
Developing a Conceptual Framework
for Software Evolution Methods

via Architectural Metrics

Nouredine Gasmallah1,3(B), Abdelkrim Amirat1, Mourad Oussalah2,
and Hassina Seridi3

1 Department of Mathematics and Computer Science, University of Souk-Ahras,
41000 Souk Ahras, Algeria

{gasmallahedi,a.amirat}@univ-soukahras.dz
2 Department of Computer Science, University of Nantes, 44300 Nantes, France

mourad.oussalah@univ-nantes.fr
3 Department of Computer Science, University of Annaba, 23000 Annaba, Algeria

seridi@labged.net

Abstract. Because of the vital need for software systems to evolve and
change over time in order to account for new requirements, software
evolution at higher levels of modeling is considered as one of the main
foundation within software engineering used to reduce complexity and
ensure flexibility, usability and reliability. In similar studies for migra-
tion technique and software engineering, presenting a framework do not
usually cover the specification of systems based on software architecture.
In this paper, we specify a conceptual framework based on six explicit
dimensions in respect to an architectural view-point as first class citi-
zen. Indeed, sketching evolution relies upon identifying dimensions on
which researchers try to answer while performing a new approach. The
proposed model is based on answering What, Where, When, Who, Why
and How questions. Analyzing these dimensions could provide a multiple
choice to implement classification for architectural techniques. Further
and using an example, these dimensions are quantified and then ana-
lyzed. This framework aims to provide a blueprint to guide researches to
position architectural evolution approaches and maps them according a
selected set of dimensions.

1 Introduction

Software evolution has become a major concern for stakeholders involved in the
process of designing and modeling computer systems. Because of the rudimentary
nature of software systems to evolve and change over time in order to account
for new requirements and different needs, software evolution is considered as a
vital pillar within the area of software engineering to ensure consistency and
maintainability as well as to allow the system to open up for new directions and

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
A. Amine et al. (Eds.): CIIA 2018, IFIP AICT 522, pp. 140–149, 2018.
https://doi.org/10.1007/978-3-319-89743-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89743-1_13&domain=pdf


Developing a Conceptual Framework for Software Evolution Methods 141

strategic opportunities. Further, software architecture must evolve within exist-
ing production systems as it constitutes the favorable blueprint for supporting
such evolvability at higher modeling levels [1]. This implies that evolution could
be handled at earlier modeling phases where future changes could be anticipated.
The area of software evolution has received unprecedented interest during the
last two decades where numerous research studies have been published describ-
ing various methods and frameworks. In return, few studies have been devoted to
present classification for software architecture evolution [2]. However, the main
stream of most studies are either specialized in software architecture evolution as
knowledge re-usability or addressing software evolution from an overall perspec-
tive [3,4]. Buckley et al. (2005) proposed a taxonomy of software changes which
characterize the mechanisms of change and their influencing factors. Williams
et al. (2010) suggested that the key solution to address software changes is
to identify the causes and effects which can be used to illustrate the potential
impact of the change. The major drawback of their study is the lack of an explicit
framework capable of positioning a given approach based on well-defined criteria
or metrics. Introducing an evolution framework would fulfill the need to identify
certain specifications according to which approaches can be classified. Because
of the dearth of classification procedures that address the architectural evolu-
tion techniques with respect to well-defined dimensions, a conceptual framework
that addresses the major concerns related to the evolution nature of software
architecture is proposed in this research study. A framework can offer a struc-
tured and coherent design for examining the organizational aspect in software
architecture evolution as well as assist architects to address decisions on new
requirements. De facto, introducing a clear and concise architectural evolution
framework would fulfill the need: (i) to identify certain specifications according
to the major concerns related to the evolution nature of software architecture
and, (ii) to provide a common vocabulary to understand, analyze and categorize
a given evolution approach. The discussed model is inspired from the work of
Buckley (2005) for software change in addition to the work of [5] for the architec-
ture of information systems. The proposed framework is devised to reshape the
dimensions reported in both earlier studies with a newly set of proposed met-
rics for the arena of software architecture evolution. Such metrics should assist
to examine and assess evolution approaches through providing answers which
revolve around these dimensions: What, Why, Where, Who, When and How the
software architecture evolves? Based on these dimensions, the following research
questions are addressed during this research study:

RQ1: What are the major metrics that can be used to analyze and compare the
different architectural evolution methods?
RQ2: Based on such dimensions, can a classification framework devises to
regroup and categorize architectural evolution approaches?

