®

Check for
updates

The Meaning of Memory Safety

Arthur Azevedo de Amorim!®™) | Cstalin Hritcu?, and Benjamin C. Pierce®
1 Carnegie Mellon University, Pittsburgh, USA
arthur.aa@gmail.com
2 Inria, Paris, France
3 University of Pennsylvania, Philadelphia, USA

Abstract. We give a rigorous characterization of what it means for a
programming language to be memory safe, capturing the intuition that
memory safety supports local reasoning about state. We formalize this
principle in two ways. First, we show how a small memory-safe language
validates a noninterference property: a program can neither affect nor be
affected by unreachable parts of the state. Second, we extend separation
logic, a proof system for heap-manipulating programs, with a “memory-
safe variant” of its frame rule. The new rule is stronger because it applies
even when parts of the program are buggy or malicious, but also weaker
because it demands a stricter form of separation between parts of the pro-
gram state. We also consider a number of pragmatically motivated vari-
ations on memory safety and the reasoning principles they support. As
an application of our characterization, we evaluate the security of a pre-
viously proposed dynamic monitor for memory safety of heap-allocated
data.

1 Introduction

Memory safety, and the vulnerabilities that follow from its absence [43], are
common concerns. So what is it, exactly? Intuitions abound, but translating
them into satisfying formal definitions is surprisingly difficult [20].

In large part, this difficulty stems from the prominent role that informal,
everyday intuition assigns, in discussions of memory safety, to a range of errors
related to memory misuse—buffer overruns, double frees, etc. Characterizing
memory safety in terms of the absence of these errors is tempting, but this
falls short for two reasons. First, there is often disagreement on which behaviors
qualify as errors. For example, many real-world C programs intentionally rely
on unrestricted pointer arithmetic [28], though it may yield undefined behavior
according to the language standard [21, Sect. 6.5.6]. Second, from the perspective
of security, the critical issue is not the errors themselves, but rather the fact that,
when they occur in unsafe languages like C, the program’s ensuing behavior is
determined by obscure, low-level factors such as the compiler’s choice of run-
time memory layout, often leading to exploitable vulnerabilities. By contrast, in
memory-safe languages like Java, programs can attempt to access arrays out of
bounds, but such mistakes lead to sensible, predictable outcomes.

© The Author(s) 2018
L. Bauer and R. Kisters (Eds.): POST 2018, LNCS 10804, pp. 79-105, 2018.
https://doi.org/10.1007/978-3-319-89722-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89722-6_4&domain=pdf

80 A. Azevedo de Amorim et al.

Rather than attempting a definition in terms of bad things that cannot hap-
pen, we aim to formalize memory safety in terms of reasoning principles that
programmers can soundly apply in its presence (or conversely, principles that
programmers should not naively apply in unsafe settings, because doing so can
lead to serious bugs and vulnerabilities). Specifically, to give an account of mem-
ory safety, as opposed to more inclusive terms such as “type safety,” we focus on
reasoning principles that are common to a wide range of stateful abstractions,
such as records, tagged or untagged unions, local variables, closures, arrays, call
stacks, objects, compartments, and address spaces.

What sort of reasoning principles? Our inspiration comes from separation
logic [36], a variant of Hoare logic designed to verify complex heap-manipulating
programs. The power of separation logic stems from local reasoning about state:
to prove the correctness of a program component, we must argue that its memory
accesses are confined to a footprint, a precise region demarcated by the specifi-
cation. This discipline allows proofs to ignore regions outside of the footprint,
while ensuring that arbitrary invariants for these regions are preserved during
execution.

The locality of separation logic is deeply linked to memory safety. Consider a
hypothetical jpeg decoding procedure that manipulates image buffers. We might
expect its execution not to interfere with the integrity of an unrelated window
object in the program. We can formalize this requirement in separation logic by
proving a specification that includes only the image buffers, but not the window,
in the decoder’s footprint. Showing that the footprint is respected would amount
to checking the bounds of individual buffer accesses, thus enforcing memory
safety; conversely, if the decoder is not memory safe, a simple buffer overflow
might suffice to tamper with the window object, thus violating locality and
potentially paving the way to an attack.

Our aim is to extend this line of reasoning beyond conventional separation
logic, encompassing settings such as ML, Java, or Lisp that enforce memory
safety automatically without requiring complete correctness proofs—which can
be prohibitively expensive for large code bases, especially in the presence of third-
party libraries or plugins over which we have little control. The key observation
is that memory safety forces code to respect a natural footprint: the set of its
reachable memory locations (reachable with respect to the variables it mentions).
Suppose that the jpeg decoder above is written in Java. Though we may not
know much about its input-output behavior, we can still assert that it cannot
have any effect on the window object simply by replacing the detailed reasoning
demanded by separation logic by a simple inaccessibility check.

Our first contribution is to formalize local reasoning principles supported by
an ideal notion of memory safety, using a simple language (Sect. 2) to ground our
discussion. We show three results (Theorems 1, 3 and 4) that explain how the
execution of a piece of code is affected by extending its initial heap. These results
lead to a noninterference property (Corollary 1), ensuring that code cannot affect
or be affected by unreachable memory. In Sect. 3.3, we show how these results
yield a variant of the frame rule of separation logic (Theorem 6), which embodies

The Meaning of Memory Safety 81

its local reasoning capabilities. The two variants have complementary strengths
and weaknesses: while the original rule applies to unsafe settings like C, but
requires comprehensively verifying individual memory accesses, our variant does
not require proving that every access is correct, but demands a stronger notion
of separation between memory regions. These results have been verified with the
Coq proof assistant.!

Our second contribution (Sect.4) is to evaluate pragmatically motivated
relaxations of the ideal notion above, exploring various trade-offs between safety,
performance, flexibility, and backwards compatibility. These variants can be
broadly classified into two groups according to reasoning principles they sup-
port. The stronger group gives up on some secrecy guarantees, but still ensures
that pieces of code cannot modify the contents of unreachable parts of the heap.
The weaker group, on the other hand, leaves gaps that completely invalidate
reachability-based reasoning.

Our third contribution (Sect.5) is to demonstrate how our characterization
applies to more realistic settings, by analyzing a heap-safety monitor for machine
code [5,15]. We prove that the abstract machine that it implements also satisfies a
noninterference property, which can be transferred to the monitor via refinement,
modulo memory exhaustion issues discussed in Sect. 4. These proofs are also done
in Coq.?

We discuss related work on memory safety and stronger reasoning principles
in Sect.6, and conclude in Sect.7. While memory safety has seen prior formal
investigation (e.g. [31,41]), our characterization is the first phrased in terms of
reasoning principles that are valid when memory safety is enforced automat-
ically. We hope that these principles can serve as good criteria for formally
evaluating such enforcement mechanisms in practice. Moreover, our definition is
self-contained and does not rely on additional features such as full-blown capabil-
ities, objects, module systems, etc. Since these features tend to depend on some
form of memory safety anyway, we could see our characterization as a common
core of reasoning principles that underpin all of them.

2 An Idealized Memory-Safe Language

Our discussion begins with a concrete case study: a simple imperative language
with manual memory management. It features several mechanisms for control-
ling the effects of memory misuse, ranging from the most conventional, such as
bounds checking for spatial safety, to more uncommon ones, such as assigning
unique identifiers to every allocated block for ensuring temporal safety.
Choosing a language with manual memory management may seem odd, since
safety is often associated with garbage collection. We made this choice for two
reasons. First, most discussions on memory safety are motivated by its absence
from languages like C that also rely on manual memory management. There is

! The proofs are available at: https://github.com/arthuraa/memory-safe-language.
2 Available at https://github.com/micro-policies/micro-policies-coq/tree/master/
memory _safety.

https://github.com/arthuraa/memory-safe-language
https://github.com/micro-policies/micro-policies-coq/tree/master/memory_safety
https://github.com/micro-policies/micro-policies-coq/tree/master/memory_safety

82 A. Azevedo de Amorim et al.

Command |Description sESELXx M (states)
x < e|Local assignment a
2 « [¢]|Read from heap l e L =var =g, V (local stores)
[e1] e2|Heap assignment meEMEIXZ —a, V (heaps)
z ¢ alloc(esize) | Allocation vEVAEZWBY {nil} W x Z (values)
free(e) |Deallocation
skip| Do nothing O £ S {error} (outcomes)

if e then ¢ else ¢o|Conditional
while e do ¢ end|Loop

. I £ a countably infinite set
c1; c2|Sequencing

X —4n Y 2 finite partial functions X — Y

Fig. 1. Syntax, states and values

a vast body of research that tries to make such languages safer, and we would
like our account to apply to it. Second, we wanted to stress that our charac-
terization does not depend fundamentally on the mechanisms used to enforce
memory safety, especially because they might have complementary advantages
and shortcomings. For example, manual memory management can lead to more
memory leaks; garbage collectors can degrade performance; and specialized type
systems for managing memory [37,41] are more complex. After a brief overview
of the language, we explore its reasoning principles in Sect. 3.

