
Fragment Abstraction for Concurrent
Shape Analysis

Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh(B)

Uppsala University, Uppsala, Sweden
cong-quy.trinh@it.uu.se

Abstract. A major challenge in automated verification is to develop
techniques that are able to reason about fine-grained concurrent algo-
rithms that consist of an unbounded number of concurrent threads, which
operate on an unbounded domain of data values, and use unbounded
dynamically allocated memory. Existing automated techniques consider
the case where shared data is organized into singly-linked lists. We
present a novel shape analysis for automated verification of fine-grained
concurrent algorithms that can handle heap structures which are more
complex than just singly-linked lists, in particular skip lists and arrays of
singly linked lists, while at the same time handling an unbounded number
of concurrent threads, an unbounded domain of data values (including
timestamps), and an unbounded shared heap. Our technique is based on
a novel shape abstraction, which represents a set of heaps by a set of
fragments. A fragment is an abstraction of a pair of heap cells that are
connected by a pointer field. We have implemented our approach and
applied it to automatically verify correctness, in the sense of linearizabil-
ity, of most linearizable concurrent implementations of sets, stacks, and
queues, which employ singly-linked lists, skip lists, or arrays of singly-
linked lists with timestamps, which are known to us in the literature.

1 Introduction

Concurrent algorithms with an unbounded number of threads that concurrently
access a dynamically allocated shared state are of central importance in a large
number of software systems. They provide efficient concurrent realizations of
common interface abstractions, and are widely used in libraries, such as the
Intel Threading Building Blocks or the java.util.concurrent package. They
are notoriously difficult to get correct and verify, since they often employ fine-
grained synchronization and avoid locking when possible. A number of bugs
in published algorithms have been reported [13,30]. Consequently, significant
research efforts have been directed towards developing techniques to verify cor-
rectness of such algorithms. One widely-used correctness criterion is that of
linearizability, meaning that each method invocation can be considered to occur
atomically at some point between its call and return. Many of the developed ver-
ification techniques require significant manual effort for constructing correctness

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 442–471, 2018.
https://doi.org/10.1007/978-3-319-89884-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_16&domain=pdf


Fragment Abstraction for Concurrent Shape Analysis 443

proofs (e.g., [25,41]), in some cases with the support of an interactive theo-
rem prover (e.g., [11,35,40]). Development of automated verification techniques
remains a difficult challenge.

A major challenge for the development of automated verification techniques is
that such techniques must be able to reason about fine-grained concurrent algo-
rithms that are infinite-state in many dimensions: they consist of an unbounded
number of concurrent threads, which operate on an unbounded domain of data
values, and use unbounded dynamically allocated memory. Perhaps the hardest
of these challenges is that of handling dynamically allocated memory. Conse-
quently, existing techniques that can automatically prove correctness of such
fine-grained concurrent algorithms restrict attention to the case where heap
structures represent shared data by singly-linked lists [1,3,18,36,42]. Further-
more, many of these techniques impose additional restrictions on the considered
verification problem, such as bounding the number of accessing threads [4,43,45].
However, in many concurrent data structure implementations the heap repre-
sents more sophisticated structures, such as skiplists [16,22,38] and arrays of
singly-linked lists [12]. There are no techniques that have been applied to auto-
matically verify concurrent algorithms that operate on such data structures.

Contributions. In this paper, we present a technique for automatic verification
of concurrent data structure implementations that operate on dynamically allo-
cated heap structures which are more complex than just singly-linked lists. Our
framework is the first that can automatically verify concurrent data structure
implementations that employ singly linked lists, skiplists [16,22,38], as well as
arrays of singly linked lists [12], at the same time as handling an unbounded
number of concurrent threads, an unbounded domain of data values (including
timestamps), and an unbounded shared heap.

Our technique is based on a novel shape abstraction, called fragment abstrac-
tion, which in a simple and uniform way is able to represent several different
classes of unbounded heap structures. Its main idea is to represent a set of
heap states by a set of fragments. A fragment represents two heap cells that are
connected by a pointer field. For each of its cells, the fragment represents the
contents of its non-pointer fields, together with information about how the cell
can be reached from the program’s global pointer variables. The latter informa-
tion consists of both: (i) local information, saying which pointer variables point
directly to them, and (ii) global information, saying how the cell can reach to and
be reached from (by following chains of pointers) heap cells that are globally sig-
nificant, typically since some global variable points to them. A set of fragments
represents the set of heap states in which any two pointer-connected nodes is
represented by some fragment in the set. Thus, a set of fragments describes the
set of heaps that can be formed by “piecing together” fragments in the set. The
combination of local and global information in fragments supports reasoning
about the sequence of cells that can be accessed by threads that traverse the
heap by following pointer fields in cells and pointer variables: the local infor-
mation captures properties of the cell fields that can be accessed as a thread
dereferences a pointer variable or a pointer field; the global information also



444 P. A. Abdulla et al.

captures whether certain significant accesses will at all be possible by follow-
ing a sequence of pointer fields. This support for reasoning about patterns of
cell accesses enables automated verification of reachability and other functional
properties.

Fragment abstraction can (and should) be combined, in a natural way,
with data abstractions for handling unbounded data domains and with thread
abstractions for handling an unbounded number of threads. For the latter we
adapt the successful thread-modular approach [5], which represents the local
state of a single, but arbitrary thread, together with the part of the global state
and heap that is accessible to that thread. Our combination of fragment abstrac-
tion, thread abstraction, and data abstraction results in a finite abstract domain,
thereby guaranteeing termination of our analysis.

We have implemented our approach and applied it to automatically verify
correctness, in the sense of linearizability, of a large number of concurrent data
structure algorithms, described in a C-like language. More specifically, we have
automatically verified linearizability of most linearizable concurrent implementa-
tions of sets, stacks, and queues, and priority queues, which employ singly-linked
lists, skiplists, or arrays of timestamped singly-linked lists, which are known to
us in the literature on concurrent data structures. For this verification, we spec-
ify linearizability using the simple and powerful technique of observers [1,7,9],
which reduces the criterion of linearizability to a simple reachability property.
To verify implementations of stacks and queues, the application of observers can
be done completely automatically without any manual steps, whereas for imple-
mentations of sets, the verification relies on light-weight user annotation of how
linearization points are placed in each method [3].

The fact that our fragment abstraction has been able to automatically verify
all supplied concurrent algorithms, also those that employ skiplists or arrays of
SLLs, indicates that the fragment abstraction is a simple mechanism for cap-
turing both the local and global information about heap cells that is neces-
sary for verifying correctness, in particular for concurrent algorithms where an
unbounded number of threads interact via a shared heap.

Outline. In the next section, we illustrate our fragment abstraction on the ver-
ification of a skiplist-based concurrent set implementation. In Sect. 3 we intro-
duce our model for programs, and of observers for specifying linearizability. In
Sect. 4 we describe in more detail our fragment abstraction for skiplists; note
that singly-linked lists can be handled as a simple special case of skiplists. In
Sect. 5 we describe how fragment abstraction applies to arrays of singly-linked
lists with timestamp fields. Our implementation and experiments are reported
in Sect. 6, followed by conclusions in Sect. 7.

Related Work. A large number of techniques have been developed for represent-
ing heap structures in automated analysis, including, e.g., separation logic and
various related graph formalisms [10,15,47], other logics [33], automata [23], or
graph grammars [19]. Most works apply these to sequential programs.



Fragment Abstraction for Concurrent Shape Analysis 445

Approaches for automated verification of concurrent algorithms are limited
to the case of singly-linked lists [1,3,18,36,42]. Furthermore, many of these tech-
niques impose additional restrictions on the considered verification problem, such
as bounding the number of accessing threads [4,43,45].

In [1], concurrent programs operating on SLLs are analyzed using an adapta-
tion of a transitive closure logic [6], combined with tracking of simple sortedness
properties between data elements; the approach does not allow to represent pat-
terns observed by threads when following sequences of pointers inside the heap,
and so has not been applied to concurrent set implementations. In our recent
work [3], we extended this approach to handle SLL implementations of con-
current sets by adapting a well-known abstraction of singly-linked lists [28] for
concurrent programs. The resulting technique is specifically tailored for singly-
links. Our fragment abstraction is significantly simpler conceptually, and can
therefore be adapted also for other classes of heap structures. The approach
of [3] is the only one with a shape representation strong enough to verify con-
current set implementations based on sorted and non-sorted singly-linked lists
having non-optimistic contains (or lookup) operations we consider, such as the
lock-free sets of HM [22], Harris [17], or Michael [29], or unordered set of [48].
As shown in Sect. 6, our fragment abstraction can handle them as well as also
algorithms employing skiplists and arrays of singly-linked lists.

There is no previous work on automated verification of skiplist-based concur-
rent algorithms. Verification of sequential algorithms have been addressed under
restrictions, such as limiting the number of levels to two or three [2,23]. The
work [34] generates verification conditions for statements in sequential skiplist
implementations. All these works assume that skiplists have the well-formedness
property that any higher-level lists is a sublist of any lower-level list, which is
true for sequential skiplist algorithms, but false for several concurrent ones, such
as [22,26].