The remainder of the paper is organized as follows: the proposed dimensions
defined for positioning architectural evolution and a method for classifying them
are explained in the following section. The third section illustrates the results



142 N. Gasmallah et al.

drawn by the application of the proposed framework on a set of well-known
frameworks in the field of software evolution. The penultimate section is dedi-
cated to discuss the findings to explore and compare the potentials of the pro-
posed dimensions. Conclusions are drawn within the last section.

2 Proposed Framework

2.1 Framework Dimensions

What? Object of Evolution Dimension - The object of evolution is the
subject on which the evolution is operated. It answers the what question and
comprises of the following:

– Artifact: is an abstraction of any element belonging to the architectural
structure. It may be a software architecture, a component, a service and so
forth. It can be simple and even concrete description as program codes for
example.

– Process: Process is as a set of interacting activities, which transforms inputs
into outputs. Therefore the process also evolves and presents suitable means
for anchoring the benefits pertaining to cost optimization and quality promo-
tion [6], workflows in SOA are one of the best examples of processes.

Where? Hierarchical Level Dimension - Two types of hierarchical levels
are commonly identified within the software engineering literature as depicted
in Fig. 1, which are modeling and abstraction levels.

– Modeling levels (M0 to M2): Software systems must be mapped over
several levels, from lower-level constructs (code) to higher-level constructs, to
ensure convergence [7]. Modeling level refers to one of the four levels (from
M0 to M3) as defined by the OMG [8].

– Abstraction levels (a0 to an): Experts often use abstraction as an approach
to address complex problems. This is still very often used for solving problems
related to software modeling. Thereby, a solution is performed through a series
of model description at a number of abstraction levels referred to in the Fig. 1
as a0, a1..., an.

When? Time of Evolution - In respect of architectural viewpoint, the time
of evolution embraces one of these metrics:

– Design-time: Predicting evolution at the earlier stages of design allows
improving and extending the system architecture. Model Driven Architec-
ture is a good of methods addressing evolution at design-time, especially
co-evolution approaches.

– Run-time: The evolution can occur while the system is running [9]. So far,
evolving at run-time is considered as a major topic to address architecture
adaptation [10]. Noting that, this metric encompasses: compile-time, Load-
time and Dynamic-time [10,11].



Developing a Conceptual Framework for Software Evolution Methods 143

Fig. 1. Modeling levels vs. Abstraction-levels

Why? Type of Evolution Dimension - It is one of the most commonly-used
metric when addressing classification issues. This dimension encloses the two
following main sub-categories:

Main-categories: Instead of categories based on the architects intentions, main-
categories sub-dimension is responding to the objective evidence of architect’s
activities identifiable from observations and artifacts before and after comparison
of the software architecture.
Main-Forms of resolution: Architects can use several strategies for the evolution
problem-solving according to different forms. From the literature, the following
two major studies discussed the various forms in the area of evolution.

(i) Chaki et al. [12] grouped the different resolution methods into two main
strategies:
– Open evolution means from an initial architecture, of a new architecture

reflecting a system solution in which a set of invariants and constraints
are respected.

– Close evolution means the evolution activity uses induction resolution to
find the best permissible sequence of operations to be applied to achieve
the desired result.

(ii) Oussalah et al. [13] proposed two other forms:
– Break evolution means that interventions are applied directly to the initial

architecture without having the ability to go back on the trace of the
evolution.

– Seamless evolution denotes an evolution with trace whereby the architec-
ture keeps a trace of its initial properties and operations performed before
each evolving process.

The proposed structuring for deducing the assumed evolution type for a
particular method is shown in Table 1 such that the categorization is based
hybridly on categories and forms of resolution. Herein, the proposed type
of evolution is structured according to two main forms (curative or antici-
pative) which are explained as follows:



144 N. Gasmallah et al.

– Curative - when new requirements arise unpredictably during the life
cycle.

– Anticipative - can be applied when evolution requirements are taken
into account during the analysis.

Table 1. Structure of the type of evolution.

Type of evolution Main-forms Main categories

Open Close Break Seamless Corrective Adaptive Perfective

Curative © • ⊙ © • © ©
Anticipative • ⊙ ⊙ © © • ⊙

Symbol legend: • higher
⊙

Medium © Weak.

The two main forms (Curative and Anticipative) can be set either to Close or
Open. In the same way, the latter sub-forms can be set to Break or Seamless.

Who? Stakeholders - Stakeholders contribute in architecture enhancement in
multiple roles regarding the responsibility they assume and the range of chal-
lenges they face [14]. For instance, this dimension covers only those stakeholders
that operate evolution on the software system itself by referring to the develop-
ment team enclosing researches, architects, designers, developers, analysts and
programmers [10]. This dimension specifies two main knowledge about how are
involved and interested by the evolution of software architecture.

