
Flexibility in Classification Process

Ismaïl Biskri(&)

Laboratoire de Mathématiques et Informatique Appliquées,
Université du Québec à Trois-Rivières, Trois-Rivières, Canada

Ismail.Biskri@uqtr.ca

Abstract. A whole classification process is the result of a discovery process
that requires constant back and forth between theoretical description of the
solution, software implementation, testing and refinement of the theoretical
description in the light of the results of experimentation. This process is itera-
tive. It should be, always, under the control of the user according to his sub-
jectivity, his knowledge and the purpose of his analysis. In the last years, several
platforms for digging data where classification is the main functionality have
emerged. Some of these platforms allow a rapid prototyping and support a
re-use of existing “computational modules” from existing “computational tool
cases”. However, they lack flexibility and sound formal foundations. We pro-
pose, in this paper, a formal model with strong logical foundations, based on
typed applicative systems. In this model, “computational modules” are con-
sidered as operators followed by their operands. A specific processing chain
becomes a specific arrangement of a set of modules according to the needs of the
user. The model ensures a firm compositionality of this arrangement.

Keywords: Classification � Flexibility � Applicative systems

1 Introduction

Language processing, text processing, social Medias processing, knowledge extraction,
applications in education, etc. are a broad field of research including information
retrieval, indexation, classification, and information’s analysis. As Web is a big source
of information, this field can have many implications on several sectors of society.
Compared to the quick expansion of data quantity, the evolution of their analysis is too
slow and insufficient.

Classification is a major component of many processing chains for language pro-
cessing, text processing, social Medias processing, knowledge extraction, applications
in education, etc. Classification organizes documents, files, data, etc. in such a way that
similar documents, files, data, etc. are grouped together. From a computational point of
view, classification relies on statistical comparison of content-based descriptors iden-
tified by the user according to his needs and goals.

The whole classification process may be divided in three steps. The first one is the
features extraction. Extracted features are used as content - based descriptors. The user
decides the nature of these descriptors. He may decide to replace them by other
descriptors. Indeed, the main difficulty is not extracting the features, over the years,

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
A. Amine et al. (Eds.): CIIA 2018, IFIP AICT 522, pp. 279–289, 2018.
https://doi.org/10.1007/978-3-319-89743-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89743-1_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89743-1_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89743-1_25&domain=pdf

many libraries have been developed and shared to facilitate the features extraction; but
it is choosing the right features.

The second step is the classification process itself. Different classifiers such as
neural network based classifier can be used to perform this step. One of the limitations
of these classifiers is that they are opaque and it’s not always easy to evaluate the
contribution of a specific descriptor and a specific classifier in the classification result.

The third step is the interpretation by the user of the classification results. A user
can use different tools to make an enlightened reading of the results. The choice of the
tool strongly depends on the purpose of the analysis, or even the knowledge and
subjectivity of the user.

Features extraction, classifiers and interpretation tools have an impact on the
classification process. Different combinations of features, classifiers and interpretation
tools should continue to be explored in order to improve the computer assisted clas-
sification process or in some cases better customize the classification process to specific
application areas.

In the literature about classification, data-mining, text-mining, and Big-Data, many
projects aim to allow the creation of complex processing chains. ALADIN [9],
D2K/T2K [5], RapidMiner [8], Knime [11] and WEKA [12] use processing chains for
language and data engineering, Gate [4] use it for linguistic analysis. The processing
chains are widely used, but the solutions previously mentioned suffer from limitations.
They are strongly bonded to their specific platforms and programming languages. To
take the best advantage of them, the user needs to have knowledge about the developed
software and sometimes about programming language. The user is not, always expert,
in programming language. A big challenge in these fields is the multitude of disciplines
needed to go further. So, experts of different domains need to work together.

In our paper, we propose a formal model based on typed applicative systems, in
which the validation of the construction of a processing chain is performed by a logical
calculation on types. Typed application systems are widely used in the field of auto-
matic processing of natural language with the current of categorial grammars [1–3] and
applicative grammars [10]. They allowed the construction of parsers for many lan-
guages like French, Arabic, English, Dutch, Korean, etc. They also allowed logical
representations for linguistic or cognitive operators.

Before presenting the formal model itself, we will first introduce, in the next
section, typed applicative systems and combinatory logic.

2 Combinatory Logic and Typed Applicative Systems

Combinatory logic was introduced by Moses Schönfinkel in 1924, and extended by
Curry and Feys [6, 7]. This logic uses abstract operators called combinators in order to
eliminate the need of the variables and, thus, to avoid variable telescoping. Combi-
nators act as functions over argument within a typed operator-operand structure. Their
action is expressed by a unique rule called b-reduction rule; which defines the

280 I. Biskri

equivalence between the logical expression without combinator and the one with
combinator. Elementary combinators can be associated to others to create complex
combinators. In our paper, we use only the four elementary combinators B, C, S, W,
whose notations and b-reductions are shown in the table below.

