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Abstract. This paper addresses the NP-hard problem of deploying
wireless sensor networks on 3D terrains. On the contrary to previous
works that place the sensors without any analysis of the terrain, we pro-
pose a two-phase solution based on terrain partitioning. The main idea
is to estimate the number of sensors to be used and simplify the sensors
deployment by partitioning the terrain according to topographic criteria.
Simulation results based on real-world terrains confirm the efficiency of
our solution in terms of coverage quality.
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1 Introduction

A Wireless Sensor Network (WSN) is a special type of ad hoc networks, consist-
ing of a set of sensors deployed in a region of interest (RoI) to monitor a target
event. Each sensor is battery-powered and has a sensing unit, a processing unit,
and a wireless communication interface. The primary task of a sensor is to take
measurements related to the target event and to communicate them wirelessly
to a collection point (sink), using a one-hop or a multi-hop routing protocol [1].

For a WSN to be fully functional, at least two conditions must be met:
coverage and connectivity [1]. Coverage suggests, in its simplest form, that each
point of the RoI is covered by at least one sensor. This gives the network the
ability to detect, at any point, the target event occurrence. Connectivity implies
the existence, for each sensor, of at least one path connecting it to the sink.

To satisfy the two aforementioned conditions, it is necessary that the sen-
sors must be well distributed in the RoI. The usually used solution consists in
deploying the sensors in a random but very dense manner [1]. This practice is rec-
ommended in some cases, especially when the RoI is inaccessible. Nevertheless,
for a three-dimensional RoI, characterized by a complex topography (e.g. moun-
tainous areas), this random deployment produces many coverage holes, which
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are generally hidden parts of the RoI with very low sensor density; and therefore
a very low coverage quality, which gravely impairs the WSN performances.

The limitations of the random deployment of 3D WSNs, notably in terms
of coverage, have been highlighted in several works [2–4] that recommended the
use of a deterministic sensor placement. In this latter, the sensors’ positions are
precomputed, while taking into consideration not only the factors related to the
sensors characteristics but also the topography of the RoI. This requires first a
reliable representation of the RoI and a rigorous modeling of its influence on the
network performances.

The problem of WSNs deployment on a 3D terrains, proved NP-hard [5,6],
has been the subject of several researches [2–15] that have proposed, under differ-
ent hypotheses and formulations, approximates solutions based on heuristics or
meta-heuristics, aiming to find the best nodes positions, that meet the network
objectives. However, these works treat the entire RoI in the same way, without
taking into account the differences in topographic complexity between its dif-
ferent sub-regions. To contribute in removing this weakness and then improve
coverage and connectivity, we propose a new deployment approach, in which the
novelty is to partition the RoI into sub-regions characterized by simple topogra-
phies, to guide the deployment of the network composed of sensors and relays.
In this work, we tackle the part related to the sensors deployment in order to
maximize coverage. For the relays deployment, which are used to overcome the
connectivity problem, we just give an indication that will be detailed and eval-
uated in a future work.

The rest of this paper is organized as follows. The related works and their lim-
its are summarized in Sect. 2. The proposed approach is described in Sect. 3. The
coverage quality produced by the proposed approach is evaluated by simulation
in Sect. 4. The conclusion of this work is given in Sect. 5.

2 Related Works

The main difference between the existing approaches for the problem at hand
lies in the terrain representation. As such, most approaches [2–4,7–15] adopt the
matrix model, in which the terrain is represented by a matrix, where the value
of each cell corresponds to the elevation of the place that it represents on the
terrain. Another digital model, used by other approaches [5,6,16–18], consists in
representing the terrain by triangles network form. This model, called TIN (Tri-
angulated Irregular Network), can be deduced from the matrix model by using
triangulation methods. Few simplistic approaches [19–21] adopt a mathematical
model, where the coordinates of each point are calculated directly according to
a mathematical formula.

The aforementioned approaches consider different assumptions and models to
represent the sensor capabilities. The sensors can be considered homogeneous or
heterogeneous, directional or omnidirectional, mobile or static. Their coverage
capacities can be represented according to several parameters, with binary or
probabilistic models. The parameters considered include, besides sensors-related
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ones, those related to the RoI, in particular its topography that is introduced, by
the most of these approaches, via the visibility condition, which is verified in dif-
ferent ways, depending on the adopted terrain model [22]. Also, these approaches
address various objectives such as connectivity [11,19,20], sensors stealth [16,17],
and coverage that is the primary objective for all of these approaches.