How? Operating Mechanism of Evolution - The operating mechanism of
evolution (OME) is introduced to refer to the general behavior and employed
procedure by taking into account solely the described hierarchical levels. Mainly,
evolution solving approaches commonly adhere to one of the two main following
methods:

– Reduce: For the reductionist evolution, the process gets through a predefined
evolution path; until the solution is satisfied (evolved model). Brooks [15] 25
defines the reductionist approach as classical approach to problem solving to
which the overall resolution task is decomposed into subtasks.

– Emergence: On the contrary during an emergentist evolution approach,
the process builds the path to a solution. The emergence exposes a passage
between the activity of micro-level and that of macro-level.

3 Case Study

3.1 Metric Calculations

In order to clarify applicability of the proposed framework, two studies of archi-
tectural evolution are analyzed and compared. These studies are only cited as
an example for evolution approaches among many other relevant approaches.



Developing a Conceptual Framework for Software Evolution Methods 145

The first study by Oussalah et al. [16] presents a software architecture evolution
model (SAEV) which aims to describe and manage the evolution through the
architectural elements of a given software architecture. SAEV considers soft-
ware architecture elements (component, connector, interface and configuration)
as first class entities. Managing these elements is conceived independently of any
architecture language level by considering the different levels of modeling (meta-
level, architectural level and application level). The second by Barnes et al. [17] is
an automatic approach provided to assist architects by planning alternative evo-
lution paths for evolving software architecture. An evolution path is expressed in
terms of intermediate architecture generated from the initial state. If the archi-
tect’s goal is clear, this approach aims to assist architects to find the optimal
path that meets the evolution requirements. The evolution path acts explicitly
on software architecture and applies evolution from a higher to lower level to
reach the desired architecture. This approach helps architects to find the optimal
path for the evolved architecture. In order to apply the conceptual framework
for the two approaches, all the discussed dimensions are quantified using three
values 1, 0.5 and 0 which reflect respectively explicit, implicit and not men-
tioned. Conventionally, a dimension, which is explicitly mentioned, is assigned
the value one. However, if it is shown in implicit fashion, 0.5 is assigned. Other-
wise, the estimated value is zero. The values obtained from Table 2 shows that
the two approaches have considered the six dimensions. For the where dimen-
sion for example, the first approach has explicitly expressed evolution at different
modeling levels and implicitly shows the consideration of the abstraction levels
which leads to a value of 1.5 from two of the whole dimension expressiveness
which gives 75% against 25% for the second approach. These percentages serve
as evaluation and comparison for determining the approach focus regarding the
proposed dimensions. In similar fashion, the other dimensions are analyzed and
compared accordingly. In summary, the first approach focuses on modeling lev-
els of the architecture whereas the second is based on abstraction levels mainly
used for reducing evolution complexity. It is noteworthy that the two approaches
show identical values of object, type, stakeholder and time of evolution and both
support the ‘reduce’ operating mechanism of evolution.

3.2 Framework Assessment

Three prominent existing studies have been selected and surveyed to further
evaluate the conceptual framework using the proposed metrics on their set of
surveyed papers as follows:

The first considered survey study that involves 32 research papers was con-
ducted by Ahmad [18] which focuses on approaches wherein changes impact
the architectural level when analyzing and improving software evolvability. The
investigation of the existing methods or techniques, either for systematic applica-
tion or for empirical acquisition of architectural knowledge, categorizes evolution
reuse knowledge into six broad themes: (i) evolution styles, (ii) change patterns,
(iii) adaptation strategies and policies, (iv) pattern discovery, (v) architecture



146 N. Gasmallah et al.

Table 2. Comparison of two evolution approaches using the framework

Model Oussalah (2006) Barnes (2014)

Object Artifact 1 50% 1 50%

Process 0 0

Levels Modeling 1 75% 0 25%

Abstraction 0.5 0.5

Stakeholders Architects/designers 1 100% 1 100%

Time Run 0 50% 0 50%

Design 1 1

OME Reduce 1 50% 0.5 25%

Emergence 0 0

Type Main-forms 1 12.50% 0.5 12.50%

0 0.5

0 0

0 0

Main-categories 1 16.67% 0.5 16.67%

0 0.5

0 0

configuration analysis, and (vi) evolution and maintenance prediction. The pro-
posed thematic classification focuses on both time of evolution and type of evo-
lution for reuse knowledge.