Figure 1 summarizes the language syntax and other basic definitions. Expres-
sions e include variables € var, numbers n € Z, booleans b € B, an invalid
pointer nil; and various operations, both binary (arithmetic, logic, etc.) and
unary (extracting the offset of a pointer). We write [e] for dereferencing the
pointer denoted by e.

Programs operate on states consisting of two components: a local store, which
maps variables to values, and a heap, which maps pointers to values. Pointers
are not bare integers, but rather pairs (i,n) of a block identifier i € T and an
offset n € Z. The offset is relative to the corresponding block, and the identifier
i need not bear any direct relation to the physical address that might be used in
a concrete implementation on a conventional machine. (That is, we can equiva-
lently think of the heap as mapping each identifier to a separate array of heap
cells.) Similar structured memory models are widely used in the literature, as in
the CompCert verified C compiler [26] and other models of the C language [23],
for instance.

We write [c](s) to denote the outcome of running a program ¢ in an initial
state s, which can be either a successful final state s’ or a fatal run-time error.
Note that [c] is partial, to account for non-termination. Similarly, [e](s) denotes
the result of evaluating the expression e on the state s (expression evaluation is
total and has no side effects). The formal definition of these functions is left to
the Appendix; we just single out a few aspects that have a crucial effect on the
security properties discussed later.

The Meaning of Memory Safety 83

Illegal Memory Accesses Lead to Errors. The language controls the effect of
memory misuse by raising errors that stop execution immediately. This con-
trasts with typical C implementations, where such errors lead to unpredictable
undefined behavior. The main errors are caused by reads, writes, and frees to the
current memory m using invalid pointers—that is, pointers p such that m(p) is
undefined. Such pointers typically arise by offsetting an existing pointer out of
bounds or by freeing a structure on the heap (which turns all other pointers to
that block in the program state into dangling ones). In common parlance, this
discipline ensures both spatial and temporal memory safety.

Block Identifiers are Capabilities. Pointers can only be used to access memory
corresponding to their identifiers, which effectively act as capabilities. Identifiers
are set at allocation time, where they are chosen to be fresh with respect to the
entire current state (i.e., the new identifier is not associated with any pointers
defined in the current memory, stored in local variables, or stored on the heap).
Once assigned, identifiers are immutable, making it impossible to fabricate a
pointer to an allocated block out of thin air. This can be seen, for instance, in
the semantics of addition, which allows pointer arithmetic but does not affect
identifiers:

ny + no if [e;](s) = n;
ler + e2](s) £ < (i,n1 +ng) if [e1](s) = (i,n1) and [ea](s) = na
nil otherwise

For simplicity, nonsensical combinations such as adding two pointers simply
result in the nil value. A real implementation might represent identifiers with
hardware tags and use an increasing counter to generate identifiers for new blocks
(as done by Dhawan et al. [15]; see Sect. 5.1); if enough tags are available, every
identifier will be fresh.

Block Identifiers Cannot be Observed. Because of the freshness condition above,
identifiers can reveal information about the entire program state. For example,
if they are chosen according to an increasing counter, knowing what identifier
was assigned to a new block tells us how many allocations have been performed.
A concrete implementation would face similar issues related to the choice of
physical addresses for new allocations. (Such issues are commonplace in systems
that combine dynamic allocation and information-flow control [12].) For this
reason, our language keeps identifiers opaque and inaccessible to programs; they
can only be used to reference values in memory, and nothing else. We discuss a
more permissive approach in Sect. 4.2.

Note that hiding identifiers doesn’t mean we have to hide everything asso-
ciated with a pointer: besides using pointers to access memory, programs can
also safely extract their offsets and test if two pointers are equal (which means
equality for both offsets and identifiers). Our Coq development also shows that
it is sound to compute the size of a memory block via a valid pointer.

84 A. Azevedo de Amorim et al.

New Memory is Always Initialized. Whenever a memory block is allocated, all
of its contents are initialized to 0. (The exact value does not matter, as long it is
some constant that is not a previously allocated pointer.) This is important for
ensuring that allocation does not leak secrets present in previously freed blocks;
we return to this point in Sect. 4.3.

3 Reasoning with Memory Safety

Having presented our language, we now turn to the reasoning principles that it
supports. Intuitively, these principles allow us to analyze the effect of a piece of
code by restricting our attention to a smaller portion of the program state. A first
set of frame theorems (1, 3, and 4) describes how the execution of a piece of code
is affected by extending the initial state on which it runs. These in turn imply
a noninterference property, Corollary 1, guaranteeing that program execution is
independent of inaccessible memory regions—that is, those that correspond to
block identifiers that a piece of code does not possess. Finally, in Sect. 3.3, we
discuss how the frame theorems can be recast in the language of separation logic,
leading to a new variant of its frame rule (Theorem 6).

(I, m1) U (l2,m2) £ (lh Ulz,mi Umez) (state union)

f(x) ifz € dom(f)

(@) herwi (partial function union)
g(x) otherwise

(fug)(z) £ {

blocks(l,m) = {i € T | 3n, (i,n) € dom(m)} (identifiers of live blocks)
ids(l,m) £ blocks(l, m) (all identifiers in state)
U{i| Iz, n,l(x) = (i,n)}
Ui | 3p,n,m(p) = (i,n)}
vars(l,m) = dom(l) (defined local variables)
vars(c) £ local variables of program c
X#Y2(XNY =0) (disjoint sets)

A
7 - s = rename identifiers with permutation 7

Fig. 2. Basic notation

3.1 Basic Properties of Memory Safety

Figure 2 summarizes basic notation used in our results. By permutation, we mean
a function 7 : I — I that has a two-sided inverse 7 1; that is, mor™! = 77 lowr =
idy. Some of these operations are standard and omitted for brevity.?

3 The renaming operation = - s, in particular, can be derived formally by viewing S
as a nominal set over I [34] obtained by combining products, disjoint unions, and
partial functions.

The Meaning of Memory Safety 85

The first frame theorem states that, if a program terminates successfully,
then we can extend its initial state almost without affecting execution.

Theorem 1 (Frame OK). Let c be a command, and s1, s, and sy be states.
Suppose that [c](s1) = s}, vars(c) C vars(s1), and blocks(sy) # blocks(s2). Then
there exists a permutation m such that [c](s1Use) = m-s1Usy and blocks(-s)) #
blocks(sz).

The second premise, vars(c) C vars(sy), guarantees that all the variables needed
to run c¢ are already defined in s;, implying that their values do not change once
we extend that initial state with ss. The third premise, blocks(s;) # blocks(sz),
means that the memories of s; and sq store disjoint regions. Finally, the conclu-
sion of the theorem states that (1) the execution of ¢ does not affect the extra
state sy and (2) the rest of the result is almost the same as s}, except for a
permutation of block identifiers.

Permutations are needed to avoid clashes between identifiers in sy and those
assigned to regions allocated by ¢ when running on s;. For instance, suppose that
the execution of ¢ on s; allocated a new block, and that this block was assigned
some identifier ¢ € I. If the memory of ss already had a block corresponding to
1, ¢ would have to choose a different identifier ¢’ for allocating that block when
running on s; U s3. This change requires replacing all occurrences of i by i’ in
the result of the first execution, which can be achieved with a permutation that
swaps these two identifiers.

The proof of Theorem 1 relies crucially on the facts that programs cannot
inspect identifiers, that memory can grow indefinitely (a common assumption in
formal models of memory), and that memory operations fail on invalid pointers.
Because of the permutations, we also need to show that permuting the initial
state s of a command ¢ with any permutation 7 yields the same outcome, up to
some additional permutation 7’ that again accounts for different choices of fresh
identifiers.

