the level
of nesting of the currently analyzed statement. More formally, a stack is a tuple
〈m0,m1, . . . ,mk〉 of mutable length k, where each element m0,m1, . . . ,mk is a
map from X to usage. In the following, we use Q to denote the set of all stacks,
and we abuse notation by writing assign[[x = e]] and filter[[e]] to also denote
the corresponding operators on stacks:

assign[[x = e]](〈m0,m1, . . . ,mk〉) def= 〈assign[[x = e]](m0),m1, . . . ,mk〉

filter[[e]](〈m0,m1, . . . ,mk〉) def= 〈filter[[e]](m0),m1, . . . ,mk〉

The operator push duplicates the map at the top of the stack and modifies
the copy using the operator inc, to account for an increased nesting level:

push(〈m0,m1, . . . ,mk〉) def= 〈inc(m0),m0,m1, . . . ,mk〉

inc(m) def= λy.

⎧
⎪⎨

⎪⎩

B m(y) ∈ {U}
N m(y) ∈ {W}
m(y) otherwise

(21)

A used variable (i.e., mapping to U) becomes used below (i.e., now maps to B),
and a modified variable (i.e., mapping to W ) becomes unused (i.e., now maps
to N). The dual operator pop combines the two maps at the top of the stack:

pop(〈m0,m1, . . . ,mk〉) def= 〈dec(m0,m1), . . . ,mk〉

dec(m, k) def= λy.

{
k(y) m(y) ∈ {B,N}
m(y) otherwise

(22)

where the dec operator restores the value a variable y mapped to before increas-
ing the nesting level (i.e., k(y)) if it has not changed since (i.e., if the variable
still maps to B or N), and otherwise retains the new value y maps to.

We can now define the data usage analysis ΛQ, which is a backward analysis
on the lattice 〈Q,�Q,�Q〉. The partial order �Q and the least upper bound
�Q are the pointwise lifting, for each element of the stack, of the partial order
and least upper bound between maps from X to usage (which in turn are the
pointwise lifting of the partial order �usage and least upper bound �usage of the
usage lattice, cf. Fig. 5). We define the transfer function ΘQ[[s]] : Q → Q for
each statement s in our simple programming language as follows:
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math, bonus �→ U, passing �→ W �Q passing �→ U = math, bonus, passing �→ U
if not math :

bonus �→ U, passing �→ W | passing �→ U
passing = bonus

passing �→ B | passing �→ U
passing �→ U

Fig. 6. Data usage analysis of the last statement of the program shown in Example 7.
Stack elements are separated by | and, for brevity, variables mapping to N are omitted.

ΘQ[[skip]](q) def= q

ΘQ[[x = e]](q) def= assign[[x = e]](q)

ΘQ[[if b : s1 else : s2]](q)
def= pop ◦ filter[[b]] ◦ ΘQ[[s1]] ◦ push(q)

�Q pop ◦ filter[[b]] ◦ ΘQ[[s2]] ◦ push(q)

ΘQ[[while b : s]](q) def= lfp�Q
t ΘQ[[if b : s else : skip]]

ΘQ[[s1 s2]](q)
def= ΘQ[[s1]] ◦ ΘQ[[s2]](q)

The initial stack contains a single map, in which the output variables map to
the value U , and all other variables map to N . We exemplify the analysis below.

Example 10. Let us consider again the program P shown in Example 7. The
initial stack begins with a single map m, in which the output variable passing
maps to U and all other variables map to N .

At line 4, before analyzing the body of the conditional statement, a modified
copy of m is pushed onto the stack: this copy maps passing to B, meaning that
passing is only used in a lower nesting level, and all other variables still map to
N (cf. Eq. 21). As a result of the assignment (cf. Eq. 19), passing is overwritten
(i.e., maps to W ), and bonus is used (i.e., maps to U). Since the body of the
conditional statement modifies a used variable and uses another variable, the
analysis of its boolean condition makes math used as well (cf. Eq. 20). Finally,
the maps at the top of the stack are merged and the result maps math, bonus,
and passing to U , and all other variables to N (cf. Eq. 22). The analysis is
visualized in Fig. 6.