In the literature, different heuristics and meta-heuristics are employed to
find the best positions (and orientations) of the sensors to meet the planned
objectives. In the sequel, these approaches are classified according to the adopted
terrain model, and described in terms of assumptions and resolution schemes.

2.1 Deployment Approaches Based on a Mathematical
Terrain Model

All the algorithms of this class are based on the binary coverage model. To
improve the quality of the random deployment in terms of coverage and con-
nectivity, two sensors redistribution algorithms have been proposed in [19,20],
where the terrain is modeled as a cone, and sensors are assumed to be homo-
geneous and omnidirectional. The algorithm proposed in [19] is based on the
virtual forces technique, under the constraint that the sensors move only on
the surface of the terrain. In [20], the proposed solution consists in moving the
sensors to positions situated on a spiral curve surrounding the terrain.

Assuming that the sensors are directional, the SA (Simulated Annealing)
algorithm is used in [21] to relocate and reorient the sensors, initially deployed
in a uniform manner, with the aim of improving the coverage.

2.2 Deployment Approaches Based on a Matrix Terrain Model

Some deployment solutions of this class adopt the binary coverage model, assum-
ing that the sensors are omnidirectional [4,7,9] or directional [8]. To maximize
coverage, the SA is implemented in [7], in both centralized and distributed man-
ners. For the same goal, the S-GA (Simple Genetic Algorithm) and the CMA-ES
(Covariance Matrix Adaptation-Evolution Strategy) algorithms are used in [4]
and [8], respectively. In [9], the Voronöı diagram reinforced by the use of mobile
nodes is made more realistic by taking into account the presence of obstacles.
Other solutions adopt the probabilistic coverage model and the sensors are sup-
posed to be omnidirectional [2,3,10–12] or directional [13–15].

To maximize coverage, the S-GA and SS-GA (Steady State Genetic Algo-
rithm) algorithms are used in [2] where they were reinforced by the 2D-DWT
(Discrete Wavelet Transform) transformation used to locate the coverage holes.
For the same goal, this same transformation is adopted to reinforce the CSO
(Cat Swarm Optimization) and ABC (Artificial Bee Colony) algorithms, used
in [3] and [10], respectively.

In [11], in addition to coverage, connectivity is taken into account by using
the link evaluation model adopted in [23]. To maximize these two criteria, the S-
GA algorithm, reinforced by the 2D-DWT transformation, is used. The authors
in [12] proposed a greedy algorithm to achieve k-coverage. Also, the work done
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in [8] is revised in [13–15] by adopting a probabilistic coverage model. In [13,14],
SA and CMA-ES are the main methods used to maximize coverage. In [15], the
PSO (Particle Swarm Optimization) method, consolidated by the virtual force
technique, is used to maximize coverage of critical points on the terrain.

2.3 Deployment Approaches Based on a TIN Terrain Model

Assuming that the sensors are homogeneous and omnidirectional and by adopt-
ing a binary coverage model, a greedy algorithm is proposed in [5,6] based on
the partitioning of the terrain in a regular grid, whose cells are smaller than the
sensors coverage range. This algorithm consists in choosing, in a progressive (iter-
ative) way, the cells that should host sensors in order to maximize coverage. With
the same assumptions and by adopting a probabilistic coverage model, another
solution is proposed in [18]. This latter is based on the Centroidal Voronöı Tes-
sellation adapted to 3D terrain and guided by Ricci one-to-one mapping, with
the aim to ensure coverage.

Table 1. A comparison between various deployment approaches.