Theorem 2 (Renaming states). Let s be a state, ¢ a command, and 7 a
permutation. There exists m' such that:

error if [€](s) = error
[e](m-s) =4 L if [e(s) = L
7 -m-s if[c](s) = ¢

A similar line of reasoning yields a second frame theorem, which says that
we cannot make a program terminate just by extending its initial state.

Theorem 3 (Frame Loop). Let ¢ be a command, and s1 and sz be states.
If [€](s1) = L, vars(c) C vars(sy), and blocks(s1) # blocks(sz), then [¢](s1 U
52) = 1.

The third frame theorem shows that extending the initial state also preserves
erroneous executions. Its statement is similar to the previous ones, but with
a subtle twist. In general, by extending the state of a program with a block,

86 A. Azevedo de Amorim et al.

we might turn an erroneous execution into a successful one—if the error was
caused by accessing a pointer whose identifier matches that new block. To avoid
this, we need a different premise (ids(s1) # blocks(sz2)) preventing any pointers
in the original state s; from referencing the new blocks in so—which is only
useful because our language prevents programs from forging pointers to existing
regions. Since blocks(s) C ids(s), this premise is stronger than the analogous
ones in the preceding results.

Theorem 4 (Frame Error). Let ¢ be a command, and s1 and s be states. If
[c](s1) = error, vars(c) C vars(s1), and ids(s1) # blocks(sz), then [c](s1 U s2) =
error.

3.2 Memory Safety and Noninterference

The consequences of memory safety analyzed so far are intimately tied to the
notion of noninterference [19]. In its most widely understood sense, noninterfer-
ence is a secrecy guarantee: varying secret inputs has no effect on public outputs.
Sometimes, however, it is also used to describe integrity guarantees: low-integrity
inputs have no effect on high-integrity outputs. In fact, both guarantees apply
to unreachable memory in our language, since they do not affect code execution;
that is, execution (1) cannot modify these inaccessible regions (preserving their
integrity), and (2) cannot learn anything meaningful about them, not even their
presence (preserving their secrecy).

Corollary 1 (Noninterference). Let s1, so1, and saz be states and ¢ be a
command. Suppose that vars(c) C vars(sy), that ids(sy) # blocks(se1) and that
ids(s1) # blocks(sa2). When running ¢ on the extended states s1 U sa21 and s1 U
S22, only one of the following three possibilities holds: (1) both executions loop
(Te](s1 U s21) = [e](s1 U s22) = L); (2) both executions terminate with an error
(Te](s1Usa1) = [€](s1Usa2) = error); or (3) both executions successfully terminate
without interfering with the inaccessible portions se1 and se2 (formally, there
exists a state s§ and permutations w1 and 7o such that [c](s1Usg;) = m; - 81 U sa;
and ids(m; - s}) # blocks(ss;), fori=1,2).

Noninterference is often formulated using an indistinguishability relation on
states, which expresses that one state can be obtained from the other by vary-
ing its secrets. We could have equivalently phrased the above result in a similar
way. Recall that the hypothesis ids(s1) # blocks(s2) means that memory regions
stored in sy are unreachable via s;. Then, we could call two states “indistinguish-
able” if the reachable portions are the same (except for a possible permutation).
In Sect.4, the connection with noninterference will provide a good benchmark
for comparing different flavors of memory safety.

3.3 Memory Safety and Separation Logic

We now explore the relation between the principles identified above, espe-
cially regarding integrity, and the local reasoning facilities of separation logic.

The Meaning of Memory Safety 87

Separation logic targets specifications of the form {p} ¢ {q}, where p and ¢
are predicates over program states (subsets of §). For our language, this could
roughly mean

Vs € p,vars(c) C vars(s) = [¢](s) € U {L}.

That is, if we run ¢ in a state satisfying p, it will either diverge or terminate in a
state that satisfies ¢, but it will not trigger an error. Part of the motivation for
precluding errors is that in unsafe settings like C they yield undefined behavior,
destroying all hope of verification.

Local reasoning in separation logic is embodied by the frame rule, a conse-
quence of Theorems1 and 3. Roughly, it says that a verified program can only
affect a well-defined portion of the state, with all other memory regions left
untouched.*

Theorem 5. Let p, q, and r be predicates over states and c be a command. The
rule

independent(r, modvars(c)) {p} c{q}
{pxr}c{g*r}

FRAME

is sound, where modvars(c) is the set of local wvariables modified by ¢,
independent(r, V') means that the assertion r does not depend on the set of local
variables V

Viglom,(Vz ¢ V, l1(z) =la2(x)) = (l1,m) € r = (la,m) € 7,
and p *r denotes the separating conjunction of p and r:
{(I,m1 Uma) | (I,m1) € p, (I,m2) € r,blocks(l, m1) # blocks(l, m2)}.

As useful as it is, precluding errors during execution makes it difficult to use
separation logic for partial verification: proving any property, no matter how
simple, of a nontrivial program requires detailed reasoning about its internals.
Even the following vacuous rule is unsound in separation logic:

{p} ¢ {true} Tavr

For a counterexample, take p to be true and c to be some arbitrary memory read
x — [y]. If we run ¢ on an empty heap, which trivially satisfies the precondition,
we obtain an error, contradicting the specification.

Fortunately, our memory-safe language—in which errors have a sensible, pre-
dictable semantics, as opposed to wild undefined behavior—supports a variant of
separation logic that allows looser specifications of the form {p} ¢ {¢}., defined as

Vs € p,vars(c) C vars(s) = [¢](s) € qU {L,error}.

4 Technically, the frame rule requires a slightly stronger notion of specification,
accounting for permutations of allocated identifiers; our Coq development has a
more precise statement.

88 A. Azevedo de Amorim et al.

These specifications are weaker than their conventional counterparts, leading
to a subsumption rule:

{r} c{q}
{r} c{da}e

Because errors are no longer prevented, the TAUT rule {p} ¢ {true}. becomes
sound, since the true postcondition now means that any outcome whatsoever
is acceptable. Unfortunately, there is a price to pay for allowing errors: they
compromise the soundness of the frame rule. The reason, as hinted in the intro-
duction, is that preventing run-time errors has an additional purpose in separa-
tion logic: it forces programs to act locally—that is, to access only the memory
delimited their pre- and postconditions. To see why, consider the same program
c as above, & < [y]. This program clearly yields an error when run on an empty
heap, implying that the triple {emp} ¢ {& = 0}, is valid, where the predicate
emp holds of any state with an empty heap and = = 0 holds of states whose
local store maps x to 0. Now consider what happens if we try to apply an analog
of the frame rule to this triple using the frame predicate y — 1, which holds in
states where y contains a pointer to the unique defined location on the heap,
which stores the value 1. After some simplification, we arrive at the specification
{y— 1} ¢ {x =0Ay+— 1}, which clearly does not hold, since executing ¢ on a
state satisfying the precondition leads to a successful final state mapping = to 1.

For the frame rule to be recovered, it needs to take errors into account. The
solution lies on the reachability properties of memory safety: instead of enforcing
locality by preventing errors, we can use the fact that memory operations in a
safe language are automatically local—in particular, local to the identifiers that
the program possesses.

Theorem 6. Under the same assumptions as Theorem 5, the following rule is
sound
independent(r, modvars(c)) {p} ¢ {q}.

SAFEFRAME
{per}e{gerie

where p > 1 denotes the isolating conjunction of p and r, defined as
{(lmiUmya) | (I,m1) € p,(I,ma) € r,ids(l,m1) # blocks(l,m2)}.

The proof is similar to the one for the original rule, but it relies additionally
on Theorem 4. This explains why the isolating conjunction is needed, since it
ensures that the fragment satisfying r is unreachable from the rest of the state.

3.4 Discussion

As hinted by their connection with the frame rule, the theorems of Sect. 3.1 are
a form of local reasoning: to reason about a command, it suffices to consider its

The Meaning of Memory Safety 89

reachable state; how this state is used bears no effect on the unreachable por-
tions. In a more realistic language, reachability might be inferred from additional
information such as typing. But even here it can probably be accomplished by
a simple check of the program text.