Combinator Role b-Reduction

B Composition B x y z ! x (y z)
C Permutation C x z y ! x y z
S Distributive composition S x y u ! x u (y u)
W Duplication W x y ! x y y

The composition combinator B combines two operators x and y together and
constructs the complex operator B x y that acts on an operand z, z being the operand of
y and the result of the application of y to z being the operand of x.

The permutation combinator C uses an operator x in order to build the complex
operator C x that acts on the same two operands as x but in reverse order.

The composition combinator S distributes an operand u to two operators x and y.
The duplication combinator W takes an operator x that acts on the same operand y

twice and constructs the complex operator Wx that acts on this operand only once.
We can combine elementary combinators together to construct more complex

combinators. For example, we could have an expression such as “B S C x y z u v”. Its
global action is determined by the successive application of its elementary combinators
(first B secondly S and finally C).

B S C x y z u v
S (C x) y z u v
(C x) z (y z) u v
C x z (y z) u v
x (y z) z u v

The resulting expression, without combinators, is called a normal form. This form,
according to Church-Rosser theorem, is unique.

Two other forms of complex combinators exist: the power and the distance of a
combinator. Let v be a combinator.

The power of a combinator, noted by vn, represents the number n of times its action
must be applied. It is defined recursively by v1 = v and vn = B v vn−1. For example,
the action of the expression C2 x y z would be:

C2 x y z
B C C x y z
C (C x) y z
(C x) z y
C x z y
x y z

Flexibility in Classification Process 281

The distance of a combinator, noted by vn, represent the number n of steps its
action is postponed. It is defined by v0 = v and vn = Bn v. For example, the action of
the expression C2 x y z u v will be:

W2 x y z u v
B2 W x y z u v
B B B W x y z u v
B (B W) x y z u v
(B W) (x y) z u v
B W (x y) z u v
W ((x y) z) u v
((x y) z) u u v
x y z u u v

Applicative systems assign to each operator and to each operand an applicative type
to express how they work. The set of applicative types is recursively defined as follows:

1. Basic types are types.
2. If x and y are types, Fxy is a type.

Fxy is the applicative type of an operator whose operand is of type x and the result
of its application to its operand is of type y.

An operator function having two x typed operand and returning a y typed result will
be of type FxFxy. This can also be read as: an operator taking an x type operand and
giving back an operator taking an x type operand and returning an y type result.

3 Formal Model

In our model, we aim at explicitly defining the set of operations contained in programs.
In the applicative modeling, these operations are translated into functional terms rep-
resented by typed modules. This translation allows a more formal definition of an
operation in terms of its internal structure and relation with other operations. Also, this
translation allows for a better specification of the processing chain design. Typed
modules are organized in series and as such they form processing chains. A typed
module acts then like a mathematical function that takes several arguments, process
them and return an output. Here, we are not interested in the internal programming of
the modules but only in their representation as functions and how they are organized to
create processing chains.

A processing chain must be syntactically correct. Its semantic interpretation
depends, mainly, on the user’s point of view regarding the expected analysis.

Our model tends to answer two questions:

• Given a set of typed modules, what are the allowable arrangements that lead to
coherent processing chains?

• Given a coherent processing chain, how can we automate as much as possible its
assessment?

282 I. Biskri

To do that, we must, first, assign to each module an applicative type. For example
the type Fxy is assigned the module M1 in (Fig. 1) since its input is of type x and its
output is of type y. We note the module M1 of type Fxy as follow: [M1 : Fxy].

As a general notation, [M1 : Fx1…Fxny] is a module M1 with n inputs of different
types, input in place “i” is of type xi, and an output of type y, [M2 : (Fx)ny] is a module
M2 with n inputs of type x and an output of type y.

A processing chain is the representation of the order of application of several
modules on their inputs. To be valid, the type of an input must be the same as the
output linked to it (Fig. 2). It also can be seen as a module itself as it has inputs and
output (Fig. 3).

Our model allows the reduction of a processing chain to this unique module rep-
resentation. The combinatory logic keeps the execution order and the rules take type in
account to check the syntactic correctness. To reduce a chain, we only need the
modules list, their type, and their execution order.