Ref Objectives Resolution

approach

RoI model Deployment parameters

Sensor type Visibility Coverage model

[19] Coverage +

Connectivity

Virtual forces Mathematical Omnidirectional ✗ Binary

[20] Coverage +

Connectivity

Computational

geometry

Mathematical Omnidirectional ✗ Binary

[21] Coverage SA Mathematical Directional ✗ Binary

[7] Coverage SA Matrix Omnidirectional ✓ Binary

[9] Coverage Voronöı

diagram

Matrix Omnidirectional ✗ Binary

[4] Coverage S-GA Matrix Omnidirectional ✓ Binary

[8] Coverage CMA-ES Matrix Directional ✓ Binary

[2] Coverage S-GA +

SS-GA

Matrix Omnidirectional ✓ Probabilistic

[3] Coverage CSO Matrix Omnidirectional ✓ Probabilistic

[10] Coverage ABC Matrix Omnidirectional ✓ Probabilistic

[11] Coverage +

Connectivity

S-GA Matrix Omnidirectional ✓ Probabilistic

[12] k-Coverage Greedy

Algorithm

Matrix Omnidirectional ✗ Probabilistic

[13] Coverage SA +

CMA-ES

Matrix Directional ✓ Probabilistic

[15] Coverage PSO Matrix Directional ✓ Probabilistic

[14] Coverage SA +

CMA-ES

Matrix Directional ✓ Probabilistic

[18] Coverage Centroidal

Voronöı

Tessellation

TIN Omnidirectional ✗ Probabilistic

[5,6] Coverage Greedy

Algorithm

TIN Omnidirectional ✗ Binary

[16,17] Coverage +

Sensors stealth

SS-GA TIN Directional ✓ Probabilistic
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By adopting a probabilistic coverage model and assuming that the sensors
are directional, the authors in [16,17] used the SS-GA algorithm to find the
minimum number of sensors, their positions and their orientations, to maximize
coverage while ensuring sensors stealth. Table 1 provides a comparative summary
of the aforementioned deployment approaches.

It is worth to mention that most of the above-discussed approaches focused
on the coverage of the RoI without considering other deployment-related aspects,
such as connectivity, which is as important as coverage. In addition, some of these
approaches are based on a very simplified and unrealistic terrain model, where
its effective influence on coverage and connectivity has not been well taken into
account. This observation concerns in particular works based on a mathematical
terrain model. Also, the complexity of the RoI is an important factors to be taken
into consideration to estimate the number of sensors to be deployed. This issue
has not been addressed in these approaches. In addition, the performance results
presented in these works show that the most effective approaches are those that
use digital models to represent the terrain and exploit meta-heuristics to find
better positions of the sensors. However, their weakness lies in the fact that they
treat the entire RoI in the same way, without taking into account the differences
in topographic complexity between the different sub-regions of the RoI.

3 The Proposed Approach

In order to face the topography challenges and simplify the deployment of the
network, consisting of sensors and relays, our key idea is to partition the RoI
according to the visibility criterion. Our approach is composed of three phases
described as follows. The first phase consists of partitioning the RoI into rel-
atively simple topography sub-regions by using a simple heuristic designed for
this purpose and based on the visibility analysis. Thus, in each built sub-region,
the visibility factor is less pronounced and its influence on detection and com-
munication operations is greatly degraded. The second phase is intended for the
deployment of the sensors on each sub-region, with the aim of maximizing its
coverage, by using a method designed for this purpose. The first and second
phases of our deployment approach are depicted on Fig. 1.

The third and final phase is intended to consolidate the network connectivity
by using relays that will be placed at positions with wide visibility, located on the
crest lines separating the constructed sub-regions. Our goal is to build a 2-tier
architecture for the network, whose advantage lies in the fact that the sensors
do not participate in data routing, which increases their lifetimes. Visibility,
distance and load balancing are the most important factors that will be taken
into consideration when building this architecture. We recall that this paper
focuses only on the first and the second phases. The third phase is the subject
of an upcoming work.
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(a) Phase 1 (b) Phase 2

Fig. 1. First and second phases of our deployment approach.

3.1 RoI Partitioning

In this section, we describe our approach for partitioning the RoI into sub-regions
with relatively simple topographies, which should facilitates the deployment of
sensors on each of these sub-regions. We assume that the RoI, denoted T , is
represented by a TIN model that is composed of n triangles ti(1 ≤ i ≤ n), thus
T = {ti, 1 ≤ i ≤ n}. To construct a partition P of T , we apply an iterative fusion
of triangles based on visibility analysis. The number of sub-regions constructed,
denoted ‖P‖, is not fixed beforehand, and it is strongly depended to the RoI
complexity. Each constructed sub-region, denoted Rk(1 ≤ k ≤ ‖P‖), is com-
posed of one or more triangles and each triangle belongs only to one sub-region.
To explain this partitioning heuristic, we define the following notions.