Concurrent algorithms based on arrays of SLLs, and including timestamps,
e.g., for verifying the algorithms in [12] have shown to be rather challenging. Only
recently has the TS stack been verified by non-automated techniques [8] using
a non-trivial extension of forward simulation, and the TS queue been verified
manually by a new technique based on partial orders [24,37]. We have verified
both these algorithms automatically using fragment abstraction.

Our fragment abstraction is related in spirit to other formalisms that abstract
dynamic graph structures by defining some form of equivalence on its nodes
(e.g., [23,33,46]). These have been applied to verify functional correctness fine-
grained concurrent algorithms for a limited number of SLL-based algorithms.
Fragment abstraction’s representation of both local and global information
allows to extend the applicability of this class of techniques.

2 Overview

In this section, we illustrate our technique on the verification of correctness, in
the sense of linearizability, of a concurrent set data structure based on skiplists,



446 P. A. Abdulla et al.

namely the Lock-Free Concurrent Skiplist from [22, Sect. 14.4]. Skiplists provide
expected logarithmic time search while avoiding some of the complications of tree
structures. Informally, a skiplist consists of a collection of sorted linked lists, each
of which is located at a level, ranging from 1 up to a maximum value. Each skiplist
node has a key value and participates in the lists at levels 1 up to its height.

- +3 5 7

Head Tail

Fig. 1. An example of skiplist

The skiplist has sentinel head and tail
nodes with maximum heights and key val-
ues −∞ and +∞, respectively. The lowest-
level list (at level 1) constitutes an ordered
list of all nodes in the skiplist. Higher-level
lists are increasingly sparse sublists of the
lowest-level list, and serve as shortcuts into
lower-level lists. Figure 1 shows an example
of a skiplist of height 3. It has head and
tail nodes of height 3, two nodes of height
2, and one node of height 1.

The algorithm has three main methods, namely add, contains and remove.
The method add(x) adds x to the set and returns true iff x was not already in
the set; remove(x) removes x from the set and returns true iff x was in the set;
and contains(x) returns true iff x is in the set. All methods rely on a method
find to search for a given key. In this section, we shortly describe the find and
add methods. Figure 2 shows code for these two methods.

In the algorithm, each heap node has a key field, a height, an array of
next pointers indexed from 1 up to its height, and an array of marked fields
which are true if the node has been logically removed at the corresponding level.
Removal of a node (at a certain level k) occurs in two steps: first the node is
logically removed by setting its marked flag at level k to true, thereafter the
node is physically removed by unlinking it from the level-k list. The algorithm
must be able to update the next[k] pointer and marked[k] field together as one
atomic operation; this is standardly implemented by encoding them in a single
word. The head and tail nodes of the skiplist are pointed to by global pointer
variables H and T, respectively. The find method traverses the list at decreasing
levels using two local variables pred and curr, starting at the head and at the
maximum level (lines 5–6). At each level k it sets curr to pred.next[k] (line 7).
During the traversal, the pointer variable succ and boolean variable marked are
atomically assigned the values of curr.next[k] and curr.marked[k], respectively
(line 9, 14). After that, the method repeatedly removes marked nodes at the
current level (lines 10 to 14). This is done by using a CompareAndSwap (CAS)
command (line 11), which tests whether pred.next[k] and pred.marked[k] are
equal to curr and false respectively. If this test succeeds, it replaces them with
succ and false and returns true; otherwise, the CAS returns false. During the
traversal at level k, pred and curr are advanced until pred points to a node
with the largest key at level k which is smaller than x (lines 15–18). Thereafter,
the resulting values of pred and curr are recorded into preds[k] and succs[k]
(lines 19, 20), whereafter traversal continues one level below until it reaches the
bottom level. Finally, the method returns true if the key value of curr is equal
to x; otherwise, it returns false meaning that a node with key x is not found.



Fragment Abstraction for Concurrent Shape Analysis 447

Fig. 2. Code for the find and add methods of the skiplist algorithm. (Color figure
online)

The add method uses find to check whether a node with key x is already in
the list. If so it returns false; otherwise, a new node is created with randomly
chosen height h (line 7), and with next pointers at levels from 1 to h initialised
to corresponding elements of succ (line 8 to 9). Thereafter, the new node is
added into the list by linking it into the bottom-level list between the preds[1]
and succs[1] pointers returned by find. This is achieved by using a CAS to make
preds[1].next[1] point to the new node (line 13). If the CAS fails, the add method
will restart from the beginning (line 3) by calling find again, etc. Otherwise,
add proceeds with linking the new node into the list at increasingly higher levels
(lines 16 to 22). For each higher level k, it makes preds[k].next[k] point to the
new node if it is still valid (line 20); otherwise find is called again to recompute
preds[k] and succs[k] on the remaining unlinked levels (line 22). Once all levels
are linked, the method returns true.

To prepare for verification, we add a specification which expresses that the
skiplist algorithm of Fig. 2 is a linearizable implementation of a set data struc-
ture, using the technique of observers [1,3,7,9]. For our skiplist algorithm, the



448 P. A. Abdulla et al.

user first instruments statements in each method that correspond to lineariza-
tion points (LPs), so that their execution announces the corresponding atomic
set operation. In Fig. 2, the LP of a successful add operation is at line 15 of the
add method (denoted by a blue dot) when the CAS succeeds, whereas the LP of
an unsuccessful add operation is at line 13 of the find method (denoted by a
red dot). We must now verify that in any concurrent execution of a collection
of method calls, the sequence of announced operations satisfies the semantics of
the set data structure. This check is performed by an observer, which monitors
the sequence of announced operations. The observer for the set data structure
utilizes a register, which is initialized with a single, arbitrary key value. It checks
that operations on this particular value follow set semantics, i.e., that successful
add and remove operations on an element alternate and that contains are con-
sistent with them. We form the cross-product of the program and the observer,
synchronizing on operation announcements. This reduces the problem of check-
ing linearizability to the problem of checking that in this cross-product, regard-
less of the initial observer register value, the observer cannot reach a state where
the semantics of the set data structure has been violated.

To verify that the observer cannot reach a state where a violation is reported,
we compute a symbolic representation of an invariant that is satisfied by all
reachable configurations of the cross-product of a program and an observer. This
symbolic representation combines thread abstraction, data abstraction and our
novel fragment abstraction to represent the heap state. Our thread abstraction
adapts the thread-modular approach by representing only the view of single,
but arbitrary, thread th. Such a view consists of the local state of thread th,
including the value of the program counter, the state of the observer, and the
part of the heap that is accessible to thread th via pointer variables (local to th
or global). Our data abstraction represents variables and cell fields that range
over small finite domains by their concrete values, whereas variables and fields
that range over the same domain as key fields are abstracted to constraints over
their relative ordering (wrp. to <).

In our fragment abstraction, we represent the part of the heap that is acces-
sible to thread th by a set of fragments. A fragment represents a pair of
heap cells (accessible to th) that are connected by a pointer field, under the
applied data abstraction. A fragment is a triple of form 〈i, o, φ〉, where i and
o are tags that represent the two cells, and φ is a subset of {<,=, >} which
constrains the order between the key fields of the cells. Each tag is a tuple
tag = 〈dabs, pvars, reachfrom, reachto, private〉, where

– dabs represents the non-pointer fields of the cell under the applied data
abstraction,

– pvars is the set of (local to th or global) pointer variables that point to the
cell,

– reachfrom is the set of (i) global pointer variables from which the cell rep-
resented by the tag is reachable via a (possibly empty) sequence of next[1]
pointers, and (ii) observer registers xi such that the cell is reachable from
some cell whose data value equals that of xi,



Fragment Abstraction for Concurrent Shape Analysis 449

– reachto is the corresponding information, but now considering cells that are
reachable from the cell represented by the tag.

– private is true only if c is private to th.

Thus, the fragment contains both (i) local information about the cell’s fields and
variables that point to it, as well as (ii) global information, representing how
each cell in the pair can reach to and be reached from (by following a chain of
pointers) a small set of globally significant heap cells.

key

marked[1]

marked[h]

next[1]

next[h]

height = h

Fig. 3. A structure of a cell

A set of fragments represents the set of heap
structures in which each pair of pointer-connected
nodes is represented by some fragment in the set.
Put differently, a set of fragments describes the set of
heaps that can be formed by “piecing together” pairs
of pointer-connected nodes that are represented by
some fragment in the set. This “piecing together”
must be both locally consistent (appending only
fragments that agree on their common node), and
globally consistent (respecting the global reachabil-
ity information). When applying fragment abstraction to skiplists, we use two
types of fragments: level 1-fragments for nodes connected by a next[1]-pointer,
and higher level-fragments for nodes connected by a higher level pointer. In other
words, we abstract all levels higher than 2 by the abstract element higher.
Thus, a pointer or non-pointer variable of form v[k], indexed by a level k ≥ 2, is
abstracted to v[higher].