Fig. 1. Module schematisation

Fig. 2. Valid chain of two modules in series

Fig. 3. Processing chain as a new module

Flexibility in Classification Process 283

Let us show these rules:

APPLICATIVE
RULE

[X : x] + [M1 : Fxy]

[Y : y]

COMPOSITION
RULE

[M1 : Fxy] + [M2 : Fyz]
---------------------------------B

 [B M2 M1 : Fxz]

DISTRIBUTIVE
COMPOSITION

RULE

[M1 : Fxy] + [M2 : FxFyz]
----------------------------------S
[S M2 M1 : Fxy]

PERMUTATION
RULE

[M1 : FxFyz]
----------------------C
[C M1 : FyFxz]

DUPLICATION
RULE

[M1 : FxFxy]
---------------------W
[W M1 : Fxy]

The above rules are only the core set of the model. Extended rules are provided so
they can be applied to any number of inputs.

COMPOSITION
RULE

[M1 : Fx1...Fxny] + [M2 : Fyz]
------------------------------------ Bn

[Bn M2 M1 : Fx1...Fxnz]

PERMUTATION
RULE

[M1 : Fx1...Fxny]
-- Cn

[Cp-1(Cp(…(Cm-2M1))) : Fx1...Fxp-1FxmFxp...Fxm-1Fxm+1...Fxny]

DUPLICATION
RULE

[M1 : (Fx)ny]
-------------------- Wn

[WnM1 : Fxy]

The composition rule is used when two modules are in series (as in Fig. 2). If M1
has n inputs, the power of the B combinator is n. For these rules, the inputs number of
M2 can be more than one. The duplication rule transforms a module with n identical
inputs to a module with only one input. It can be applied only if the chain give the same
value to each of its inputs (Fig. 4). The permutation rule allows to change the order of
inputs. It takes the input at position m and moves it to the position p, with p < m. It’s
used to reorganize input to make the other rules applicable.

284 I. Biskri

4 Application of the Approach

In this section, we will show how the rules given in the previous section are applied and
illustrate the reduction of a processing chain with an example.

Let us consider the linear connection of two modules (Fig. 2). The module [M1 :
FxFxy] applies on two identical inputs of type x and yield an output of type y. The
module [M2 : Fyz] applies on this output to yield an output of type z. This chain is
expressed by the expression: [M1 : FxFxy] + [M2 : Fyz]. The composition rule can be
applied and returns the complex module [B2 M2 M1 : FxFxy]. If the type of M1 output
and M2 output where not the same, we could not have applied the composition rule.
So, the application of the rules is a proof of syntactic correctness of the chain.

The module [B2 M2 M1 : FxFxy] can be reduced a second time with the dupli-
cation rule. It is reduced to the complex module [W (B2 M2 M1) : Fxy].

The permutation rule allows reorganising the inputs of a module to apply another
rule. Let M be a module with four inputs of types x, y, z and x and an output of type t:
[M : FxFyFzFxt]. Let X be the value given to the first and fourth inputs (Fig. 5a). If the
fourth was in second position, we could apply the duplication rule to M. So, we want to
move the fourth input to second position. The permutation rule returns the complex
module [C1 (C2 M) : FxFxFyFzt] (Fig. 5b). On this new module, the duplication rule
can be applied to get a complex module [W (C1 (C2 M)) : FxFyFzt] (Fig. 5c).

Let us now give the analysis of a somewhat complex processing chain (Fig. 6).
This chain is a combination of five modules.

• M1 of type FxFyz
• M2 of type Fzx
• M3 of type Fzx
• M4 of type Fzy
• M5 of type FxFxFyt

To reduce this chain, we will start with the last module and process from left to
right. So we start with [M5 : FxFxFyt]. His first input takes the output of [M2 : Fzx].
The composition rule gives a new complex module [BM5 M2 : FzFxFyt] (Fig. 7). This
new module and [M3 : Fzx] can be reduced with the distributive composition rule to
get the module [S (B M5 M2) M3 : FzFyt] (Fig. 8). The first input of this module can
be reduced with the composition rule to get a new module [B2 (S (B M5 M2) M3) M1 :
FxFyFyt] (Fig. 9).

To reduce this module with [M4 : Fzy] we want to use the composition rule. But to
apply it, M4 output must be the first input of our module. We use the permutation rule
to reorganise the inputs and got a new module [C (C2 (B

2 (S (B M5 M2) M3) M1)) :
FyFxFyt] (Fig. 10). Finally, we can apply the combination rule that returns the module

Fig. 4. Module getting a single value in its three inputs

Flexibility in Classification Process 285

Fig. 5. Inputs reorganisation

Fig. 6. A complex processing chain

286 I. Biskri

Fig. 7. Reduction step 1

Fig. 8. Reduction step 2

Fig. 9. Reduction step 3

Fig. 10. Reduction step 4

Fig. 11. Reduction last step

Flexibility in Classification Process 287

[B (C (C2 (B
2 (S (B M5 M2) M3) M1))) M4 : FzFxFyt]. As we have only one module,

and no other rule can be applied, the processing chain is reduced (Fig. 11).
As it has been completely reduced, the processing chain is considered as syntac-

tically correct. Its combinatory expression is: B (C (C2 (B
2 (S (B M5 M2) M3) M1)))

M4. Using combinatory logic reductions, we can get the normal form of this expres-
sion.