Definition 1 (Intervisibility triangle-triangle). Two triangles ti and tj are
considered intervisible if and only if they are adjacent; that is to say that they
share a common edge, and their non-common vertices are intervisible. Therefore,
any point p ∈ ti is visible to any other point q ∈ tj.

If the visibility between two points p and q is verified by the binary function
v(p, q) and the adjacency between two triangles ti and tj is verified by the binary
function adj(ti, tj), then the visibility between ti and tj is verified by the binary
function V�(ti, tj) where V�(ti, tj) ⇐⇒ adj(ti, tj) ∧ (∀p ∈ ti,∀q ∈ tj : v(p, q)).

The visibility between two triangles (see Fig. 2) means that the coverage of
one of the triangles could be ensured by the sensors deployed on the other, hence
the opportunity to consider both as a single entity when deploying the sensors.

Fig. 2. Intervisibility triangle-triangle (V�(t1, t2) = 0, V�(t3, t4) = 1).
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Definition 2 (Intervisibility triangle-sub-region). A triangle ti is consid-
ered visible to a sub-region Rk if and only if it does not belong to Rk and it
is visible to a triangle tj ∈ Rk. This relation is modeled by the binary function
VR(ti,Rk) where VR(ti,Rk) ⇐⇒ (ti 	∈ Rk) ∧ (∃tj ∈ Rk : V�(ti, tj)).

Similarly, the visibility between a triangle ti and a sub-region Rk means
that the coverage of ti can be ensured by the sensors deployed in Rk, hence the
opportunity to consider them as a single entity when deploying the sensors.

Definition 3 (Free triangle). A triangle ti is considered free if and only if it
is not assigned to any sub-region.

Definition 4 (Front of a sub-region). The front of a sub-region Rk is the
set of free triangles visible to Rk. If the set of free triangles is represented by Ω,
then the front of Rk is F(Rk) = {ti ∈ Ω/VR(ti,Rk) = 1}.

Description. Initially, the set of free triangles Ω is equal to the set of triangles
composing the RoI T (all the triangles of T are free). We assign to the first sub-
region to be constructed, denoted R1, a triangle t arbitrarily selected from Ω
(t ←− rand�(Ω)). The sub-region R1 will be extended in an iterative manner,
adding to it, at each iteration, the set F(R1). When there is no free triangle to
add to R1; that is to say that F(R1) = ∅, the construction of R1 is completed,
and the construction of a new sub-region in the same way is launched. The
sub-region construction algorithm stops when the set of free triangles becomes
empty (Ω = ∅). Obviously, the number of sub-regions produced by this heuristic
depends on the complexity of the topography. In the ideal case, we will have a
single sub-region including all the n triangles of T . In extremely complex cases,
we will have a number of sub-regions equal to the number of triangles of T . It
is easy to confirm that the temporal complexity of this heuristic is O(n2), but
it can be reduced to O(n × log(n)). Indeed, adding a triangle to a sub-region
requires confirming that it is still free, by checking its presence in Ω, which is
done in a sequential way in our basic heuristic, and can be improved by adopting
a dichotomy search, under the condition that the triangles in Ω are sorted (by
their numbers for example). The partitioning produced by our heuristic has two
interesting characteristics: (i) two triangles lying in two different sub-regions are
necessarily not inter-visible; and (ii) for every point in a sub-region, there are
necessarily other points in that sub-region, which are visible to it.