For example, consider the hypothetical jpeg decoder from Sect. 1. We would
like to guarantee that the decoder cannot tamper with an unreachable object—a
window object, a whitelist of trusted websites, etc. The frame theorems give us
a means to do so, provided that we are able to show that the object is indeed
unreachable; additionally, they imply that the jpeg decoder cannot directly
extract any information from this unreachable object, such as passwords or pri-
vate keys.

Many real-world attacks involve direct violations of these reasoning princi-
ples. For example, consider the infamous Heartbleed attack on OpenSSL, which
used out-of-bounds reads from a buffer to leak data from completely unrelated
parts of the program state and to steal sensitive information [16]. Given that
the code fragment that enabled that attack was just manipulating an innocuous
array, a programmer could easily be fooled into believing (as probably many
have) that that snippet could not possibly access sensitive information, allowing
that vulnerability to remain unnoticed for years.

Finally, our new frame rule only captures the fact that a command cannot
influence the heap locations that it cannot reach, while our noninterference result
(Corollary 1) captures not just this integrity aspect of memory safety, but also a
secrecy aspect. We hope that future research will explore the connection between
the secrecy aspect of memory safety and (relational) program logics.

4 Relaxing Memory Safety

So much for formalism. What about reality? Strictly speaking, the security prop-
erties we have identified do not hold of any real system. This is partly due
to fundamental physical limitations—real systems run with finite memory, and
interact with users in various ways that transcend inputs and outputs, notably
through time and other side channels.® A more interesting reason is that real
systems typically do not impose all the restrictions required for the proofs of
these properties. Languages that aim for safety generally offer relatively benign
glimpses of their implementation details (such accessing the contents of unini-
tialized memory, extract physical addresses from pointers or compare them for
ordering) in return for significant flexibility or performance gains. In other sys-
tems, the concessions are more fundamental, to the extent that it is harder to
clearly delimit what part of a program is unsafe: the SoftBound transforma-
tion [31], for example, adds bounds checks for C programs, but does not pro-
tect against memory-management bugs; a related transformation, CETS [32], is
required for temporal safety.

5 Though the attacker model considered in this paper does not try to address such
side-channel attacks, one should be able to use the previous research on the subject
to protect against them or limit the damage they can cause [6,39,40,49].

90 A. Azevedo de Amorim et al.

In this section, we enumerate common relaxed models of memory safety and
evaluate how they affect the reasoning principles and security guarantees of
Sect. 3. Some relaxations, such as allowing pointers to be forged out of thin
air, completely give up on reachability-based reasoning. Others, however, retain
strong guarantees for integrity while giving up on some secrecy, allowing aspects
of the global state of a program to be observed. For example, a system with finite
memory (Sect.4.5) may leak some information about its memory consumption,
and a system that allows pointer-to-integer casts (Sect. 4.2) may leak information
about its memory layout. Naturally, the distinction between integrity and secrecy
should be taken with a grain of salt, since the former often depends on the latter;
for example, if a system grants privileges to access some component when given
with the right password, a secrecy violation can escalate to an integrity violation!

4.1 Forging Pointers

Many real-world C programs use integers as pointers. If this idiom is allowed
without restrictions, then local reasoning is compromised, as every memory
region may be reached from anywhere in the program. It is not surprising that
languages that strive for safety either forbid this kind of pointer forging or con-
fine it to clear unsafe fragments.

More insidiously, and perhaps surprisingly, similar dangers lurk in the state-
ful abstractions of some systems that are widely regarded as “memory safe.”
JavaScript, for example, allows code to access arbitrary global variables by
indexing an associative array with a string, a feature that enables many seri-
ous attacks [1,18,29,44]. One might argue that global variables in JavaScript
are “memory unsafe” because they fail to validate local reasoning: even if part
of a JavaScript program does not explicitly mention a given global variable, it
might still change this variable or the objects it points to. Re-enabling local
reasoning requires strong restrictions on the programming style [1,9,18].

4.2 Observing Pointers

The language of Sect.2 maintains a complete separation between pointers and
other values. In reality, this separation is often only enforced in one direction.
For example, some tools for enforcing memory safety in C [13,31] allow pointer-
to-integer casts [23] (a feature required by many low-level idioms [10,28]); and
the default implementation of hashCode() in Java leaks address information.
To model such features, we can extend the syntax of expressions with a form
cast(e), the semantics of which are defined with some function [cast] : IXZ — Z
for converting a pointer to an integer:

[cast(e)](s) = [cast]([e](s)) if [e](s) eI xZ

Note that the original language included an operator for extracting the offset
of a pointer. Their definitions are similar, but have crucially different conse-
quences: while offsets do not depend on the identifier, allocation order, or other

The Meaning of Memory Safety 91

low-level details of the language implementation (such as the choice of phys-
ical addresses when allocating a block), all of these could be relevant when
defining the semantics of cast. The three frame theorems (1, 3, and 4) are thus
lost, because the state of unreachable parts of the heap may influence integers
observed by the program. An important consequence is that secrecy is weakened
in this language: an attacker could exploit pointers as a side-channel to learn
secrets about data it shouldn’t access.

Nevertheless, integrity is not affected: if a block is unreachable, its contents
will not change at the end of the execution. (This result was also proved in Coq.)

Theorem 7 (Integrity-only Noninterference). Let s1, s2, and s’ be states
and ¢ a command such that vars(c) C vars(sy), ids(s1) # blocks(sa), and [c](s1 U
s2) = §'. Then we can find 8§ € S such that s’ = s} Usa and ids(s}) # blocks(ss).

The stronger noninterference result of Corollary 1 showed that, if pointer-to-
integer casts are prohibited, changing the contents of the unreachable portion so
has no effect on the reachable portion, s{. In contrast, Theorem 7 allows changes
in s to influence s} in arbitrary ways in the presence of these casts: not only can
the contents of this final state change, but the execution can also loop forever
or terminate in an error.

To see why, suppose that the jpeg decoder of Sect. 1 is part of a web browser,
but that it does not have the required pointers to learn the address that the user
is currently visiting. Suppose that there is some relation between the memory
consumption of the program and that website, and that there is some correlation
between the memory consumption and the identifier assigned to a new block.
Then, by allocating a block and converting its pointer to a integer, the decoder
might be able to infer useful information about the visited website [22]. Thus,
if so denoted the part of the state where that location is stored, changing its
contents would have a nontrivial effect on s, the part of the state that the
decoder does have access to. We could speculate that, in a reasonable system, this
channel can only reveal information about the layout of unreachable regions, and
not their contents. Indeed, we conjecture this for the language of this subsection.

Finally, it is worth noting that simply excluding casts might not suffice to
prevent this sort of vulnerability. Recall that our language takes both offsets
and identifiers into account for equality tests. For performance reasons, we could
have chosen a different design that only compares physical addresses, completely
discarding identifiers. If attackers know the address of a pointer in the program—
which could happen, for instance, if they have access to the code of the program
and of the allocator—they can use pointer arithmetic (which is generally harm-
less and allowed in our language) to find the address of other pointers. If holds
the pointer they control, they can run, for instance,

y — alloc(1);if + 1729 = y then ... else ...,

to learn the location assigned to y and draw conclusions about the global state.

92 A. Azevedo de Amorim et al.

4.3 Uninitialized Memory

Safe languages typically initialize new variables and objects. But this can degrade
performance, leading to cases where this feature is dropped—including standard
C implementations, safer alternatives [13,31], OCaml’s Bytes. create primitive,
or Node.js’s Buffer.allocUnsafe, for example.

The problem with this concession is that the entire memory becomes relevant
to execution, and local reasoning becomes much harder. By inspecting old values
living in uninitialized memory, an attacker can learn about parts of the state
they shouldn’t access and violate secrecy. This issue would become even more
severe in a system that allowed old pointers or other capabilities to occur in
re-allocated memory in a way that the program can use, since they could yield
access to restricted resources directly, leading to potential integrity violations as
well. (The two examples given above—QOCaml and Node.js—do not suffer from
this issue, because any preexisting pointers in re-allocated memory are treated
as bare bytes that cannot be used to access memory.)