Fig. 4. A heap shape of a 3-level skiplist with two threads active

Let us illustrate how fragment abstraction applies to the skiplist algorithm.
Figure 4 shows an example heap state of the skiplist algorithm with three levels.



450 P. A. Abdulla et al.

Each heap cell is shown with the values of its fields as described in Fig. 3. In
addition, each cell is labeled by the pointer variables that point to it; we use
preds(i)[k] to denote the local variable preds[k] of thread thi, and the same
for other local variables. In the heap state of Fig. 4, thread th1 is trying to add
a new node of height 1 with key 9, and has reached line 8 of the add method.
Thread th2 is trying to add a new node with key 20 and it has done its first
iteration of the for loop in the find method. The variables preds(2)[3] and
currs(2)[3] have been assigned so that the new node (which has not yet been
created) will be inserted between node 5 and the tail node. The observer is not
shown, but the value of the observer register is 9; thus it currently tracks the
add operation of th1.

Figure 5 illustrates how pairs of heap nodes can be represented by fragments.
As a first example, in the view of thread th1, the two left-most cells in Fig. 4 are
represented by the level 1-fragment v1 in Fig. 5. Here, the variable preds(1)[3] is
represented by preds[higher]. The mapping π1 represents the data abstraction
of the key field, here saying that it is smaller than the value 9 of the observer
register. The two left-most cells are also represented by a higher-level fragment,
viz. v8. The pair consisting of the two sentinel cells (with keys −∞ and +∞) is
represented by the higher-level fragment v9. In each fragment, the abstraction
dabs of non-pointer fields are shown represented inside each tag of the fragment.
The φ is shown as a label on the arrow between two tags. Above each tag is pvars.
The first row under each tag is reachfrom, whereas the second row is reachto.

Figure 5 shows a set of fragments that is sufficient to represent the part of
the heap that is accessible to th1 in the configuration in Fig. 4. There are 11
fragments, named v1, . . . , v11. Two of these (v6, v7 and v11) consist of a tag

Fig. 5. Fragment abstraction of skiplist algorithm



Fragment Abstraction for Concurrent Shape Analysis 451

that points to ⊥. All other fragments consist of a pair of pointer-connected tags.
The fragments v1, . . . , v6 are level-1-fragments, whereas v7, . . . , v11 are higher
level-fragments. The private field of the input tag of v7 is true, whereas the
private field of tags of other fragments are false.

To verify linearizability of the algorithm in Fig. 2, we must represent several
key invariants of the heap. These include (among others):

1. the bottom-level list is strictly sorted in key order,
2. a higher-level pointer from a globally reachable node is a shortcut into the

level-1 list, i.e., it points to a node that is reachable by a sequence of next[1]
pointers,

3. all nodes which are unreachable from the head of the list are marked, and
4. the variable pred points to a cell whose key field is never larger than the

input parameter of its add method.

Let us illustrate how such invariants are captured by our fragment abstraction.
(1) All level-1 fragments are strictly sorted, implying that the bottom-level list
is strictly sorted. (2) For each higher-level fragment v, if H ∈ v.i.reachfrom
then also H ∈ v.o.reachfrom, implying (together with v.φ = {<}) that the cell
represented by v.o it is reachable from that represented by v.i by a sequence
of next[1]-pointers. (3) This is verified by inspecting each tag: v3 contains the
only unreachable tag, and it is also marked. (4) The fragments express this
property in the case where the value of key is the same as the value of the
observer register x. Since the invariant holds for any value of x, this property is
sufficiently represented for purposes of verification.

3 Concurrent Data Structure Implementations

In this section, we introduce our representation of concurrent data structure
implementations, we define the correctness criterion of linearizability, we intro-
duce observers and how to use them for specifying linearizability.

3.1 Concurrent Data Structure Implementations

We first introduce (sequential) data structures. A data structure DS is a pair
〈D,M〉, where D is a (possibly infinite) data domain and M is an alphabet of
method names. An operation op is of the form m(din , dout), where m ∈ M is a
method name, and din , dout are the input resp. output values, each of which is
either in D or in some small finite domain F, which includes the booleans. For
some method names, the input or output value is absent from the operation. A
trace of DS is a sequence of operations. The (sequential) semantics of a data struc-
ture DS is given by a set [[DS]] of allowed traces. For example, a Set data structure
has method names add, remove, and contains. An example of an allowed trace
is add(3, true) contains(4, false) contains(3, true) remove(3, true).

A concurrent data structure implementation operates on a shared state con-
sisting of shared global variables and a shared heap. It assigns, to each method



452 P. A. Abdulla et al.

name, a method which performs operations on the shared state. It also comes
with a method named init, which initializes its shared state.

A heap (state) H consists of a finite set C of cells, including the two special
cells null and ⊥ (dangling). Heap cells have a fixed set F of fields, namely
non-pointer fields that assume values in D or F, and possibly lock fields. We use
the term D-field for a non-pointer field that assumes values in D, and the terms
F-field and lock field with analogous meaning. Furthermore, each cell has one
or several named pointer fields. For instance, in data structure implementations
based on singly-linked lists, each heap cell has a pointer field named next; in
implementations based on skiplists there is an array of pointer fields named
next[k] where k ranges from 1 to a maximum level.

Each method declares local variables and a method body. The set of local
variables includes the input parameter of the method and the program counter
pc. A local state loc of a thread th defines the values of its local variables. The
global variables can be accessed by all threads, whereas local variables can be
accessed only by the thread which is invoking the corresponding method. Vari-
ables are either pointer variables (to heap cells), locks, or data variables assuming
values in D or F. We assume that all global variables are pointer variables. The
body is built in the standard way from atomic commands, using standard control
flow constructs (sequential composition, selection, and loop constructs). Atomic
commands include assignments between variables, or fields of cells pointed to
by a pointer variable. Method execution is terminated by executing a return
command, which may return a value. The command new Node() allocates a new
structure of type Node on the heap, and returns a reference to it. The compare-
and-swap command CAS(a, b, c) atomically compares the values of a and b. If
equal, it assigns the value of c to a and returns true, otherwise, it leaves a
unchanged and returns false. We assume a memory management mechanism,
which automatically collects garbage, and ensures that a new cell is fresh, i.e.,
has not been used before; this avoids the so-called ABA problem (e.g., [31]).

We define a program P (over a concurrent data structure) to consist of an
arbitrary number of concurrently executing threads, each of which executes a
method that performs an operation on the data structure. The shared state is
initialized by the init method prior to the start of program execution. A config-
uration of a program P is a tuple cP = 〈T, LOC,H〉 where T is a set of threads, H
is a heap, and LOC maps each thread th ∈ T to its local state LOC (th). We assume
concurrent execution according to sequentially consistent memory model. The
behavior of a thread th executing a method can be formalized as a transition
relation −→th on pairs 〈loc,H〉 consisting of a local state loc and a heap state
H. The behavior of a program P can be formalized by a transition relation −→P
on program configurations; each step corresponds to a move of a single thread.
I.e., there is a transition of form 〈T, LOC,H〉 −→P 〈T, LOC[th ← loc′],H′〉 whenever
some thread th ∈ T has a transition 〈loc,H〉 −→th 〈loc′,H′〉 with LOC(th) = loc.



Fragment Abstraction for Concurrent Shape Analysis 453

3.2 Linearizability

In a concurrent data structure implementation, we represent the calling of a
method by a call action callo m

(
din

)
, and the return of a method by a return

action reto m (dout), where o ∈ N is an action identifier, which links the call
and return of each method invocation. A history h is a sequence of actions such
that (i) different occurrences of return actions have different action identifiers,
and (ii) for each return action a2 in h there is a unique matching call action a1

with the same action identifier and method name, which occurs before a2 in h. A
call action which does not match any return action in h is said to be pending. A
history without pending call actions is said to be complete. A completed extension
of h is a complete history h′ obtained from h by appending (at the end) zero or
more return actions that are matched by pending call actions in h, and thereafter
removing the call actions that are still pending. For action identifiers o1, o2, we
write o1 
h o2 to denote that the return action with identifier o1 occurs before
the call action with identifier o2 in h. A complete history is sequential if it
is of the form a1a

′
1a2a

′
2 · · · ana′

n where a′
i is the matching action of ai for all

i : 1 ≤ i ≤ n, i.e., each call action is immediately followed by its matching return
action. We identify a sequential history of the above form with the corresponding
trace op1op2 · · · opn where opi = m(dini , douti ), ai = calloi m

(
dini

)
, and ai =

retoi m (douti ), i.e., we merge each call action together with the matching return
action into one operation. A complete history h′ is a linearization of h if (i) h′ is
a permutation of h, (ii) h′ is sequential, and (iii) o1 
h′ o2 if o1 
h o2 for each
pair of action identifiers o1 and o2. A sequential history h′ is valid wrt. DS if the
corresponding trace is in [[DS]]. We say that h is linearizable wrt. DS if there is
a completed extension of h, which has a linearization that is valid wrt. DS. We
say that a program P is linearizable wrt. DS if, in each possible execution, the
sequence of call and return actions is linearizable wrt. DS.