The stack remains unchanged at line 3 and line 2, since the statement at line
3 is identical to line 4 and the body of the conditional statement at line 2 does
not modify any used variable and does not use any other variable. Finally, at
line 1 the variable passing is modified (i.e., it now maps to W ), while math and
bonus remain used (i.e., they map to U). Thus, the analysis is precise enough
to conclude that the input variables english and science are unused. �

Note that, similarly to the non-interference analysis presented in Sect. 8, the
data usage analysis ΛQ does not consider non-termination. Indeed, for the pro-
gram shown in Example 8, the analysis does not capture that the input variable
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english is used, even though the termination of the program depends on its
value. We define the concretization function γQ : Q → P (P (Σ × Σ)) as:

γQ(〈m0, . . . , mk〉) def
= {R ∈ Σ × Σ | ∀i ∈ X: m0(i) ∈ {N} ⇒ unusedi(R)} (23)

where again we write unusedi (cf. Eq. 3) to also denote its dependency abstrac-
tion. We now show that ΛQ is sound for proving that a program does not use a
subset of its input variables, if the program is terminating.

Theorem 7. A terminating program does not use a subset J of its input vari-
ables if the image via γ� ◦ γQ of its abstraction ΛQ is a subset of NJ :

γ�(γQ(ΛQ)) ⊆ NJ ⇒ P |= NJ

Proof. Let us assume that γ�(γQ(ΛQ)) ⊆ NJ . Since the program is terminating,
we have that Λ� ⊆ γQ(ΛQ), by definition of the concretization function γQ (cf.
Eq. 23). Then, by monotonicity of γ� (cf. Eq. 11), we have that γ�(Λ�) ⊆
γ�(γQ(ΛQ)). Thus, since γ�(γQ(ΛQ)) ⊆ NJ , we have that γ�(Λ�) ⊆ NJ . The
conclusion follows from Theorem 4. 
�

In order to take termination into account, one could map each variable
appearing in the guard of a loop to the value U . Alternatively, one could run
a termination analysis [3,33,34], along with the data usage analysis, and only
map to U variables appearing in the loop guard of a possibly non-terminating
loop.

11 Piecewise Abstractions

The static analyses presented so far can be used only to detect unused data
stored in program variables. However, realistic data science applications read
and manipulate data organized in data structures such as arrays, lists, and dic-
tionaries. In the following, we demonstrate that having expressed the analyses
as abstract domains allows us to easily lift the analyses to such a scenario. In
particular, to detect unused chunks of the input data, we combine the more pre-
cise data usage analysis presented in the previous section with the array content
abstraction proposed by Cousot et al. [16]. Due to space limitations, we provide
only an informal description of the resulting abstract domain and refer to [36]
for further details and examples. The analyses presented in earlier sections can
be similarly combined with the array abstraction for the same purpose.

We extend our small programming language introduced in Sect. 7 with integer
variables, arithmetic and boolean comparison expressions, and arrays:

e ::= · · · | a[e] | len(a) | e ⊕ e | e �� e (expressions)
s ::= · · · | a[e] = e (statements)

where ⊕ and �� respectively range over arithmetic and boolean comparison oper-
ators, a ranges over array variables, and len(a) denotes the length of a.



An Abstract Interpretation Framework for Data Usage 705

Piecewise Array Abstraction. The array abstraction [16] divides an array into
consecutive segments, each segment being a uniform abstraction of the array
content in that segment. The bounds of the segments are specified by sets of
side-effect free expressions restricted to a canonical normal form, all having the
same (concrete) value. The abstraction is parametric in the choice of the abstract
domains used to manipulate sets of expressions and to represent the array con-
tent within each segment. For our analysis, we use the octagon abstract domain
[31] for the expressions, and the usage lattice presented in the previous section
(cf. Fig. 5) for the segments. Thus, an array a is abstracted, for instance, as
{0, i} N {j + 1}? U {len(a)}, where the symbol ? indicates that the segment
{0, i} N {j + 1} might be empty. The abstraction indicates that all array ele-
ments (if any) from index i (which is equal to zero) to index j (the bound j + 1
is exclusive) are unused, and all elements from j + 1 to len(a) − 1 may be used.
Let A be the set of all such array abstractions. The initial segmentation of an
array a ∈ A is a single segment with unused content (i.e., {0} N {len(a)}?).