4.4 Dangling Pointers and Freshness

Another crucial issue is the treatment of dangling pointers—references to pre-
viously freed objects. Dangling pointers are problematic because there is an
inherent tension between giving them a sensible semantics (for instance, one
that validates the properties of Sect.3) and obtaining good performance and
predictability. Languages with garbage collection avoid the issue by forbidding
dangling pointers altogether—heap storage is freed only when it is unreachable.
In the language of Sect. 2, besides giving a well-defined behavior to the use of
dangling pointers (signaling an error), we imposed strong freshness requirements
on allocation, mandating not only that the new identifier not correspond to any
existing block, but also that it not be present anywhere else in the state.

To see how the results of Sect. 3 are affected by weakening freshness, suppose
we run the program z « alloc(l);z <« (y = x) on a state where y holds a
dangling pointer. Depending on the allocator and the state of the memory, the
pointer assigned to x could be equal to y. Since this outcome depends on the
entire state of the system, not just the reachable memory, Theorems1, 3 and 4
now fail. Furthermore, an attacker with detailed knowledge of the allocator could
launder secret information by testing pointers for equality. Weakening freshness
can also have integrity implications, since it becomes harder to ensure that blocks
are properly isolated. For instance, a newly allocated block might be reachable
through a dangling pointer controlled by an attacker, allowing them to access
that block even if they were not supposed to.

Some practical solutions for memory safety use mechanisms similar to our
language’s, where each memory location is tagged with an identifier describ-
ing the region it belongs to [11,15]. Pointers are tagged similarly, and when a
pointer is used to access memory, a violation is detected if its identifier does not
match the location’s. However, for performance reasons, the number of possible
identifiers might be limited to a relatively small number, such as 2 or 4 [11] or

The Meaning of Memory Safety 93

16 [46]. In addition to the problems above, since multiple live regions can share
the same identifier in such schemes, it might be possible for buffer overflows to
lead to violations of secrecy and integrity as well.

Although we framed our discussion in terms of identifiers, the issue of fresh-
ness can manifest itself in other ways. For example, many systems for spatial
safety work by adding base and bounds information to pointers. In some of
these [13,31], dangling pointers are treated as an orthogonal issue, and it is pos-
sible for the allocator to return a new memory region that overlaps with the
range of a dangling pointer, in which case the new region will not be properly
isolated from the rest of the state.

Finally, dangling pointers can have disastrous consequences for overall system
security, independently of the freshness issues just described: freeing a pointer
more than once can break allocator invariants, enabling attacks [43].

4.5 Infinite Memory

Our idealized language allows memory to grow indefinitely. But real languages
run on finite memory, and allocation fails when programs run out of space.
Besides enabling denial-of-service attacks, finite memory has consequences for
secrecy. Corollary 1 does not hold in a real programming language as is, because
an increase in memory consumption can cause a previously successful allocation
to fail. By noticing this difference, a piece of code might learn something about
the entire state of the program. How problematic this is in practice will depend
on the particular system under consideration.

A potential solution is to force programs that run out of memory to terminate
immediately. Though this choice might be bad from an availability standpoint,
it is probably the most benign in terms of secrecy. We should be able to prove
an error-insensitive variant of Corollary 1, where the only significant effect that
unreachable memory can have is to turn a successful execution or infinite loop
into an error. Similar issues arise for IFC mechanisms that often cannot prevent
secrets from influencing program termination, leading to termination-insensitive
notions of noninterference.

Unfortunately, even an error-insensitive result might be too strong for real
systems, which often make it possible for attackers to extract multiple bits of
information about the global state of the program—as previously noted in the
IFC literature [4]. Java, for example, does not force termination when memory
runs out, but triggers an exception that can be caught and handled by user code,
which is then free to record the event and probe the allocator with a different
test. And most languages do not operate in batch mode like ours does, merely
producing a single answer at the end of execution; rather, their programs con-
tinuously interact with their environment through inputs and outputs, allowing
them to communicate the exact amount of memory that caused an error.

This discussion suggests that, if size vulnerabilities are a real concern, they
need to be treated with special care. One approach would be to limit the amount
of memory an untrusted component can allocate [47], so that exhausting the
memory allotted to that component doesn’t reveal information about the state

94 A. Azevedo de Amorim et al.

of the rest of the system (and so that also global denial-of-service attacks are
prevented). A more speculative idea is to develop quantitative versions [6,39] of
the noninterference results discussed here that apply only if the total memory
used by the program is below a certain limit.

5 Case Study: A Memory-Safety Monitor

To demonstrate the applicability of our characterization, we use it to analyze a
tag-based monitor proposed by Dhawan et al. to enforce heap safety for low-level
code [15]. In prior work [5], we and others showed that an idealized model of
the monitor correctly implements a higher-level abstract machine with built-in
memory safety—a bit more formally, every behavior of the monitor is also a
behavior of the abstract machine. Building upon this work, we prove that this
abstract machine satisfies a noninterference property similar to Corollary 1. We
were also able to prove that a similar result holds for a lower-level machine that
runs a so-called “symbolic” representation of the monitor—although we had to
slightly weaken the result to account for memory exhaustion (cf. Sect. 4.5), since
the machine that runs the monitor has finite memory, while the abstract machine
has infinite memory. If we had a verified machine-code implementation of this
monitor, it would be possible to prove a similar result for it as well.

5.1 Tag-Based Monitor

We content ourselves with a brief overview of Dhawan et al.’s monitor [5,15],
since the formal statement of the reasoning principles it supports are more com-
plex than the one for the abstract machine from Sect. 5.2, on which we will focus.
Following a proposal by Clause et al. [11], Dhawan et al.’s monitor enforces mem-
ory safety for heap-allocated data by checking and propagating metadata tags.
Every memory location receives a tag that uniquely identifies the allocated region
to which that location belongs (akin to the identifiers in Sect.2), and pointers
receive the tag of the region they are allowed to reference. The monitor assigns
these tags to new regions by storing a monotonic counter in protected memory
that is bumped on every call to malloc; with a large number of possible tags, it
is possible to avoid the freshness pitfalls discussed in Sect.4.4. When a memory
access occurs, the monitor checks whether the tag on the pointer matches the tag
on the location. If they do, the operation is allowed; otherwise, execution halts.
The monitor instruments the allocator to make set up tags correctly. Its imple-
mentation achieves good performance using the PUMP, a hardware extension
accelerating such micro-policies for metadata tagging [15].

5.2 Abstract Machine

The memory-safe abstract machine [5] operates on two kinds of values: machine
words w, or pointers (¢, w), which are pairs of an identifier ¢ € I and an offset
w. We use W to denote the set of machine words, and V to denote the set

The Meaning of Memory Safety 95

of values. Machine states are triples (m, rs, pc), where (1) m € I —g, V* is a
memory mapping identifiers to lists of values; (2) s € R —q, V is a register
bank, mapping register names to values; and (3) pc € V is the program counter.

The execution of an instruction is specified by a step relation s — s’. If there
is no s’ such that s — s’, we say that s is stuck, which means that a fatal
error occurred during execution. On each instruction, the machine checks if the
current program counter is a pointer and, if so, tries to fetch the corresponding
value in memory. The machine then ensures that this value is a word that cor-
rectly encodes an instruction and, if so, acts accordingly. The instructions of the
machine, representative of typical RISC architectures, allow programs to perform
binary and logical operations, move values to and from memory, and branch. The
machine is in fact fairly similar to the language of Sect. 2. Some operations are
overloaded to manipulate pointers; for example, adding a pointer to a word is
allowed, and the result is obtained by adjusting the pointer’s offset accordingly.
Accessing memory causes the machine to halt when the corresponding position
is undefined.

In addition to these basic instructions, the machine possesses a set of special
monitor services that can be invoked as regular functions, using registers to
pass in arguments and return values. There are two services alloc and free for
managing memory, and one service eq for testing whether two values are equal.
The reason for using separate monitor services instead of special instructions
is to keep its semantics closer to the more concrete machine that implements
it. While instructions include an equality test, it cannot replace the eq service,
since it only takes physical addresses into account. As argued in Sect. 4.2, such
comparisons can be turned into a side channel. To prevent this, testing two
pointers for equality directly using the corresponding machine instruction results
in an error if the pointers have different block identifiers.