The second study by Breivold et al. [2] where five main categories of themes
are identified based substantially on research topics through an investigation of
82 research papers: (i) techniques supporting quality consideration during soft-
ware architecture design, (ii) architectural quality evaluation, (iii) economic val-
uation, (iv) architectural knowledge management, and (v) modeling techniques.
A set of specific characteristics is provided with a view to refine each category
to subcategories reflecting a common specification in terms of research focus,
research concepts and context.

The third by Chaki et al. [12] recommends three classes of common type for
architectural evolution:

– Maintenance focused evolution - these are works concerned with the use of
correction decisions and architectural modifiability to address architects’ con-
cerns. These works often require intervention at the lowest modeling level.

– Open evolution - refers to all software architectural evolution works whose
final architecture is not known a priori. These approaches infer, from an initial
architecture, one or more solutions in respect of a context known beforehand.

– Closed evolution - Categorizes works in which the target architecture of the
model is known before proceeding to the evolution of the initial architecture.
It is a question of finding a sequence of operations that may guide an initial
architecture to a desired one.



Developing a Conceptual Framework for Software Evolution Methods 147

Table 3. Coverage percentages of the proposed dimensions.

Dimensions Studies Ahmad 32 Breivold 82 Chaki 5 Weighted
average
%

Object Artifact 66.67 74.60 20 70.17

Process 33.33 25.40 80 29.83

Levels Modeling 86.67 88.23 64.29 86.80

Abstraction 13.33 11.77 35.71 13.20

Stakeholders Architects/designers 100 100 100 100

Time Run 34.62 24.44 22.22 27.08

Design 65.38 75.56 77.78 72.92

OME Reduce 96.78 94.29 100 95.20

Emergence 3.22 5.71 0 4.80

Type Main-forms 10.59 41.86 100 35.89

Main-categories 89.41 58.14 0 64.11

Weighted average =
∑

percentagei×ni∑
ni

where ni is the number of the surveyed papers.

Table 4. Details of form and category percentages.

Studies Nbr Main-forms % Main-categories %

Open Open Close Close Corr. Perf. Adap.

Break Seam Break Seam

Ahmad 32 04.71 03.53 2.35 0 37.65 28.24 23.53

Breiold 82 36.05 04.65 1.16 0 24.42 26.74 6.98

Chaki 5 80.00 00.00 0.00 20 - - -

It is worth emphasizing that the first step was to devise a set of projections for
the conceptual benchmarks and afterwards for the proposed taxonomy. These
projections aim to reveal the coverage of each of the benchmarks that appear
most frequently across the range of architectural evolution studies. Table 3 sum-
marizes the quantification using weighted results of the six dimensions. The
percentage of each dimension is calculated by dividing the sum of expressed
studies by the total number of investigated studies. Detailed illustration for the
provided results in Table 3 relating to the Type dimension (including Forms and
Categories) are further shown in Table 4. The results presented in both tables
reveal the just proportion (or disproportion) between weights granted for each
proposed dimension.

4 Discussion

Significantly, Table 3 shows that over three-quarters of the selected studies
have explicitly fostered modeling levels for all works, which explains these



148 N. Gasmallah et al.

studies’ relevance to the architecture evolution topic. Further, percentages show
that a wide range of studies are committed to artifact as an object of evo-
lution, except for [12] which focuses on process evolution studies. This is
due to the fact that both existing evolution support formalism (SAEV [16],
Query/View/Transformation-based [19], ...) and architecture description lan-
guages (ADL, UML, xADL, ...) for evolution models are all artifact oriented.
It is worth noting that styles and patterns are actually more suitable for evolv-
ing architecture elements (artifacts) but contribute little to address the evo-
lution issue of the styles themselves [20]. In addition, the modeling level has
attracted major interest from the evolution community for the reason that it
overlaps with the abstraction level concept. In the same way, an overwhelming
percentage deal with reducing evolution from higher to lower level, i.e. top-down
hierarchy modeling fashion. In our view, this preponderance is mostly due to a
deductive reasoning influence which promotes the top-down method (i.e. reduce
OME). However, this reductionism may deprive software architecture systems
to introduce new solution opportunities according to the current and/or future
environment assumptions. Regarding the temporal dimension, values are system-
atically in favor of the design-time which in our opinion reflects the interest to
the anticipation activity to deal with evolution. It is noted that all these studies
specify the importance of stakeholders requirements when dealing with evolu-
tion. The percentages in Table 4, show that the main categories sub-dimension
attracted an explicit interest from all the studies apart from Chaki et al. (2009).