We specify linearizability using the technique of observers [1,3,7,9]. Depend-
ing on the data structure, we apply it in two different ways.

– For implementations of sets and priority queues, the user instruments each
method so that it announces a corresponding operation precisely when the
method executes its LP, either directly or with lightweight instrumentation
using the technique of linearization policies [3]. We represent such announce-
ments by labels on the program transition relation −→P , resulting in transi-

tions of form cP
m(din ,dout )−−−−−−→Pc′

P . Thereafter, an observer is constructed, which
monitors the sequence of operations that is announced by the instrumen-
tation; it reports (by moving to an accepting error location) whenever this
sequence violates the (sequential) semantics of the data structure.

– For stacks and queues, we use a recent result [7,9] that the set of linearizable
histories, i.e., sequences of call and return actions, can be exactly specified by
an observer. Thus, linearizability can be specified without any user-supplied
instrumentation, by using an observer which monitors the sequences of call
and return actions and reports violations of linearizability.



454 P. A. Abdulla et al.

s0 s1

s2

add(x, true)

rmv(x, true)
add(x, false)

rmv(x, true)

ctn(x, true)

add(x, true)

rmv(x, false)

ctn(x, false)

Fig. 6. Set observer.

Formally, an observer O is a tuple
〈
SO, sO

init, X
O,ΔO, sO

acc

〉
where SO is a

finite set of observer locations including the initial location sO
init and the accepting

location sO
acc, a finite set XO of registers, and ΔO is a finite set of transitions.

For observers that monitor sequences of operations, transitions are of the form〈
s1, m(xin , xout), s2

〉
, where m ∈ M is a method name and xin and xout are either

registers or constants, i.e., transitions are labeled by operations whose input
or output data may be parameterized on registers. The observer processes a
sequence of operations one operation at a time. If there is a transition, whose
label (after replacing registers by their values) matches the operation, such a
transition is performed. If there is no such transition, the observer remains in its
current location. The observer accepts a sequence if it can be processed in such a
way that an accepting location is reached. The observer is defined in such a way
that it accepts precisely those sequences that are not in [[DS]]. Figure 6 depicts
an observer for the set data structure.

To check that no execution of the program announces a sequence of labels
that can drive the observer to an accepting location, we form the cross-product
S = P ⊗ O of the program P and the observer O, synchronizing on common
transition labels. Thus, configurations of S are of the form 〈cP , 〈s, ρ〉〉, consist-
ing of a program configuration cP , an observer location s, and an assignment
ρ of values in D to the observer registers. Transitions of S are of the form
〈cP , 〈s, ρ〉〉 ,−→S , 〈cP′, 〈s′, ρ〉〉, obtained from a transition cP

λ−→PcP′ of the pro-
gram with some (possibly empty) label λ, where the observer makes a transition
s

λ−→s′ if it can perform such a matching transition, otherwise s′ = s. Note that the
observer registers are not changed. We also add straightforward instrumentation
to check that each method invocation announces exactly one operation, whose
input and output values agree with the method’s parameters and return value.
This reduces the problem of checking linearizability to the problem of checking
that in this cross-product, the observer cannot reach an accepting error location.

4 Verification Using Fragment Abstraction for Skiplists

In the previous section, we reduced the problem of verifying linearizability
to the problem of verifying that, in any execution of the cross-product of a



Fragment Abstraction for Concurrent Shape Analysis 455

program and an observer, the observer cannot reach an accepting location. We
perform this verification by computing a symbolic representation of an invariant
that is satisfied by all reachable configurations of the cross-product, using an
abstract interpretation-based fixpoint procedure, starting from a symbolic rep-
resentation of the set of initial configurations, thereafter repeatedly performing
symbolic postcondition computations that extend the symbolic representation
by the effect of any execution step of the program, until convergence.

In Sect. 4.1, we define in more detail our symbolic representation for skiplists,
focusing in particular on the use of fragment abstraction, and thereafter (in
Sect. 4.2) describe the symbolic postcondition computation. Since singly-linked
lists is a trivial special case of skiplists, we can use the relevant part of this
technique also for programs based on singly-linked lists.

4.1 Symbolic Representation

This subsection contains a more detailed description of our symbolic represen-
tation for programs that operate on skiplists, which was introduced in Sect. 2.
We first describe the data abstraction, thereafter the fragment abstraction, and
finally their combination into a symbolic representation.

Data Abstraction. Our data abstraction is defined by assigning a abstract
domain to each concrete domain of data values, as follows.

– For small concrete domains (including that of the program counter, and of
the observer location), the abstract domain is the same as the concrete one.

– For locks, the abstract domain is {me, other , free}, meaning that the lock is held
by the concerned thread, held by some other thread, or is free, respectively.

– For the concrete domain D of data values, the abstract domain is the set
of mappings from observer registers and local variables ranging over D to
subsets of {<,=, >}. An mapping in this abstract domain represents the set
of data values d such that it maps each local variable and observer register
with a value d′ ∈ D to a set which includes a relation ∼ such that d ∼ d′.

Fragment Abstraction. Let us now define our fragment abstraction for
skiplists. For presentation purposes, we assume that each heap cell has at most
one D-field, named data. For an observer register xi, let a xi-cell be a heap cell
whose data field has the same value as xi.

Since the number of levels is unbounded, we define an abstraction for levels.
Let k be a level. Define the abstraction of a pointer variable of form p[k], denoted
p̂[k], to be p[1] if k = 1, and to be p[higher] if k ≥ 2. That is, this abstraction
does not distinguish different higher levels.

A tag is a tuple tag = 〈dabs, pvars, reachfrom, reachto, private〉, where
(i) dabs is a mapping from non-pointer fields to their corresponding abstract
domains; if a non-pointer field is an array indexed by levels, then the abstract
domain is that for single elements: e.g., the abstract domain for the array marked



456 P. A. Abdulla et al.

in Fig. 2 is simply the set of booleans, (ii) pvars is a set of abstracted pointer
variables, (iii) reachfrom and reachto are sets of global pointer variables and
observer registers, and (iv) private is a boolean value.

For a heap cell c that is accessible to thread th in a configuration cS , and a
tag tag = 〈dabs, pvars, reachfrom, reachto, private〉, we let c�cS

th,ktag denote
that c satisfies the tag tag “at level k”. More precisely, this means that

– dabs is an abstraction of the concrete values of the non-pointer fields of c;
for array fields f we use the concrete value f[k],

– pvars is the set of abstractions of pointer variables (global or local to th)
that point to c,

– reachfrom is the set of (i) abstractions of global pointer variables from which
c is reachable via a (possibly empty) sequence of next[1] pointers, and (ii)
observer registers xi such that c is reachable from some xi-cell (via a sequence
of next[1] pointers),

– reachto is the set of (i) abstractions of global pointer variables pointing to
a cell that is reachable (via a sequence of next[1] pointers) from c, and (ii)
observer registers xi such that some xi-cell is reachable from c.

– private is true only if c is not accessible to any other thread than th.

Note that the global information represented by the fields reachfrom and
reachto concerns only reachability via level-1 pointers.

A skiplist fragment v (or just fragment) is a triple of form 〈i, o, φ〉, of form
〈i, null〉, or of form 〈i,⊥〉, where i and o are tags and φ is a subset of {<,=, >}.
Each skiplist fragment additionally has a type, which is either level-1 or higher-
level (note that a level-1 fragment can otherwise be identical to a higher-level
fragment). For a cell c which is accessible to thread th, and a fragment v of
form 〈i, o, φ〉, let c �cS

th,k v denote that the next[k] field of c points to a cell c′

such that c �cS
th,k i, and c′ �cS

th,k o, and c.data ∼ c′.data for some ∼∈ φ. The
definition of c�cS

th,k v is adapted to fragments of form 〈i, null〉 and 〈i,⊥〉 in the
obvious way. For a fragment v = 〈i, o, φ〉, we often use v.i for i and v.o for o,
etc.

Let V be a set of fragments. A global configuration cS satisfies V wrp. to th,
denoted cS |=heap

th V , if

– for any cell c that is accessible to th (different from null and ⊥), there is a
level-1 fragment v ∈ V such that c �cS

th,1 v, and
– for all levels k from 2 up to the height of c, there is a higher-level fragment
v ∈ V such that c �cS

th,k v.

Intuitively, a set of fragment represents the set of heap states, in which each pair
of cells connected by a next[1] pointer is represented by a level-1 fragment, and
each pair of cells connected by a next[k] pointer for k ≥ 2 is represented by a
higher-level fragment which represents array fields of cells at index k.



Fragment Abstraction for Concurrent Shape Analysis 457

Symbolic Representation. We can now define our abstract symbolic represen-
tation.