5.3 Verifying Memory Safety

The proof of memory safety for this abstract machine mimics the one carried for
the language in Sect. 3. We use similar notations as before: 7 - s means renaming
every identifier that appears in s according to the permutation 7, and ids(s) is
the finite set of all identifiers that appear in the state s. A simple case analysis on
the possible instructions yields analogs of Theorems 1, 2 and 4 (we don’t include
an analog of Theorem 3 because we consider individual execution steps, where
loops cannot occur).

Theorem 8. Let w be a permutation, and s and s’ be two machine states such
that s — s'. There exists another permutation ©' such that m-s — ' - s'.

Theorem 9. Let (mq,7s,pc) be a state of the abstract machine, and ms a
memory. Suppose that ids(my,rs,pc) # dom(ms), and that (mq,7rs,pc) —
(m/,rs’, pc’). Then, there exists a permutation T such that ids(m-m’, 7-rs, 7w pc) #
dom(msg) and (mg Umy,rs,pc) — (maUm-m/ 7 rs',m- pc’).

96 A. Azevedo de Amorim et al.

Theorem 10. Let (mq,7s,pc) be a machine state, and ms a memory. If
ids(mq, rs, pc) # dom(ms), and (mq,7s,pc) is stuck, then (mo U my, s, pc) is
also stuck.

Once again, we can combine these properties to obtain a proof of noninter-
ference. Our Coq development includes a complete statement.

5.4 Discussion

The reasoning principles supported by the memory-safety monitor have an
important difference compared to the ones of Sect.3. In the memory-safe lan-
guage, reachability is relative to a program’s local variables. If we want to argue
that part of the state is isolated from some code fragment, we just have to con-
sider that fragment’s local variables—other parts of the program are still allowed
to access the region. The memory-safety monitor, on the other hand, does not
have an analogous notion: an unreachable memory region is useless, since it
remains unreachable by all components forever.

It seems that, from the standpoint of noninterference, heap memory safety
taken in isolation is much weaker than the guarantees it provides in the presence
of other language features, such as local variables. Nevertheless, the properties
studied above suggest several avenues for strengthening the mechanism and mak-
ing its guarantees more useful. The most obvious one would be to use the mech-
anism as the target of a compiler for a programming language that provides
other (safe) stateful abstractions, such as variables and a stack for procedure
calls. A more modest approach would be to add other state abstractions to the
mechanism itself. Besides variables and call stacks, if the mechanism made code
immutable and separate from data, a simple check would suffice to tell whether
a code segment stored in memory references a given privileged register. If the
register is the only means of reaching a memory region, we should be able to
soundly infer that that code segment is independent of that region.

On a last note, although the abstract machine we verified is fairly close to our
original language, the dynamic monitor that implements it using tags is quite
different (Sect.5.1). In particular, the monitor works on a machine that has a
flat memory model, and keeps track of free and allocated memory using a pro-
tected data structure that stores block metadata. It was claimed that reasoning
about this base and bounds information was the most challenging part of the
proof that the monitor implements the abstract machine [5]. For this reason, we
believe that this proof can be adapted to other enforcement mechanisms that
rely solely on base and bounds information—for example, fat pointers [13,25] or
SoftBound [31]—while keeping a similar abstract machine as their specification,
and thus satisfying a similar noninterference property. This gives us confidence
that our memory safety characterization generalizes to other settings.

6 Related Work

The present work lies at the intersection of two areas of previous research: one
on formal characterizations of memory safety, the other on reasoning principles
for programs. We review the most closely related work in these areas.

The Meaning of Memory Safety 97

Characterizing Memory Safety. Many formal characterizations of memory safety
originated in attempts to reconcile its benefits with low-level code. Gener-
ally, these works claim that a mechanism is safe by showing that it prevents
or catches typical temporal and spatial violations. Examples in the literature
include: Cyclone [41], a language with a type system for safe manual memory
management; CCured [33], a program transformation that adds temporal safety
to C by refining its pointer type with various degrees of safety; Ivory [17] an
embedding of a similar “safe-C variant” into Haskell; SoftBound [31], an instru-
mentation technique for C programs for spatial safety, including the detection of
bounds violations within an object; CETS [32], a compiler pass for preventing
temporal safety violations in C programs, including accessing dangling point-
ers into freed heap regions and stale stack frames; the memory-safety monitor
for the PUMP [5,15], which formed the basis of our case study in Sect.5; and
languages like Mezzo [35] and Rust [45], whose guarantees extend to prevent-
ing data races [7]. Similar models appear in formalizations of C [24,26], which
need to rigorously characterize its sources of undefined behavior—in particular,
instances of memory misuse.

Either explicitly or implicitly, these works define memory errors as attempts
to use a pointer to access a location that it was not meant to access—for exam-
ple, an out-of-bounds or free one. This was noted by Hicks [20], who, inspired by
SoftBound, proposed to define memory safety as an execution model that tracks
what part of memory each pointer can access. Our characterization is comple-
mentary to these accounts, in that it is extensional: its data isolation properties
allow us to reason directly about the observable behavior of the program. Fur-
thermore, as demonstrated by our application to the monitor of Sect.5 and the
discussions on Sect. 4, it can be adapted to various enforcement mechanisms and
variations of memory safety.

Reasoning Principles. Separation logic [36,48] has been an important source of
inspiration for our work. The logic’s frame rule enables its local reasoning capa-
bilities and imposes restrictions that are similar to those mandated by memory-
safe programming guidelines. As discussed in Sect. 3.3, our reasoning principles
are reminiscent of the frame rule, but use reachability to guarantee locality in
settings where memory safety is enforced automatically. In separation logic, by
contrast, locality needs to be guaranteed for each program individually by com-
prehensive proofs.

Several works have investigated similar reasoning principles for a variety of
program analyses, including static, dynamic, manual, or a mixture of those. Some
of these are formulated as expressive logical relations, guaranteeing that pro-
grams are compatible with the framing of state invariants; representative works
include: L3 [3], a linear calculus featuring strong updates and aliasing control;
the work of Benton and Tabereau [8] on a compiler for a higher-order language;
and the work of Devriese et al. [14] on object capabilities for a JavaScript-like
language. Other developments are based on proof systems reminiscent of sep-
aration logic; these include Yarra [38], an extension of C that allows program-
mers to protect the integrity of data structures marked as critical; the work

98 A. Azevedo de Amorim et al.

of Agten et al. [2], which allows mixing unverified and verified components by
instrumenting the program to check that required assertions hold at interfaces;
and the logic of Swasey et al. [42] for reasoning about object capabilities.

Unlike our work, these developments do not propose reachability-based isola-
tion as a general definition of memory safety, nor do they attempt to analyze how
their reasoning principles are affected by common variants of memory safety. Fur-
thermore, many of these other works—especially the logical relations—rely on
encapsulation mechanisms such as closures, objects, or modules that go beyond
plain memory safety. Memory safety alone can only provide complete isolation,
while encapsulation provides finer control, allowing some interaction between
components, while guaranteeing the preservation of certain state invariants. In
this sense, one can see memory-safety reasoning as a special case of encapsulation
reasoning. Nevertheless, it is a practically relevant special case that is interesting
on its own, since when reasoning about an encapsulated component, one must
argue explicitly that the invariants of interest are preserved by the private oper-
ations of that component; memory safety, on the other hand, guarantees that
any invariant on unreachable parts of the memory is automatically preserved.

Perhaps closer to our work, Maffeis et al. [27] show that their notion of
“authority safety” guarantees isolation, in the sense that a component’s actions
cannot influence the actions of another component with disjoint authority. Their
notion of authority behaves similarly to the set of block identifiers accessible by
a program in our language; however, they do not attempt to connect their notion
of isolation to the frame rule, noninterference, or traditional notions of memory
safety.

Morrisett et al. [30] state a correctness criterion for garbage collection based
on program equivalence. Some of the properties they study are similar to the
frame rule, describing the behavior of code running in an extended heap. How-
ever, they use this analysis to justify the validity of deallocating objects, rather
than studying the possible interactions between the extra state and the program
in terms of integrity and secrecy.

7 Conclusions and Future Work

We have explored the consequences of memory safety for reasoning about pro-
grams, formalizing intuitive principles that, we argue, capture the essential dis-
tinction between memory-safe systems and memory-unsafe ones. We showed how
the reasoning principles we identified apply to a recent dynamic monitor for heap
memory safety.