5 Conclusion

In this paper, a conceptual framework is presented for modeling the classifi-
cation of software architecture evolution approaches. This model is based on
evaluating six proposed dimensions on a given approach. The proposal is part
of a wider strategy to evaluate tendency of existing research within software
architecture evolution according to well-defined dimensions. Thus, the proposed
model provides architects with the capacity for understanding and analyzing the
evolution before making technical choices. Considering the impact of evolution
process through the hierarchical levels, an evolution framework of six differ-
ent dimensions is devised. This would help to sketch the interior design of the
architectural evolution solution space. Based on an experimental study of three
well known classifications, the investigation of the coverage in software archi-
tecture evolution has drawn a number of conclusions on opportunities, strength
and weakness of existing approaches. The obtained results highlight the lack
of emergence techniques, which could be a very promising track. The proposed
conceptual framework enjoys the merits of (i) compare different architectural
evolution approaches, (ii) determine the appropriate evolution approach accord-
ing to the dimensions that seems the most relevant to the application class
and (iii) to guide thinking within research teams on new architectural evolution
approaches.



Developing a Conceptual Framework for Software Evolution Methods 149

References

1. Jazayeri, M.: Species evolve, individuals age. In: Eighth International Workshop
on Principles of Software Evolution, pp. 3–9. IEEE (2005)

2. Breivold, H.P., Crnkovic, I., Larsson, M.: A systematic review of software archi-
tecture evolution research. Inf. Softw. Technol. 54(1), 16–40 (2012)

3. Williams, B.J., Carver, J.C.: Characterizing software architecture changes: a sys-
tematic review. Inf. Softw. Technol. 52(1), 31–51 (2010)

4. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy
of software change. J. Softw. Maint. Evol. Res. Pract. 17(5), 309–332 (2005)

5. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J.
26(3), 276–292 (1987)

6. Pigoski, T.M.: Practical Software Maintenance: Best Practices for Managing Your
Software Investment. Wiley, New York (1996)

7. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Abstrac-
tions for software architecture and tools to support them. IEEE Trans. Softw. Eng.
21(4), 314–335 (1995)

8. Bézivin, J.: La transformation de modèles, p. 13. INRIA-ATLAS & Université de
Nantes (2003)

9. Oreizy, P., Taylor, R.N.: On the role of software architectures in runtime system
reconfiguration. IEE Proc. Softw. 145(5), 137–145 (1998)

10. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:
Challenges in software evolution. In: Eighth International Workshop on Principles
of Software Evolution, pp. 13–22. IEEE (2005)

11. Kniesel, G., Costanza, P., Austermann, M.: Jmangler-a framework for load-time
transformation of Java class files. In: Proceedings of the First IEEE International
Workshop on Source Code Analysis and Manipulation, pp. 98–108. IEEE (2001)

12. Chaki, S., Diaz-Pace, A., Garlan, D., Gurfinkel, A., Ozkaya, I.: Towards engineered
architecture evolution. In: Proceedings of the 2009 ICSE Workshop on Modeling
in Software Engineering, pp. 1–6. IEEE Computer Society (2009)

13. Oussalah, M., et al.: Génie objet: analyse et conception de l’évolution. Hermès
Science Publications (1999)

14. Terho, H., Suonsyrjä, S., Systä, K., Mikkonen, T.: Understanding the relations
between iterative cycles in software engineering. In: Proceedings of the 50th Hawaii
International Conference on System Sciences (2017)

15. Brooks, R.A.: A robot that walks; emergent behaviors from a carefully evolved
network. Neural comput. 1(2), 253–262 (1989)

16. Oussalah, M., Sadou, N., Tamzalit, D.: SAEV: a model to face evolution problem
in software architecture. In: Proceedings of the International ERCIM Workshop
on Software Evolution, pp. 137–146 (2006)

17. Barnes, J.M., Garlan, D., Schmerl, B.: Evolution styles: foundations and models
for software architecture evolution. Softw. Syst. Model. 13(2), 649–678 (2014)

18. Ahmad, A., Jamshidi, P., Pahl, C.: Classification and comparison of architecture
evolution reuse knowledgea systematic review. J. Softw. Evol. Process 26(7), 654–
691 (2014)

19. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125–142 (2006)

20. Hassan, A., Oussalah, M.: Meta-evolution style for software architecture evolution.
In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS, vol.
9587, pp. 478–489. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49192-8 39

https://doi.org/10.1007/978-3-662-49192-8_39
https://doi.org/10.1007/978-3-662-49192-8_39

	Developing a Conceptual Framework for Software Evolution Methods via Architectural Metrics
	1 Introduction
	2 Proposed Framework
	2.1 Framework Dimensions

	3 Case Study
	3.1 Metric Calculations
	3.2 Framework Assessment

	4 Discussion
	5 Conclusion
	References