Define a local symbolic configuration σ to be a mapping from local non-
pointer variables (including the program counter) to their corresponding abstract
domains. We let cS |=loc

th σ denote that in the global configuration cS , the local
configuration of thread th satisfies the local symbolic configuration σ, defined
in the natural way. For a local symbolic configuration σ, an observer location s,
a pair V of fragments and a thread th, we write cS |=th 〈σ, s, V 〉 to denote that
(i) cS |=loc

th σ, (ii) the observer is in location s, and (iii) cS |=heap
th V .

Definition 1. A symbolic representation Ψ is a partial mapping from pairs of
local symbolic configurations and observer locations to sets of fragments. A sys-
tem configuration cS satisfies a symbolic representation Ψ , denoted cS sat Ψ ,
if for each thread th, the domain of Ψ contains a pair 〈σ, s〉 such that cS |=th

〈σ, s, Ψ(〈σ, s〉)〉.

4.2 Symbolic Postcondition Computation

The symbolic postcondition computation must ensure that the symbolic repre-
sentation of the reachable configurations of a program is closed under execu-
tion of a statement by some thread. That is, given a symbolic representation
Ψ , the symbolic postcondition operation must produce an extension Ψ ′ of Ψ ,
such that whenever cS sat Ψ and cS−→Sc′

S then cS′ sat Ψ ′. Let th be an arbi-
trary thread. Then cS sat Ψ means that Dom(Ψ) contains some pair 〈σ, s〉 with
cS |=th 〈σ, s, Ψ(〈σ, s〉)〉. The symbolic postcondition computation must ensure
that Dom(Ψ ′) contains a pair 〈σ′, s′〉 such that c′

S |=th 〈σ′, s′, Ψ ′(〈σ′, s′〉)〉. In
the thread-modular approach, there are two cases to consider, depending on
which thread causes the step from cS to cS′.

– Local Steps: The step is caused by th itself executing a statement which may
change its local state, the location of the observer, and the state of the heap.
In this case, we first compute a local symbolic configuration σ′, an observer
location s′, and a set V ′ of fragments such that c′

S |=th 〈σ′, s′, V ′〉, and then
(if necessary) extend Ψ so that 〈σ′, s′〉 ∈ Dom(Ψ) and V ′ ⊆ Ψ(〈σ′, s′〉).

– Interference Steps: The step is caused by another thread th2, executing a
statement which may change the location of the observer (to s′) and the heap.
By cS sat Ψ there is a local symbolic configuration σ2 with 〈σ2, s〉 ∈ Dom(Ψ)
such that cS |=th2 〈σ2, s, Ψ(〈σ2, s〉)〉. For any such σ2 and statement of th2, we
must compute a set V ′ of fragments such that the resulting configuration cS′

satisfies c′
S |=heap

th V ′ and ensure that 〈σ, s′〉 ∈ Dom(Ψ) and V ′ ⊆ Ψ(〈σ, s′〉).
To do this, we first combine the local symbolic configurations σ and σ2 and
the sets of fragments Ψ(〈σ, s〉) and Ψ(〈σ2, s〉), using an operation called inter-
section, into a joint local symbolic configuration of th and th2 and a set V1,2

of fragments that represents the cells accessible to either th or th2. We there-
after symbolically compute the postcondition of the statement executed by
th2, in the same was as for local steps, and finally project the set of resulting
fragments back onto th to obtain V ′.



458 P. A. Abdulla et al.

In the following, we first describe the symbolic postcondition computation for
local steps, and thereafter the intersection operation.

Symbolic Postcondition Computation for Local Steps. Let th be an
arbitrary thread, assume that 〈σ, s〉 ∈ Dom(Ψ), and let V = Ψ(〈σ, s〉) For
each statement that th can execute in a configuration cS with cS |=th 〈σ, s, V 〉,
we must compute a local symbolic configuration σ′, a new observer location
s′ and a set V ′ of fragments such that the resulting configuration cS′ satisfies
c′
S |=th 〈σ′, s′, V ′〉. This computation is done differently for each statement. For

statements that do not affect the heap or pointer variables, this computation is
standard, and affects only the local symbolic configuration, the observer location,
and the dabs component of tags. We therefore here describe how to compute
the effect of statements that update pointer variables or pointer fields of heap
cells, since these are the most interesting cases. In this computation, the set V ′

is constructed in two steps: (1) First, the level-1 fragments of V ′ are computed,
based on the level-1 fragments in V . (2) Thereafter, the higher-level fragments of
V ′ are computed, based on the higher-level fragments in V and how fragments
in V are transformed when entered in to V ′. We first describe the construction
of level-1 fragments, and thereafter the construction of higher-level fragments.

Construction of Level-1 Fragments. Let us first intuitively introduce tech-
niques used for constructing the level-1 fragments of V ′. Consider a statement
of form g := p, which assigns the value of a local pointer variable p to a global
pointer variable g. The set V ′ of fragments is obtained by modifying fragments in
V to reflect the effect of the assignment. For any tag in a fragment, the dabs field
is not affected. The pvars field is updated to contain the variable g if and only
if it contained the variable p before the statement. The difficulty is to update
the reachability information represented by the fields reachfrom and reachto,
and in particular to determine whether g should be in such a set after the state-
ment (note that if p were a global variable, then the corresponding reachability
information for p would be in the fields reachfrom and reachto, and the update
would be simple, reflecting that g and p become aliases). In order to construct
V ′ with sufficient precision, we therefore investigate whether the set of fragments
V allows to form a heap in which a p-cell can reach or be reached from (by a
sequence of next[1] pointers) a particular tag of a fragment. We also investigate
whether a heap can be formed in which a p-cell can not reach or be reached from
a particular tag. For each such successful investigation, the set V ′ will contain
a level-1 fragment with corresponding contents of its reachto and reachfrom
fields.

The postcondition computation performs this investigation by computing a
set of transitive closure-like relations between level-1 fragments, which represent
reachability via sequences of next[1] pointers (since only these are relevant for
the reachfrom and reachto fields). First, say that two tags tag and tag′ are
consistent (wrp. to a set of fragments V ) if the concretizations of their dabs-
fields overlap, and if the other fields pvars, reachfrom, reachto, and private)
agree. Thus, tag and tag′ are consistent if there can exist a cell c accessible to



Fragment Abstraction for Concurrent Shape Analysis 459

th in some heap, with c�cS
th tag and c�cS

th tag′. Next, for two level-1 fragments
v1 and v2 in a set V of fragments,

– let v1 ↪→V v2 denote that v1.o and v2.i are consistent, and
– let v1 ↔V v2 denote that v1.o = v2.o are consistent, and that either

v1.i.pvars ∩ v2.i.pvars = ∅ or the global variables in v1.i.reachfrom are
disjoint from those in v2.i.reachfrom.

Intuitively, v1 ↪→V v2 denotes that it is possible that c1.next[1] = c2 for some
cells with c1 �cS

th,1 v1 and c2 �cS
th,1 v2. Intuitively, v1 ↔V v2 denotes that it is

possible that c1.next[1] = c2.next[1] for different cells c1 and c2 with c1�cS
th,1v1

and c2 �cS
th,1 v2 (Note that these definitions also work for fragments containing

null or ⊥). We use these relations to define the following derived relations on
level-1 fragments:

–
+
↪→V denotes the transitive closure, and

∗
↪→V the reflexive transitive closure,

of ↪→V ,
– v1

∗∗↔V v2 denotes that ∃v′
1, v

′
2 ∈ V with v′

1 ↔V v′
2 where v1

∗
↪→V v′

1 and
v2

∗
↪→V v′

2,
– v1

∗+↔V v2 denotes that ∃v′
1, v

′
2 ∈ V with v′

1 ↔V v′
2 where v1

∗
↪→V v′

1 and

v2
+
↪→V v′

2,
– v1

∗◦↔V v2 denotes that ∃v′
1 ∈ V with v′

1↔V v2 where v1
∗

↪→V v′
1,

– v1
++↔V v2 denotes that ∃v′

1, v
′
2 ∈ V with v′

1 ↔V v′
2 where v1

+
↪→V v′

1 and

v2
+
↪→V v′

2,
– v1

+◦↔V v2 denotes that ∃v′
1 ∈ V with v′

1↔V v2 where v1
+
↪→V v′

1.

We sometimes use, e.g., v2
+∗↔V v1 for v1

∗+↔V v2. We say that v1 and v2 are
compatible if vx

∗
↪→ vy, or vy

∗
↪→ vx, or vx

∗∗↔ vy. Intuitively, if v1 and v2 are
satisfied by two cells in the same heap state, then they must be compatible.

Fig. 7. Illustration of some transitive closure-like relations between fragments



460 P. A. Abdulla et al.

Figure 7 illustrates the above relations for a heap state with 13 heap cells.
The figure depicts, in green, four pairs of heap cells connected by a next[1]
pointer, which satisfy the four fragments v1, v2, v3, and v4, respectively. At the
bottom are depicted the transitive-closure like relations that hold between these
fragments.

We can now describe the symbolic postcondition computation for statements
that affect pointer variables or fields. This is a case analysis, and for space reasons
we only include some representative cases.