The systems studied in this paper have a simple storage model: the lan-
guage of Sect.2 has just global variables and flat, heap-allocated arrays, while
the monitor of Sect.5 doesn’t even have variables or immutable code. Realis-
tic programming platforms, of course, offer much richer stateful abstractions,
including, for example, procedures with stack-allocated local variables as well
as structured objects with contiguously allocated sub-objects. In terms of mem-
ory safety, these systems have a richer vocabulary for describing resources that
programs can access, and programmers could benefit from isolation-based local
reasoning involving these resources.

The Meaning of Memory Safety 99

For example, in typical safe languages with procedures, the behavior of a
procedure should depend only on its arguments, the global variables it uses,
and the portions of the state that are reachable from these values; if the caller
of that procedure has a private object that is not passed as an argument, it
should not affect or be affected by the call. Additionally, languages such as C
allow for objects consisting of contiguously allocated sub-objects for improved
performance. Some systems for spatial safety [13,31] allow capability downgrad-
ing—rthat is, narrowing the range of a pointer so that it can’t access outside of
a sub-object’s bounds. It would be interesting to refine our model to take these
features into account. In the case of the monitor of Sect.5, such considerations
could lead to improved designs or to the integration of the monitor inside a
secure compiler. Conversely, it would be interesting to derive finer security prop-
erties for relaxations like the ones discussed in Sect.4. Some inspiration could
come from the IFC literature, where quantitative noninterference results pro-
vide bounds on the probability that some secret is leaked, the rate at which it
is leaked, how many bits are leaked, etc. [6,39].

The main goal of this work was to understand, formally, the benefits of
memory safety for informal and partial reasoning, and to evaluate a variety of
weakened forms of memory safety in terms of which reasoning principles they
preserve. However, our approach may also suggest ways to improve program
verification. One promising idea is to leverage the guarantees of memory safety
to obtain proofs of program correctness modulo unverified code that could have
errors, in contexts where complete verification is too expensive or not possible
(e.g., for programs with a plugin mechanism).

Acknowledgments. We are grateful to Antal Spector-Zabusky, Greg Morrisett,
Justin Hsu, Michael Hicks, Nick Benton, Yannis Juglaret, William Mansky, and Andrew
Tolmach for useful suggestions on earlier drafts. This work is supported by NSF grants
Micro-Policies (1513854) and DeepSpec (1521523), DARPA SSITH/HOPE, and ERC
Starting Grant SECOMP (715753).

Appendix

This appendix defines the language of Sect. 2 more formally. Figure 3 summarizes
the syntax of programs and repeats the definition of program states. The syntax
is standard for a simple imperative language with pointers.

Figure4 defines expression evaluation, [e] : & — V. Variables are looked
up in the local-variable part of the state (for simplicity, heap cells cannot be
dereferenced in expressions; the command x < [e] puts the value of a heap
cell in a local variable). Constants (booleans, numbers, and the special value
nil used to simplify error propagation) evaluate to themselves. Addition and
subtraction can be applied both to numbers and to combinations of numbers
and pointers (for pointer arithmetic); multiplication only works on numbers.
Equality is allowed both on pointers and on numbers. Pointer equality compares
both the block identifier and its offset, and while this is harder to implement in
practice than just comparing physical addresses, this is needed for not leaking

100 A. Azevedo de Amorim et al.

@u=+4+]|x|—]=|<|and|or (operators)

ex=xzcvar|beB|neZ (expressions)
| e1® ez | note] offsete | nil

¢ == skip | c1;¢2 (commands)

| if e then c; else ca

| while e do c end

| z<e|xz<+e]]|e1] < e2
| x <+ alloc(e) | free(e)

sESELXM (states)
le L 2var =g, V (local stores)
meEMEIXZ —g, V (heaps)
vEVEZWBW il WIxZ (values)
O £ Sy {error} (outcomes)

I £ some countably infinite set

X —gn Y £ partial functions X — Y with finite domain

Fig. 3. Syntax and program states

information about pointers (see Sect. 4.2). The special expression offset extracts
the offset component of a pointer; we introduce it to illustrate that for satisfying
our memory characterization pointer offsets do not need to be hidden (as opposed
to block identifiers). The less-than-or-equal operator only applies to numbers—in
particular, pointers cannot be compared. However, since we can extract pointer
offsets, we can compare those instead.

The definition of command evaluation employs an auxiliary partial function
that computes the result of evaluating a program along with the set of block
identifiers that were allocated during evaluation. Formally, [¢]+ : & — O,
where O, is an extended set of outcomes defined as Pgy,(I) x S {error}. We
then set

(@', m") if [e]4(1,m) = (I,I',m’)
[c](l,m) = < error if [e]+ (1, m) = error

i if [e]+(I,m) =L

ids(l, m)\ I if [c]+(,m)=(I,I';m))

0 otherwise

finalids(l, m) = {

To define [c], we first endow the set S — Oy with the partial order of
program approximation:

fEg £ Vs f(s)# L= f(z) =g(2)

The Meaning of Memory Safety

[](t, m) if z € dom(l)
otherwise

n1 + na if [e1](s) = n1 and [e2](s) = n2
er +ea](s) & (i,n1 +n2) if [er](s) = (¢,m1) and [e2](s) = n2
les + ea](s or [ex](s) = n1 and [es](s) = (i, n2)
nil otherwise
ny — ng if [e1](s) = n1 and [e2](s) = na
ler —e2](s) £ < (i,m1 — n2) if [ea](s) = (i,m1) and [e2](s) = nao
nil otherwise
e x ea](s) 2 {m x ng if [e1](s) = n1 and [e2](s) = n2
otherwise

[er = e2](s) = ([ex](s) = [e2](s))

[[6 <e]] é ni <TL2 lfl[el]]()—n1 and [[62]](3):”2
' ’ otherwise
[ex and e2](s) 2 {bl Aby if [e1](s) = b1 and [ea](s) = bs
otherwise
[e1 or e2](s) £ bl Vb if [e1](s) = b1 and [e2](s) = b2
' ’ otherwise
[not e](s) = if [e] (s
otherw1se
[offset e] (s) 2 { if [e] (s) = (i,n)
0therw1se

Fig. 4. Expression evaluation

bind(f, L) £ L
bind(f, error) £ error

Tur,l',m" iff(l,m)={"1U,m
()

bind(f, (1,1, m)) = < error if f(I,m) = error
4 otherwise
x if b = true

if(b,z,y) 2 <y if b = false

error otherwise

Fig. 5. Auxiliary operators bind and if

101

102 A. Azevedo de Amorim et al.

[skip]-+ (1, m) £ (0,1, m) [er: cal (1, m) 2 bind([ea] 4, [er] (1, m)
[if e then 1 else ca].4 (1,m) £ if([e] (1, m), [er]+ (1, m), [ea (1, m))
[while e do ¢ end]4 2 fix(A f (I, m). if ([e] (1, m), bind([c] +, (1, m)), (0,1, m)))
[e+ (tom) £ (0, 1z > [e] (L, m)], m)

B S
(0,1, m[(i,n) — [e2] (I, m)]) if [ex](s) = (4,n) and m(i,n) # L
error otherwise

[le1] ¢ e2]+(s) = {

[z + alloc(e)]+(1,m) £

{({z}, llx— (4,0)],m[(i,k) — 0] 0 <k <mn]) if[e](l,m)=mnandi= fresh(ids(l,m))
error otherwise

[free(e)] (I, m) £

(@,1,m[(i,k) — L | kez]) if[e](l,m)=(i,0) and m(i,n) # L for some n
error otherwise

Fig. 6. Command evaluation with explicit allocation sets

This allows us to define the semantics of iteration (the rule for while e do ¢ end)
in a standard way using the Kleene fixed point operator fix.

The definition of [c]+ appears in Fig.6, where several of the rules use a
bind operator (Fig.5) to manage the “plumbing” of the sets of allocated block
ids between the evaluation of one subcommand and the next. The rules for if
and while also use an auxiliary operator if (also defined in Fig.5) that turns
non-boolean guards into errors.