For our analysis, we augment the array abstraction with new back-
ward assignment and filter operators. The operators assignA[[a[i] = e]] and
filterA[[e]] split and fill segments to take into account assignments and accesses
to array elements that influence the program outcome. For instance, an assign-
ment to a[i] with an expression containing a used variable modifies the segmen-
tation {0} N {len(a)}? into {0} N {i}? U {i + 1} N {len(a)}?, which indicates
that the array element at index i is used by the program. An access a[i] in a
boolean condition guarding a statement that uses or modifies another used vari-
ables is handled analogously. Instead, the operator assignA[[x = e]] modifies the
segmentation of an array by replacing each occurrence of the assigned variable
x with the canonical normal form of the expression e. For instance, an assign-
ment i = i + 1 modifies the segmentation {0} N {i}? U {i + 1} N {len(a)}? into
{0} N {i + 1}? U {i + 2} N {len(a)}?. If e cannot be precisely put into a canon-
ical normal form, the operator replaces the assigned variable with an approxi-
mation of e as an integer interval [13] computed using the underlying numerical
domain, and possibly merges segments together as a result of the approximation.
For instance, a non-linear assignment i = i∗j approximated as i = [0, 1] modifies
the segmentation {0} N {i}? U {i + 1} N {len(a)}? into {0} U {2} N {len(a)}?,
which loses the information that the initial segment of the array is unused.

When merging control flows, segmentations are compared or joined by means
of a unification algorithm [16], which finds the coarsest common refinement
of both segmentations. Then, the comparison �A or the join �A is performed
pointwise for each segment using the corresponding operators of the underlying
abstract domain chosen to abstract the array content. For our analysis, we adapt
and refine the originally proposed unification algorithm to take into account the
knowledge of the numerical domain chosen to abstract the segment bounds. We
refer to [36] for further details. A widening �A limits the number of segments to
enforce termination of the analysis.

Piecewise Data Usage Analysis. We can now map each scalar variable to an
element of the usage lattice and each array variable to an array segmentation
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1 f a i l e d = 0
2 i = 1 # 1 should be 0
3 while i < len ( grades ) :
4 i f grades [ i ] < 4 : f a i l e d = f a i l e d + 1
5 i = i + 1
6 pass ing = 2 ∗ f a i l e d < len ( grades )

Fig. 7. Another program to check if a student has passed a number of exams based on
their grades stored in the array grades. The programmer has made a mistake at line
2 that causes the program to ignore the grade stored at index 0 in grades.

grades {→� 0} N {i}? U {i+ 1}? U {len(grades)}?
while i < len(grades) :

grades {→� 0} N {i}? U {i+ 1}? B {i+ 2}? B {len(grades)}? | . . .
if grades[i] < 4:

grades {→� 0} N {i+ 1}? B {i+ 2}? B {len(grades)}? | · · · | . . .
failed = failed+ 1
grades {→� 0} N {i+ 1}? B {i+ 2}? B {len(grades)}? | · · · | . . .

grades {→� 0} N {i+ 1}? B {i+ 2}? B {len(grades)}? | . . .
i = i+ 1
grades {→� 0} N {i}? B {i+ 1}? B {len(grades)}? | . . .

grades {→� 0} N {len(grades)}?

Fig. 8. Data usage analysis of the loop statement of the program shown in Example 11.
Stack elements are separated by | and, for brevity, only array variables are shown.

in A, and use the data usage analysis ΛQ presented in the previous section to
identify unused input data stored in variables and portions of arrays.

Example 11. Let us consider the program shown in Fig. 7 where the array vari-
able grades and the variable passing are the input and output variables, respec-
tively. The initial stack contains a single map in which passing maps to U , all
other scalar variables map to N , and grades maps to {0} N {len(grades)}?,
indicating that all elements of the array (if any) are unused.

At line 6, the assignment modifies the variable passing (i.e., passing now
maps to W ) and uses the variable failed (i.e., failed now maps to U), while
every other variable remains unchanged.

The result of the analysis of the loop statement at line 3 is shown
in Fig. 8. The analysis of the loop begins by pushing (cf. Eq. 21) a map
onto the stack in which passing becomes unused (i.e., maps to N) and
failed is used only in a lower nesting level (i.e., maps to B), and every
other variable still remains unchanged. At the first iteration of the anal-
ysis of the loop body, the assignment at line 4 uses failed and thus
the access grades[i] at line 3 creates a used segment in the segmentation
for grades, which becomes {0} N {i}? U {i + 1} N {len(grades)}?. At the
second iteration, the push operator turns the used segment {i} U {i + 1}
into {i} B {i + 1}, and the assignment to i modifies the segment into
{i + 1} B {i + 2} (while the segmentation in the second stack element becomes
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{0} N {i + 1}? U {i + 2} N {len(grades)}?). Then, the access to the array at
line 3 creates again a used segment {i} U {i + 1} (in the first segmentation)
and the analysis continues with the result of the pop operator (cf. Eq. 22):
{0} N {i}? U {i + 1}? U {i + 2}? N {len(grades)}?. After widening, the last
two segments are merged into a single segment, and the analysis of the loop
terminates with {0} N {i}? U {i + 1}? U {len(grades)}?.