3.2 Sensors Deployment

This section describes the sensors deployment phase, which includes the formu-
lation of the desired objective according to the considered parameters and the
adopted assumptions, an estimate of the number of sensors to be used, as well
as the design of a resolution method, allowing to select the appropriate positions
of these sensors.
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Algorithm 1. RoI partitioning
Input: T = {ti/1 ≤ i ≤ n}
Output: P
P ←− ∅; Ω ←− T ; i ←− 0;
while (Ω �= ∅) do

i ←− i+1;
t ←− rand�(Ω); /* random selection of a free triangle */

Ri ←− {t}; Ω ←− Ω − {t};
while (F(Ri) �= ∅) do

Ri ←− Ri ∪ F(Ri); Ω ←− Ω − F(Ri);
end
P ←− P ∪ Ri;

end

Hypotheses and Objective. We aim to achieve the minimum coverage (1-
coverage) level of the RoI T , wherever every point must be covered by at least
one sensor. For simplicity, we assume that the sensors are homogeneous and
omnidirectional. Also, we adopt the binary coverage model, where the coverage
capacity of the sensors is influenced by the distance and the terrain topography,
which is introduced via the visibility factor. Thus, a point pi is considered to be
covered by a sensor sj if and only if: (1) pi and sj are intervisible and (2) pi is
within the coverage range of sj . This last condition is examined by the binary
function μd(pi, sj), defined by Eq. 1, where rs represent the coverage range of
the sensors and d(pi, sj) the Euclidean distance between pi and sj .

μd(pi, sj) =
{

1 if d(pi, sj) ≤ rs
0 otherwise (1)

Similarly, the visibility between pi and sj is modeled by a binary function
μv(pi, sj), calculated by the Bresenham’s algorithm [22]. Thus, the coverage of
pi by sj is modeled by the binary function C(pi, sj) = μd(pi, sj) × μv(pi, sj).

In the sequel, we describe our approach for the deployment of sensors on an
arbitrary sub-region Rk ∈ P, constructed by the above-described partitioning
phase. The same deployment approach is applied for the other sub-regions.

Deployment of Sensors on a Sub-region Rk . We assume that the sensors
deployed on Rk only contribute to the coverage of Rk. In the presence of Nk

sensors in Rk, the coverage of a point pi ∈ Rk, is modeled by the function
Cov(pi,Nk) = max1≤j≤Nk

C(pi, sj).
We consider by approximation that the coverage Cov�(ti,Nk) of a triangle

ti ∈ Rk is the mean of the coverage value of its vertices pi1, pi2 and pi3 (Eq. 2). The
objective is therefore to find the number Nk and the positions of the sensors to be
deployed in the sub-region Rk, to maximize its coverage quality CovR(Rk,Nk)
calculated according to Eq. 3, where ‖Rk‖ represents the number of triangles
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composing the sub-region Rk.

Cov�(ti,Nk) ≈ 1
3

×
3∑

j=1

Cov(pij ,Nk) (2)

CovR(Rk,Nk) =
1

‖Rk‖
×

∑
ti∈Rk

Cov�(ti,Nk) (3)

Estimation of the number of sensors. The number of sensors (Nk) to be deployed
on the sub-region Rk to ensure its coverage depends on the coverage range rs
of the sensors, the surface area of Rk, and the arrangement of the triangles of
Rk. For simplicity, we take into account only the first and the second factors.
Therefore, we compute Nk by dividing the surface of Rk, which is equal to the
sum of the surfaces of all its triangles, on the surface covered by a sensor in an
ideal (flat) terrain. The number Nk is given by Eq. 4, where ‖ti‖ represents the
surface of the triangle ti and I denotes the integer part function.

Nk = I(

∑
ti∈Rk

‖ti‖
π × r2s

) + 1 (4)

Algorithm 2. Sensors deployment on sub-region Rk

Input: Xr

Output: X
X ←− Xr; i ←− 0;
while i < is do

j ←− randN{1, ..., Nk}; /* random selection of a sensor sj */

Xi ←− Xr + randsj (Rk) /* generation of Xi from Xr by randomly

changing the position of sj in Rk */

if CovR(Xi) > CovR(Xr) then
Xr ←− Xi;
if CovR(Xi) > CovR(X) then

X ←− Xi;
end

else
ζ ←− randR[0, 1]; /* generating a random number */

if ζ < T(i) then
Xr ←− Xi;

end

end
i ←− i+1;