First, consider a statement of form x := y, where x and y are local (to thread
th) or global pointer variables. We must compute a set V ′ of fragments which
are satisfied by the configuration after the statement. We first compute the level-
1-fragments in V ′ as follows (higher-level fragments will be computed later). We
observe that for any cell c which is accessible to th after the statement, there
must be some level-1 fragment v′ in V ′ with c�cS

th,1 v
′. By assumption, c satisfies

some fragment v in V before the statement, and is in the same heap state as the
cell pointed to by y. This implies that v must be compatible with some fragment
vy ∈ V such that ŷ ∈ vy.i.pvars (recall that ŷ is the abstraction of y, which in
the case that y is an array element maps higher level indices to that abstract
index higher). This means that we can make a case analysis on the possible
relationships between v and any such vy. Thus, for each fragment vy ∈ V such
that ŷ ∈ vy.i.pvars we let V ′ contain the fragments obtained by any of the
following transformations on any fragment in V .

1. First, for the fragment vy itself, we let V ′ contain v′
y, which is the same as

vy, except that
– v′

y.i.pvars = vy.i.pvars ∪ {x̂} and v′
y.o.pvars = v.o.pvars \ {x̂}

and furthermore, if x is a global variable, then
– v′

y.i.reachto = vy.i.reachto∪{x̂} and v′
y.i.reachfrom = vy.i.reachfrom∪{x̂},

– v′
y.o.reachfrom = vy.o.reachfrom∪{x̂} and v′

y.o.reachto = vy.o.reachto\{x̂}.

2. for each v with v ↪→V vy, let V ′ contain v′ which is the same as v except that
– v′.i.pvars = v.i.pvars \ {x̂},
– v′.o.pvars = v.o.pvars ∪ {x̂},
– v′.i.reachfrom = v.i.reachfrom \ {x̂} if x is a global variable,
– v′.i.reachto = v.i.reachto ∪ {x̂} if x is a global variable,
– v′.o.reachfrom = v.o.reachfrom ∪ {x̂} if x is a global variable,
– v′.o.reachto = v.o.reachto ∪ {x̂} if x is a global variable,

3. We perform analogous inclusions for fragments v with v
+
↪→V vy, vy

∗
↪→V

v, vy
∗+↔V v, and vy

∗◦↔V v. Here, we show only the case of vy
∗+↔V v, in

which case we let V ′ contain v′ which is the same as v except that x̂ is
removed from the sets v′.i.pvars, v′.o.pvars, v′.i.reachfrom, v′.i.reachto,
v′.o.reachfrom, and v′.o.reachto.

The statement x := y.next[1] is handled rather similarly to the case x := y. Let
us therefore describe the postcondition computation for statements of the form
x.next[1] := y. This is the most difficult statement, since it is a destructive
update of the heap. It affects reachability relations for both x and y. The post-
condition computation makes a case analysis on how a fragment in V is related



Fragment Abstraction for Concurrent Shape Analysis 461

to some pair of compatible fragments vx, vy in V such that x̂ ∈ vx.i.pvars,
ŷ ∈ vy.i.pvars. Thus, for each pair of compatible fragments vx, vy in V such
that x̂ ∈ vx.i.pvars and ŷ ∈ vy.i.pvars, it is first checked whether the statement
may form a cycle in the heap. This may happen if vy

∗
↪→V vx, in which case the

postcondition computation reports a potential cycle. Otherwise, V ′ consists of

1. the fragment vnew, representing the new pair of neighbours formed by the
statement, of form vnew = 〈i, o, φ〉, such that vnew.i.tag = vx.i.tag and
vnew.o.tag = vy.i.tag except that vnew.o.reachfrom = vy.i.reachfrom ∪
vx.i.reachfrom and vnew.i.reachto = vy.i.reachto ∪ vx.i.pvars; the con-
straint represent by vnew.φ is obtained from the constraints represented by the
data abstractions of vx.i and vy.i, as well as the possible transitive closure-
relations between vx and vy, some of which imply that the data fields of vx

and vy are ordered, and
2. all possible fragments that can result from a transformation of some fragment

v ∈ V . This is done by an exhaustive case analysis on the possible relation-
ships between v, vx and vy. Let us consider an interesting case, in which

vx
∗

↪→V v and either v
+
↪→V vy or vy

∗+↔ v. In this case,
– for each subset regset of the observer registers in v.i.reachfrom ∩
vx.i.reachfrom, and for each subset regset′ of the set of observer regis-
ters in v.o.reachfrom ∩ vx.i.reachfrom, we let V ′ contain a fragment v′

which is the same as v except that v′.i.reachfrom = (v.i.reachfrom
\vx.i.reachfrom) ∪ regset and v′.o.reachfrom = (v.o.reachfrom \
vx.i.reachfrom) ∪ regset′. An intuitive explanation for the rule for
v′.i.reachfrom is that the global variables that can reach vx.i should
clearly be removed from v′.i.reachfrom since vx

∗
↪→V v′ is false after the

statement. However, for an observer register xi, an xi-cell can still reach
v′.i, if there are two xi-cells, one which reaches vx.i and another which
reaches v′.i; we cannot precisely determine for which xi this may be the
case, except that any such xi must be in v.i.reachfrom∩vx.i.reachfrom.
The intuition for the rule for v′.o.reachfrom is analogous.

Construction of Higher-Level Fragments. Based on the above construction
of level-1 fragments, the set of higher-level fragments in V ′ is obtained as fol-
lows. For each higher level-fragment v ∈ V , let v1 and v2 be level 1-fragments
such that v1.i.tag = v.i.tag and v2.i.tag = v.o.tag. For any fragments v′

1

and v′
2 that are derived from v1 and v2, respectively, V ′ contains a higher-level

fragment v′ which is the same as v except that (i) v′.i.pvars = v′
1.i.pvars

and v′.o.pvars = v′
2.i.pvars, (ii) v′.i.reachfrom = v′

1.i.reachfrom and
v′.o.reachfrom = v′

2.i.reachfrom, and (iii) v′.i.reachto = v′
1.i.reachto and

v′.o.reachto = v′
2.i.reachto. In addition, a statement of form x.next[k] := y

for k ≥ 2 creates a new fragment. The formation of this fragment is simpler
than for the statement x.next[1] := y, since reachability via next[1]-pointers is
preserved.



462 P. A. Abdulla et al.

Symbolic Postcondition Computation for Interference Steps. Here, the
key step is the intersection operation, which takes two sets of fragments V1 and
V2, and produces a set of joint fragments V1,2, such that cS |=heap

th1,th2 V1,2 for any
configuration such that cS |=heap

thi
Vi for i = 1, 2 (here |=heap

th1,th2 is defined in the
natural way). This means that for each heap cell accessible to either th1 or th2,
the set V1,2 contains a fragment v with c�cS

{th1,th2},kv for each k which is at most
the height of c (generalizing the notation �cS

th,k to several threads). Note that a
joint fragment represents local pointer variables of both th1 and th2. In order to
distinguish between local variables of th1 and th2, we use x[i] to denote a local
variable x of thread thi. Here, we describe the intersection operation for level-1
fragments. The intersection operation is analogous for higher-level fragments.

For a fragment v, define v.i.greachfrom as the set of global vari-
ables in v.i.reachfrom. Define v.i.greachto, v.o.greachfrom, v.o.greachto,
v.i.gpvars, and v.o.gpvars analogously. Define v.i.gtag as the tuple
〈v.i.dabs, v.i.gpvars, v.i.greachfrom, v.i.greachto〉, and define v.o.gtag anal-
ogously. We must distinguish the following possibilities.

– If c is accessible to both th1 and th2, then there are fragments v1 ∈ V1

and v2 ∈ V2 such that c �cS
th1,1 v1 and c �cS

th2,1 v2. This can happen only
if v1.i.gtag = v2.i.gtag, and v1.o.gtag = v2.o.gtag, and v1.i.private =
v2.i.private = false. Thus, for any such pair of fragments v1 ∈ V1 and
v2 ∈ V2, we let V1,2 contain a fragment v12 which is identical to v1 except
that

• v12.i.pvars = v1.i.pvars ∪ v2.i.pvars,
• v12.o.pvars = v1.o.pvars ∪ v2.o.pvars,
• v12.i.reachfrom = v1.i.reachfrom ∪ v2.i.reachfrom, and
• v12.o.reachfrom = v1.o.reachfrom ∪ v2.o.reachfrom.

– If c is accessible to th1, but not to th2, and c.next[1] is accessible also to
th2, then there are fragments v1 ∈ V1 and v2 ∈ V2 such that c �cS

th1,1 v1
and c.next[1] �cS

th2,1 v2.o. This can happen only if v1.i.greachfrom = ∅, and
v1.o.gtag = v2.o.gtag, and v1.o.private = v2.o.private = false. Thus,
for any such pair of fragments v1 ∈ V1 and v2 ∈ V2, we let V1,2 contain a
fragment v′

1 which is identical to v1 except that
• v′

1.o.pvars = v1.o.pvars ∪ v2.o.pvars, and
• v′

1.o.reachfrom = v1.o.reachfrom ∪ v2.o.reachfrom.
– If neither c nor c.next[1] is accessible th2, then there is a fragment v1 ∈ V1

such that c�cS
th1,1 v1. This can happen only if v1.o.greachfrom = ∅, in which

case we let V1,2 contain the fragment v1.
– For each of the two last cases, there is also a symmetric case with the roles

of th1 and th2 reversed.