Finally, the analysis of the assignment at line 2 produces the segmentation
{0} N {1}? U {2}? U {len(grades)}?, which correctly indicates that the first
element of the array grades (if any) is unused by the program. �

Implementation. The analyses presented in this and in the previous section are
implemented in the prototype static analyzer lyra and are available online3.

The implementation is in python and, at the time of writing, accepts pro-
grams written in a limited subset of python without user-defined classes. A
type inference is run before the analysis of a program. The analysis is performed
backwards on the control flow graph of the program with a standard worklist
algorithm [32], using widening at loop heads to enforce termination.

12 Related Work

The most directly relevant work has been discussed throughout the paper. The
non-interference analysis proposed by Assaf et al. [6] (cf. Sect. 8) is similar to the
logic of Amtoft and Banerjee [5] and the type system of Hunt and Sands [25].
The data usage analysis proposed in Sect. 10 is similar to dependency analyses
used for program slicing [37] (e.g., [24]). Both analyses as well as strongly live
variable analysis (cf. Sect. 9) are based on the syntactic presence of a variable
in the definition of another variable. To overcome this limitation, one should
look further for semantic dependencies between values of program variables. In
this direction, Giacobazzi, Mastroeni, and others [19,22,29] have proposed the
notion of abstract dependency. However, note that an analysis based on abstract
dependencies would over-approximate the subset of the input variables that are
unused by a program. Indeed, the absence of an abstract dependency between
variables (e.g., a dependency between the parity of the variables [19,29]) does
not imply the absence of a (concrete) dependency between the variables (i.e., a
dependency between the values of the variables). Thus, such an analysis could
not be used to prove that a program does not use a subset of its input variables,
but would be used to prove that a program uses a subset of its input variables.

Semantics formulations using sets of sets of traces have already been pro-
posed in the literature [6,28]. Mastroeni and Pasqua [28] lift the hierarchy of
semantics developed by Cousot [12] to sets of sets of traces to obtain a hierarchy
of semantics suitable for verifying general program properties (i.e., properties
that are not subset-closed, cf. Sect. 7). However, none of the semantics that they
proposed is suitable for input data usage: all semantics in the hierarchy are
abstractions of a semantics that contains sets with both finite and infinite traces
3 http://www.pm.inf.ethz.ch/research/lyra.html.

http://www.pm.inf.ethz.ch/research/lyra.html
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and thus, unlike our outcome semantics (cf. Sect. 5), cannot be used to reason
about terminating and non-terminating outcomes of a program. Similarly, as
observed in [28], the semantics proposed by Assaf et al. [6] can be used to verify
only subset-closed properties. Thus, it cannot be used for input data usage.

Finally, to the best of our knowledge, our work is the first to aim at detecting
programming errors in data science code using static analysis. Closely related
are [7,10] which, however, focus on spreadsheet applications and target errors
in the data rather than the code that analyzes it. Recent work [2] proposes an
approach to repair bias in data science code. We believe that our work can be
applied in this context to prove absence of bias, e.g., by showing that a program
does not use gender information to decide whether to hire a person.

13 Conclusion and Future Work

In this paper, we have proposed an abstract interpretation framework to auto-
matically detect input data that remains unused by a program. Additionally, we
have shown that existing static analyses based on dependencies are subsumed
by our unifying framework and can be used, with varying degrees of precision,
for proving that a program does not use some of its input data. Finally, we have
proposed a data usage analysis for more realistic data science applications that
store input data in compound data structures such as arrays or lists.

As part of our future work, we plan to use our framework to guide the design
of new, more precise static analyses for data usage. We also want to explore the
complementary direction of proving that a program uses its input data by devel-
oping an analysis based on abstract dependencies [19,22,29] between program
variables, as discussed above. Additionally, we plan to investigate other appli-
cations of our work such as provenance or lineage analysis [9] as well as proving
absence of algorithmic bias [2]. Finally, we want to study other programming
errors related to data usage such as accidental data duplication.
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