end

Deployment of sensors. In order to maximize the coverage of Rk by the Nk

sensors, we use the simulated annealing to determine the positions to be occupied
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by the sensors. Thus, a possible solution to our problem is coded in the form
of a vector containing the positions of the Nk sensors. The method is based
on the follow-up of the evolution of a current solution, that we note it Xr. Let
CovR(Xr) be the coverage quality CovR(Rk,Nk) generated by Xr. Initially, Xr is
generated in an arbitrary manner, where the sensors occupy random positions in
Rk. Thereafter, Xr evolves in several iterations. At an iteration i, a new solution
Xi is generated from Xr, by randomly changing the position of an arbitrary
sensor in Xr (Xi ←− Xr + randsj (Rk)), under the constraint that its new
position is always in Rk. Let CovR(Xi) be the coverage quality CovR(Rk,Nk)
produced by Xi. The solution Xr is updated to Xi (Xr ← Xi) if Xi improves
the coverage quality; that is to say that CovR(Xi) > CovR(Xr). In the contrary
case, this update (Xr ← Xi) is carried out with a probability T(i) calculated
according to Eq. 5. This probability is impaired as a function of the number of
iterations performed, which is limited to a threshold value is. The best value
taken by Xr during all its evolution on the is iterations is retained as a solution
to the problem.

T(i) = 2−( 2i
is

+1) (5)

The total number N of sensors to be used for the terrain T , and its coverage
quality, are computed using Eqs. 6 and 7, respectively.

N =
‖P‖∑
k=1

Nk (6)

CovT (T ,N ) =
1

‖P‖ ×
‖P‖∑
k=1

CovR(Rk,Nk) (7)

It should be noted that the sensor deployment phase can be easily upgraded,
by eliminating the assumption that the sensors are omnidirectional and replacing
the binary coverage model with a probabilistic model, which is more realistic.
Whatever the choices adopted concerning the coverage model, the main contribu-
tion proposed in this paper, which consists in preceding the phase of deployment
of the sensors by a phase of partitioning the terrain according to topographic
criteria, remains intact.

4 Performance Evaluation

To evaluate the coverage quality produced by our approach, we have chosen four
real RoIs of size 1200m × 1200m with highly distinguishable and progressive
complexities (RoI1 < RoI2 < RoI3 < RoI4). Each of these RoI is represented by
a TIN model, built by the application of a Delaunay triangulation on altimetry
data of these terrains, retrieved via “http://www.zonums.com/gmaps/terrain.
php?action=sample”. We set the coverage range of each sensor (rs) to 30 m, and

http://www.zonums.com/gmaps/terrain.php?action=sample
http://www.zonums.com/gmaps/terrain.php?action=sample
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Table 2. Simulation results.

RoI # Sensors Coverage quality

Without partitioning With partitioning Gain

1 723 0.7460 0.8537 +0.1077

2 779 0.7187 0.8263 +0.1076

3 897 0.6832 0.8038 +0.1206

4 1081 0.6325 0.7923 +0.1598

we apply Eq. 6 to determine the number of sensors to use for each terrain, where
the results obtained are shown on Table 2.

For the simulated annealing used for sensor deployment, we set the maxi-
mum iteration count (is) to 100. We note that the terrain partitioning heuristic
and the simulated annealing are implemented on Matlab. The main objective is
to analyze the impact of the partitioning phase on the efficiency of the simu-
lated annealing in terms of coverage quality. Thus, for each RoI, the deployment
of the sensors by the simulated annealing is carried out according to two sce-
narios. In the first scenario, all the N sensors are deployed on the entire RoI,
without partitioning it. In the second scenario, the RoI is partitioned using the
partitioning heuristic, after which the Nk sensors allocated to each sub-region
Rk are deployed on it. The coverage quality produced by the simulated anneal-
ing implemented for the four RoIs according to these two scenarios (with and
without partitioning) is summarized in Table 2.