5 Arrays of Singly-Linked Lists with Timestamps

In this section, we show how to apply fragment abstraction to concurrent pro-
grams that operate on a shared heap which represents an array of singly linked



Fragment Abstraction for Concurrent Shape Analysis 463

lists. We use this abstraction to provide the first automated verification of lin-
earizability for the Timedstamped stack and Timestamped queue algorithms
of [12] as reported in Sect. 6.

Fig. 8. Description of the Timestamped stack algorithm, with some simplifications.

Figure 8 shows a simplified version of the Timestamped Stack (TS stack)
of [12], where we have omitted the check for emptiness in the pop method, and
the optimization using push-pop elimination. These features are included in the
full version of the algorithm, that we have verified automatically.

The algorithm uses an array of singly-linked lists (SLLs), one for each thread,
accessed via the thread-indexed array pools[maxThreads] of pointers to the first
cell of each list. The init method initializes each of these pointers to null. Each
list cell contains a data value, a timestamp value, a next pointer, and a boolean
flag mark which indicates whether the node is logically removed from the stack.
Each thread pushes elements only to “its own” list, but can pop elements from
any list.

A push method for inserting a data element d works as follows: first, a new
cell with element d and minimal timestamp −1 is inserted at the beginning of
the list indexed by the calling thread (line 1–3). After that, a new timestamp
is created and assigned (via the variable t) to the ts field of the inserted cell
(line 4–5). Finally, the method unlinks (i.e., physically removes) all cells that



464 P. A. Abdulla et al.

are reachable (through a sequence of next pointers) from the inserted cell and
whose mark field is true; these cells are already logically removed. This is done
by redirecting the next pointer of the inserted cell to the first cell with a false
mark field, which is reachable from the inserted cell.

A pop method first traverses all lists, finding in each list the first cell whose
mark field is false (line 8), and letting the variable youngest point to the most
recent such cell (i.e., with the largest timestamp) (line 1–11). A compare-and-
swap (CAS) is used to set the mark field of this youngest cell to true, thereby
logically removing it. This procedure will restart if the CAS fails. After the
youngest cell has been removed, the method will unlink all cells, whose mark
field is true, that appear before (line 17–19) or after (line 20–23) the removed
cell. Finally, the method returns the data value of the removed cell.

Fragment Abstraction. In our verification, we establish that the TS stack
algorithm of Fig. 8 is correct in the sense that it is a linearizable implementation
of a stack data structure. For stacks and queues, we specify linearizability by
observers that synchronize on call and return actions of methods, as shown by [7];
this is done without any user-supplied annotation, hence the verification is fully
automated.

The verification is performed analogously as for skiplists, as described in
Sect. 4. Here we show how fragment abstraction is used for arrays of singly-linked
lists. Figure 9 shows an example heap state of TS stack. The heap consists of
a set of singly linked lists (SLLs), each of which is accessed from a pointer in
the array pools[maxThreads] in a configuration when it is accessed concurrently
by three threads th1, th2, and th3. The heap consists of three SLLs accessed
from the three pointers pools[1], pools[2], and pools[3] respectively. Each heap
cell is shown with the values of its fields, using the layout shown to the right in
Fig. 9. In addition, each cell is labeled by the pointer variables that point to it.
We use lvar(i) to denote the local variable lvar of thread thi.

In the heap state of Fig. 9, thread th1 is trying to push a new node with data
value 4, pointed by its local variable new, having reached line 3. Thread th3 has
just called the push method. Thread th2 has reached line 12 in the execution
of the pop method, and has just assigned youngest to the first node in the list
pointed to by pools[3] which is not logically removed (in this case it is the last
node of that list). The observer has two registers x1 and x2, which are assigned
the values 4 and 2, respectively.

We verify the algorithm using a symbolic representation that is analogous to
the one used for skiplists. There are two main differences.

– Since the array pools is global, all threads can reach all lists in the heap (the
only cells that cannot be reached by all threads are new cells that are not yet
inserted).

– We therefore represent the view of a thread by a thread-dependent abstraction
of thread indices, which index the array pools. In the view of a thread, the
index of the list where it is currently active is abstracted to me, and all other
indices are abstracted to ot. The currently active index is taken to be the
thread index for a thread performing a push, the value of i for a thread
executing in the for loop of pop, and the value of k after that loop.



Fragment Abstraction for Concurrent Shape Analysis 465

Fig. 9. A possible heap state of TS stack with three threads.

In the definition of tags, the only global variables that can occur in the fields
reachfrom and reachto are therefore pools[me] and pools[other]. The data
abstraction represents (i) for each cell, the set of observer registers, whose values
are equal to the datafield, (ii) for each timestamp and observer register xi, the
possible orderings between this timestamp and the timestamp of an xi-cell.

Fig. 10. Fragment abstraction

Figure 10 shows a set of fragments that is satisfied wrp. to th2 by the con-
figuration in Fig. 9. There are 7 fragments, named v1, . . . , v7. Consider the tag
which occurs in fragment v7. This tag is an abstraction of the bottom-rightmost
heap cell in Fig. 9, The different non-pointer fields are represented as follows.



466 P. A. Abdulla et al.

– The data field of the tag (to the left) abstracts the data value 2 to the set of
observer registers with that value: in this case x2.

– The ts field (at the top) abstracts the timer value 15 to the possible relations
with ts-fields of heap cells with the same data value as each observer registers.
Recall that observer registers x1 and x2 have values 4 and 2, respectively.
There are three heap cells with data field value 4, all with a ts value less
than 15. There is one heap cell with data field value 2, having ts value 15.
Consequently, the abstraction of the ts field maps x1 to {>} and x2 to {=}:
this is the mapping λ4 in Fig. 10.

– The mark field assumes values from a small finite domain and is represented
precisely as in concrete heap cells.

Symbolic Postcondition Computation. The symbolic postcondition com-
putation is similar to that for skiplists. Main differences are as follows.

– Whenever a thread performing pop moves from one iteration of the for loop
to the next, the abstraction must consider to swap between the abstractions
me and ot.

– In interference steps, we must consider that the abstraction me for the inter-
fering thread may have to be changed into ot. Furthermore, the abstractions
me for two push methods cannot coincide, since each thread pushes only to
its own list.

6 Experimental Results

Based on our framework, we have implemented a tool in OCaml, and used it for
verifying various kinds of concurrent data structures implementation of stacks,
priority queues, queues and sets. All of them are based on heap structures. There
are three types of heap structures we consider in our experiments.

Fig. 11. Times for verifying concurrent data structure implementations. Column a
shows the verification times for our tool based on fragment abstraction. Column b
shows the verification times for the tool for SLLs in our previous work [3]



Fragment Abstraction for Concurrent Shape Analysis 467

Singly-linked list benchmarks: These benchmarks include stacks, queues and sets
algorithms which are the well-known in the literature. The challenge is that in
some set implementation, the linearization points are not fixed, they depended on
the future of each execution. The sets with non fixed linearization points are the
lazy set [20], lock-free sets of HM [22], Harris [17], Michael [29], and unordered set
of [48]. By using observers and controllers in our previous work [3]. Our approach
is simple and strong enough to verify these singly-linked list benchmarks.

Skiplist benchmarks: We consider four skiplist algorithms including the lock-
based skiplist set [31], the lock-free skiplist set which is described in Sect. 2 [22],
and two skiplist-based priority queues [26,27]. One challenge for verifying these
algorithms is to deal with unbounded number of levels. In addition, in the lock-
free skiplist [22] and priority queue [26], the skiplist shape is not well formed,
meaning that each higher level list need not be a sub-list of lower level lists.
These algorithms have not been automatically verified in previous work. By
applying our fragment abstraction, to the best of our knowledge, we provide first
framework which can automatically verify these concurrent skiplists algorithms.

Arrays of singly-linked list benchmarks: We consider two challenging timestamp
algorithms in [12]. There are two challenges when verifying these algorithm.
The first challenge is how to deal with an unbounded number of SLLs, and
the second challenge is that the linearization points of the algorithms are not
fixed, but depend on the future of each execution. By combining our fragment
abstraction with the observers for stacks and queues in [7], we are able to ver-
ify these two algorithms automatically. The observers are crucial for achieving
automation, since they enforce the weakest possible ordering constraints that
are necessary for proving linearizability, thereby making it possible to use a less
precise abstraction.