 B (C (C2 (B2 (S (B M5 M2) M3) M1))) M4 Z X Y

C (C2 (B2 (S (B M5 M2) M3) M1)) (M4 Z) X Y

C2 (B2 (S (B M5 M2) M3) M1) X (M4 Z) Y

B2 (S (B M5 M2) M3) M1 X Y (M4 Z)

S (B M5 M2) M3 (M1 X Y) (M4 Z)

B M5 M2 (M1 X Y) (M3 (M1 X Y)) (M4 Z)

M5 (M2 (M1 X Y)) (M3 (M1 X Y)) (M4 Z)

This normal form expresses the order of application of modules on their inputs (X,
Y and Z).

Even if this work is currently at the theoretical stage, a first prototype of the model
was implemented. The rules are implemented in a F# library and a testing software in
C# language.

The prototype has been tested on 40 different processing chains containing 15
syntactically incorrect chains and 25 correct chains. The results are shown in Table 1.
We are, currently, working on the implementation of modules with effective func-
tionalities in the domain of classification.

5 Conclusion

The need for flexible, adaptable, consistent and easy-to-use tools and platforms is
essential. But, many challenges are yet to be solved. The user stays in center of its
experience and he can change his mind. The flexibility of the tools is really important
when it happens. Without it, user needs to, constantly, go back and forth between
theoretical description of the solution, software implementation, testing and refinement
of the theoretical description in light of experimentation results. The model that we

Table 1. Results of reduction

Reduced Not reduced

Valid chain 25 0
Invalid chain 0 15

288 I. Biskri

propose allows rapid prototyping and support a maximal re-use and composition of
existing modules. It also ensures a firm compositionality of the different modules in the
different processing chains. Moreover, our approach provides a general framework in
which users would be able to build multiple language and text analysis processes
according to their own objectives.

References

1. Biskri, I., Desclés, J.P.: Applicative and combinatory categorial grammar (from syntax to
functional semantics). In: Recent Advances in Natural Language Processing. John
Benjamins Publishing Company, Amsterdam (1997)

2. Biskri, I., Anastacio, M., Joly, A., Amar Bensaber, B.: A typed applicative system for a
language and text processing engineering. In: International Journal of Innovation in Digital
Ecosystems. Elsevier, Amsterdam (2015)

3. Biskri, I., Anastacio, M., Joly, A., Amar Bensaber, B.: Integration of sequence of
computational modules dedicated to text analysis: a combinatory typed approach. In:
Proceedings of AAAI. FLAIRS 2013, St. Pete Beach (2013)

4. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: a framework and
graphical development environment for robust NLP tools and applications. In: Proceedings
of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL
2002), Philadelphia (2002)

5. Downie, J.S., Unsworth, J., Yu, B., Tcheng, D., Rockwell, G., Ramsay, S.J.: A revolutionary
approach to humanities computing: tools development and the D2K datamining framework.
In: Proceedings of the 17th Joint International Conference of ACH/ALLC (2005)

6. Curry, B.H., Feys, R.: Combinatory Logic, vol. I. North Holland, Amsterdam (1958)
7. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators, an Introduction. Cambridge

University Press, Cambridge (2008)
8. Mierswa, I., Wurst, M., Klinkemberg, R., Scholz, M., Euler, T.: YALE: rapid prototyping

for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2006). ACM Press (2006)

9. Seffah, A., Meunier, J.G.: ALADIN: Un atelier orienté objet pour l’analyse et la lecture de
Textes assistée par ordinaleur. In: International Conferencence on Statistics and Texts, Rome
(1995)

10. Shaumyan, S.K.: Two paradigms of linguistics: the semiotic versus non-semiotic paradigm.
Web J. Formal Comput. Cogn. Linguist. 2, 1–72 (1998)

11. Warr, A.W.: Integration, Analysis and Collaboration. An Update on Workflow and
Pipelining in Cheminformatics. Strand Life Sciences (2007)

12. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers, Burlington (2011)

Flexibility in Classification Process 289

	Flexibility in Classification Process
	Abstract
	1 Introduction
	2 Combinatory Logic and Typed Applicative Systems
	3 Formal Model
	4 Application of the Approach
	5 Conclusion
	References