The obtained results indicate the following. (1) the number of sensors
increases according to the complexity of the RoI. This is justified by the fact
that this complexity reflects the number of peaks. Each peak contributes to
the increase of the triangles surfaces of the TIN model, and consequently to the
increase of the surface of RoI, used as a factor to calculate the number of sensors;
(2) the coverage quality produced by the SA, in both scenarios (with and without
partitioning), degrades according to the RoI complexity, despite the increase in
the number of sensors. This is justified by the fact that this complexity decreases
in some way the factor of inter-visibility (notably for the third and the fourth
RoI), which obviously has an influence on the coverage quality produced by SA,
especially since it was launched with the same number of iterations (set at 100)
for the four RoI; (3) the quality of coverage is improved by the partitioning phase,
and this improvement becomes more significant for the third and fourth RoI. This
is justified by the fact that this partitioning has already been based on the vis-
ibility analysis, in such a way that the increase in RoI complexity implies first
and foremost the increase in the number of sub-regions constructed, which has
allowed to minimize the influence of the terrain complexity on the visibility crite-
rion in each constructed sub-region. Also, this partitioning allowed to subdivide
the global problem, which consists of deploying the total number of sensors over
the entire RoI, to very small sub-problems, where each one consists of deploying
on each constructed sub-region, only the number of sensors allocated to it.
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5 Conclusion

Examining previously proposed solutions for the deployment of WSNs on realis-
tic terrains allowed us to remark that these solutions are “blind”, because they
proceed to the deployment of the sensors without analyzing the terrain and with-
out taking into account the topographical differences that may exist between its
different sub-regions. From this observation, in this paper, we have proposed a
new deployment approach, which consists of partitioning the terrain into simple
topography sub-regions, to simplify the estimation of the number of sensors to
be used and guide their deployment. The obtained simulation results confirm
the efficiency of our approach in terms of coverage quality. As a future work, we
aim to design a relay placement algorithm to ensure the connectivity between
the constructed sub-regions, and a logical topology management algorithm in
order to maximize the network lifetime.
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14. Akbarzadeh, V., Gagné, C., Parizeau, M., Mostafavi, M.A.: Black-box optimization
of sensor placement with elevation maps and probabilistic sensing models. In: IEEE
International Symposium, pp. 89–94 (2011)

15. Tam, N.T., Thanh, H.D., Son, L.H., Le, V.T.: Optimization for the sensor place-
ment problem in 3D environments. In: 12th International Conference on Network-
ing, Sensing and Control, Taipei, Taiwan, pp. 327–333 (2015)

16. Topcuoglu, H.R., Ermis, M., Sifyan, M.: Positioning and utilizing sensors on a 3D
terrain Part I: theory and modeling. IEEE Trans. Syst. Man Cybern. Part C Appl.
Rev. 41, 376–382 (2011)

17. Topcuoglu, H.R., Ermis, M., Sifyan, M.: Positioning and utilizing sensors on a 3D
terrain Part II: solving with a hybrid evolutionary algorithm. IEEE Trans. Syst.
Man Cybern. Part C Appl. Rev. 41, 470–480 (2011)

18. Jin, M., Rong, G., Wu, H., Shuai, L., Guo, X.: Optimal surface deployment problem
in wireless sensor networks. In: IEEE INFOCOM, pp. 2345–2353 (2012)

19. Boufares, N., Khoufi, I., Minet, P., Saidane, L.: 3D surface covering with virtual
forces. In: PEMWN, Hammamet, Tunisia, pp. 103–108, November 2015

20. Kim, K.: Mountainous terrain coverage in mobile sensor networks. IET Commun.
9(5), 613–620 (2015)

21. Xiao, F., Yang, X., Yang, M., Sun, L., Wang, R., Yang, P.: Surface coverage
algorithm in directional sensor networks for three-dimensional complex terrains.
Tsinghua Sci. Technol. 21, 397–406 (2016)

22. Proctor, M.D., Gerber, W.: Line-of-sight attributes for a generalized application
program interface. Def. Model. Simul. Appl. Method. Technol. 1(1), 43–57 (2004)

23. De Marco, G.: MOGAMESH: a multi-objective algorithm for node placement in
wireless mesh networks based on genetic algorithms. In: 6th International Sympo-
sium on Wireless Communication Systems, pp. 388–392, September 2009


	Terrain Partitioning Based Approach for Realistic Deployment of Wireless Sensor Networks
	1 Introduction
	2 Related Works
	2.1 Deployment Approaches Based on a Mathematical Terrain Model
	2.2 Deployment Approaches Based on a Matrix Terrain Model
	2.3 Deployment Approaches Based on a TIN Terrain Model

	3 The Proposed Approach
	3.1 RoI Partitioning
	3.2 Sensors Deployment

	4 Performance Evaluation
	5 Conclusion
	References