Running Times. The experiments were performed on a desktop 2.8 GHz proces-
sor with 8 GB memory. The results are presented in Fig. 11, where running times
are given in seconds. Column a shows the verification times of our tool, whereas
column b shows the verification times for algorithms based on SLLs, using the
technique in our previous work [3]. In our experiments, we run the tool together
with an observer in [1,7] and controllers in [3] to verify linearizability of the
algorithms. All experiments start from the initial heap, and end either when the
analysis reaches a fixed point or when a violation of safety properties or lineariz-
ability is detected. As can be seen from the table, the verification times vary
in the different examples. This is due to the types of shapes that are produced
during the analysis. For instance, skiplist algorithms have much longer verifica-
tion times. This is due to the number of pointer variables and their complicated
shapes. In contrast, other algorithms produce simple shape patterns and hence
they have shorter verification times.

Error Detection. In addition to establishing correctness of the original versions
of the benchmark algorithms, we tested our tool with intentionally inserted bugs.



468 P. A. Abdulla et al.

For example, we omitted setting time statement in line 5 of the push method in
the TS stack algorithm, or we omitted the CAS statements in lock-free algorithms.
The tool, as expected, successfully detected and reported the bugs.

7 Conclusions

We have presented a novel shape abstraction, called fragment abstraction, for
automatic verification of concurrent data structure implementations that oper-
ate on different forms of dynamically allocated heap structures, including singly-
linked lists, skiplists, and arrays of singly-linked lists. Our approach is the first
framework that can automatically verify concurrent data structure implementa-
tions that employ skiplists and arrays of singly linked lists, at the same time as
handling an unbounded number of concurrent threads, an unbounded domain of
data values (including timestamps), and an unbounded shared heap. We showed
fragment abstraction allows to combine local and global reachability information
to allow verification of the functional behavior of a collection of threads.

As future work, we intend to investigate whether fragment abstraction can
be applied also to other heap structures, such as concurrent binary search trees.

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated
specification and verification technique for highly concurrent data structures. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 324–338.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 23

2. Abdulla, P.A., Hoĺık, L., Jonsson, B., Trinh, C.Q., et al.: Verification of heap
manipulating programs with ordered data by extended forest automata. Acta Inf.
53(4), 357–385 (2016)

3. Abdulla, P.A., Jonsson, B., Trinh, C.Q.: Automated verification of linearization
policies. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 61–83. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 4

4. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstrac-
tion for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3 49

5. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread quan-
tification for concurrent shape analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70545-1 37

6. Bingham, J., Rakamarić, Z.: A logic and decision procedure for predicate abstrac-
tion of heap-manipulating programs. In: Emerson, E.A., Namjoshi, K.S. (eds.)
VMCAI 2006. LNCS, vol. 3855, pp. 207–221. Springer, Heidelberg (2005). https://
doi.org/10.1007/11609773 14

7. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state
reachability. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B.
(eds.) ICALP 2015, Part II. LNCS, vol. 9135, pp. 95–107. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47666-6 8

https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1007/978-3-662-53413-7_4
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/978-3-540-70545-1_37
https://doi.org/10.1007/978-3-540-70545-1_37
https://doi.org/10.1007/11609773_14
https://doi.org/10.1007/11609773_14
https://doi.org/10.1007/978-3-662-47666-6_8


Fragment Abstraction for Concurrent Shape Analysis 469

8. Bouajjani, A., Emmi, M., Enea, C., Mutluergil, S.O.: Proving linearizability using
forward simulations. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part II.
LNCS, vol. 10427, pp. 542–563. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 28

9. Chakraborty, S., Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented lin-
earizability proofs. Log. Methods Comput. Sci. 11(1) (2015)

10. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant
checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 24

11. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy
concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006). https://doi.org/10.
1007/11817963 44

12. Dodds, M., Haas, A., Kirsch, C.: A scalable, correct time-stamped stack. In: POPL,
pp. 233–246. ACM (2015)

13. Doherty, S., Detlefs, D., Groves, L., Flood, C., et al.: DCAS is not a silver bullet
for nonblocking algorithm design. In: SPAA 2004, pp. 216–224. ACM (2004)

14. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30232-2 7

15. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manip-
ulation. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp.
215–237. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-
9 13

16. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC 2004,
pp. 50–59. ACM (2004)

17. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,
J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45414-4 21

18. Haziza, F., Hoĺık, L., Meyer, R., Wolff, S.: Pointer race freedom. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 393–412. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 19

19. Heinen, J., Noll, T., Rieger, S.: Juggrnaut: graph grammar abstraction for
unbounded heap structures. ENTCS 266, 93–107 (2010)

20. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy
concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer,
R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006).
https://doi.org/10.1007/11795490 3

21. Herlihy, M., Lev, Y., Luchangco, V., Shavit, N.: A simple optimistic skiplist algo-
rithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp.
124–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-
8 11

22. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan
Kaufmann, San Francisco (2008)

23. Hoĺık, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully automated
shape analysis based on forest automata. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 740–755. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 52

https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-540-74061-2_24
https://doi.org/10.1007/11817963_44
https://doi.org/10.1007/11817963_44
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1007/978-3-662-49122-5_19
https://doi.org/10.1007/11795490_3
https://doi.org/10.1007/978-3-540-72951-8_11
https://doi.org/10.1007/978-3-540-72951-8_11
https://doi.org/10.1007/978-3-642-39799-8_52
https://doi.org/10.1007/978-3-642-39799-8_52


470 P. A. Abdulla et al.

24. Khyzha, A., Dodds, M., Gotsman, A., Parkinson, M.: Proving linearizability using
partial orders. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 639–667.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1 24

25. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: PLDI, pp. 459–470. ACM (2013)

26. Lindén, J., Jonsson, B.: A skiplist-based concurrent priority queue with minimal
memory contention. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013.
LNCS, vol. 8304, pp. 206–220. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03850-6 15

27. Lotan, I., Shavit, N.: Skiplist-based concurrent priority queues. In: IPDPS, pp.
263–268. IEEE (2000)

28. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and
canonical abstraction for singly-linked lists. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 181–198. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30579-8 13

29. Michael, M.M.: High performance dynamic lock-free hash tables and list-based
sets. In: SPAA, pp. 73–82 (2002)

30. Michael, M., Scott, M.: Correction of a memory management method for lock-free
data structures. Technical report TR599, University of Rochester, Rochester, NY,
USA (1995)

31. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In: PODC, pp. 267–275. ACM (1996)

32. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: PODC, pp. 85–94 (2010)

33. Sagiv, S., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

34. Sánchez, A., Sánchez, C.: Formal verification of skiplists with arbitrary many levels.
In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 314–329.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 23

35. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Log. 15(4),
31:1–37 (2014)

36. Segalov, M., Lev-Ami, T., Manevich, R., Ganesan, R., Sagiv, M.: Abstract trans-
formers for thread correlation analysis. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol.
5904, pp. 30–46. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
10672-9 5

37. Singh, V., Neamtiu, I., Gupta, R.: Proving concurrent data structures linearizable.
In: ISSRE, pp. 230–240. IEEE (2016)

38. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. J. Parallel Distrib. Comput. 65(5), 609–627 (2005)

39. Treiber, R.: Systems programming: Coping with parallelism. Technical report
RJ5118, IBM Almaden Res. Ctr. (1986)

40. Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: POPL 2013, pp. 343–356. ACM (2013)

41. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge (2008)

42. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-319-03850-6_15
https://doi.org/10.1007/978-3-319-03850-6_15
https://doi.org/10.1007/978-3-540-30579-8_13
https://doi.org/10.1007/978-3-540-30579-8_13
https://doi.org/10.1007/978-3-319-11936-6_23
https://doi.org/10.1007/978-3-642-10672-9_5
https://doi.org/10.1007/978-3-642-10672-9_5
https://doi.org/10.1007/978-3-642-14295-6_40


Fragment Abstraction for Concurrent Shape Analysis 471

43. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model check-
ing of linearizability of concurrent list implementations. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 41

44. Vechev, M.T., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In:
PLDI, pp. 125–135. ACM (2008)

45. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02652-2 21

46. Wachter, B., Westphal, B.: The spotlight principle. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 182–198. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-69738-1 13

47. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70545-1 36

48. Zhang, K., Zhao, Y., Yang, Y., Liu, Y., Spear, M.: Practical non-blocking unordered
lists. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 239–253. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2 17

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-14295-6_41
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1007/978-3-540-69738-1_13
https://doi.org/10.1007/978-3-540-69738-1_13
https://doi.org/10.1007/978-3-540-70545-1_36
https://doi.org/10.1007/978-3-540-70545-1_36
https://doi.org/10.1007/978-3-642-41527-2_17
http://creativecommons.org/licenses/by/4.0/

	Fragment Abstraction for Concurrent Shape Analysis
	1 Introduction
	2 Overview
	3 Concurrent Data Structure Implementations
	3.1 Concurrent Data Structure Implementations
	3.2 Linearizability

	4 Verification Using Fragment Abstraction for Skiplists
	4.1 Symbolic Representation
	4.2 Symbolic Postcondition Computation

	5 Arrays of Singly-Linked Lists with Timestamps
	6 Experimental Results
	7 Conclusions
	References