The evaluation rules for skip, sequencing, conditionals, while, and assignment
are standard. The rule for heap lookup, x < [e], evaluates e to a pointer and
then looks it up in the heap, yielding an error if e does not evaluate to a pointer
or if it evaluates to a pointer that is invalid, either because its block id is not
allocated or because its offset is out of bounds. Similarly, the heap mutation
command, [e1] < ez, requires that e; evaluate to a pointer that is valid in the
current memory m (i.e., such that looking it up in m yields something other than
1). The allocation command x < alloc(e) first evaluates e to an integer n, then
calculates the next free block id for the current machine state (fresh(ids(l,m)));
it yields a new machine state where x points to the first cell in the new block
and where a new block of n cells is added the heap, all initialized to 0. Finally,
free(e) evaluates e to a pointer and yields a new heap where every cell sharing
the same block id as this pointer is undefined.

The Meaning of Memory Safety 103

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Caja. Attack vectors for privilege escalation (2012). http://code.google.com/p/
google-caja/wiki/Attack Vectors

Agten, P., Jacobs, B., Piessens, F.: Sound modular verification of C code executing
in an unverified context. In: POPL (2015). https://lirias.kuleuven.be/bitstream/
123456789/471365 /3 /sound-verification.pdf

Ahmed, A, Fluet, M., Morrisett, G.: L3: a linear lan-
guage with locations. Fundam. Inform. 77(4), 397-449 (2007).
http://content.iospress.com/articles/fundamenta-informaticae /fi77-4-06

Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: ESORICS (2008). http://www.cse.chalmers.
se/~andrei/esorics08.pdf

Azevedo de Amorim, A., Dénes, M., Giannarakis, N., Hritcu, C., Pierce, B.C.,
Spector-Zabusky, A., Tolmach, A.: Micro-policies: formally verified, tag-based secu-
rity monitors. In: S&P, Oakland (2015). http://prosecco.gforge.inria.fr/personal/
hritcu/publications/micro-policies.pdf

Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: S&P, Oakland (2009). https://doi.org/10.1109/SP.2009.18
Balabonski, T., Pottier, F., Protzenko, J.: Type soundness and race freedom for
Mezzo. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 253—269.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0_16

Benton, N., Tabareau, N.: Compiling functional types to relational specifications
for low level imperative code. In: Kennedy, A., Ahmed, A. (eds.) TLDI (2009).
http://dblp.uni-trier.de/db/conf/tldi/t1di2009.html#BentonT09

Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Defensive JavaScript - building
and verifying secure web components. In: FOSAD (2013). http://dx.doi.org/10.
1007/978-3-319-10082-1_4

Chisnall, D., Rothwell, C., Watson, R.N.M., Woodruff, J., Vadera, M., Moore,
S.W., Roe, M., Davis, B., Neumann, P.G.: Beyond the PDP-11: architectural sup-
port for a memory-safe C abstract machine. In: ASPLOS (2015). https://www.cl.
cam.ac.uk/~dch52/papers/asplos15-memory-safe-c.pdf

Clause, J.A., Doudalis, I., Orso, A., Prvulovic, M.: Effective memory protection
using dynamic tainting. In: ASE (2007). http://www.cc.gatech.edu/~orso/papers/
clause.doudalis.orso.prvulovic.pdf

de Amorim, A.A.| Collins, N., DeHon, A., Demange, D., Hritcu, C., Pichardie, D.,
Pierce, B.C., Pollack, R., Tolmach, A.: A verified information-flow architecture. J.
Comput. Secur. 24(6), 689-734 (2016). https://doi.org/10.3233/JCS-15784
Devietti, J., Blundell, C., Martin, M.M.K., Zdancewic, S.: HardBound: architec-
tural support for spatial safety of the C programming language. In: ASPLOS
(2008). http://acg.cis.upenn.edu/papers/asplos08_hardbound.pdf

Devriese, D., Piessens, F., Birkedal, L.: Reasoning about object capabilities with
logical relations and effect parametricity. In: EuroS&P (2016). http://cs.au.dk/
~birke/papers/object-capabilities-tr.pdf

Dhawan, U., Hritcu, C., Rubin, R., Vasilakis, N., Chiricescu, S., Smith,
J.M., Knight Jr., T.F., Pierce, B.C., DeHon, A.: Architectural support for
software-defined metadata processing. In: ASPLOS (2015). http://ic.ese.upenn.
edu/abstracts/sdmp_asplos2015.html

Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., Paxson, V.: The matter of Heartbleed. In:
IMC (2014). http://doi.acm.org/10.1145/2663716.2663755

http://code.google.com/p/google-caja/wiki/AttackVectors
http://code.google.com/p/google-caja/wiki/AttackVectors
https://lirias.kuleuven.be/bitstream/123456789/471365/3/sound-verification.pdf
https://lirias.kuleuven.be/bitstream/123456789/471365/3/sound-verification.pdf
http://content.iospress.com/articles/fundamenta-informaticae/fi77-4-06
http://www.cse.chalmers.se/~andrei/esorics08.pdf
http://www.cse.chalmers.se/~andrei/esorics08.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
https://doi.org/10.1109/SP.2009.18
https://doi.org/10.1007/978-3-319-07151-0_16
http://dblp.uni-trier.de/db/conf/tldi/tldi2009.html#BentonT09
http://dx.doi.org/10.1007/978-3-319-10082-1_4
http://dx.doi.org/10.1007/978-3-319-10082-1_4
https://www.cl.cam.ac.uk/~dc552/papers/asplos15-memory-safe-c.pdf
https://www.cl.cam.ac.uk/~dc552/papers/asplos15-memory-safe-c.pdf
http://www.cc.gatech.edu/~orso/papers/clause.doudalis.orso.prvulovic.pdf
http://www.cc.gatech.edu/~orso/papers/clause.doudalis.orso.prvulovic.pdf
https://doi.org/10.3233/JCS-15784
http://acg.cis.upenn.edu/papers/asplos08_hardbound.pdf
http://cs.au.dk/~birke/papers/object-capabilities-tr.pdf
http://cs.au.dk/~birke/papers/object-capabilities-tr.pdf
http://ic.ese.upenn.edu/abstracts/sdmp_asplos2015.html
http://ic.ese.upenn.edu/abstracts/sdmp_asplos2015.html
http://doi.acm.org/10.1145/2663716.2663755

104

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

A. Azevedo de Amorim et al.

Elliott, T., Pike, L., Winwood, S., Hickey, P.C., Bielman, J., Sharp, J., Seidel, E.L.,
Launchbury, J.: Guilt free Ivory. In: Haskell (2015). https://www.cs.indiana.edu/
~lepike/pubs/ivory.pdf

Fournet, C., Swamy, N., Chen, J., Dagand, P.-E., Strub, P.-Y., Livshits, B.: Fully
abstract compilation to JavaScript. In: POPL (2013). https://research.microsoft.
com/pubs/176601 /js-star.pdf

Goguen, J.A., Meseguer, J.: Security policies and security models. In: S&P (1982).
http://spy.sci.univr.it/papers/Isa-orig/Sicurezza/NonInterferenza /noninter.pdf
Hicks, M.: What is memory safety? (2014). http://www.pl-enthusiast.net/2014/
07/21/memory-safety/

ISO. ISO C standard 1999. Technical report. ISO/TEC 9899:1999 draft. ISO (1999).
http://www.open-std.org/jtcl/sc22/wgld /www/docs/n1124.pdf

Jana, S., Shmatikov, V.: Memento: learning secrets from process footprints. In:
S&P, Oakland (2012). https://doi.org/10.1109/SP.2012.19

Kang, J., Hur, C., Mansky, W., Garbuzov, D., Zdancewic, S., Vafeiadis, V.: A
formal C memory model supporting integer-pointer casts. In: PLDI (2015). https://
www.seas.upenn.edu/~wmansky/mcast.pdf

Krebbers, R.: The C standard formalized in Coq. Ph.D. thesis, Radboud University
Nijmegen (2015). http://robbertkrebbers.nl/research/thesis.pdf

Kwon, A., Dhawan, U., Smith, J.M., Knight Jr., T.F., DeHon, A.: Low-fat pointers:
compact encoding and efficient gate-level implementation of fat pointers for spatial
safety and capability-based security. In: CCS (2013). http://www.crash-safe.org/
node/27

Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. JAR 41(1), 1-31 (2008). http://pauillac.inria.
fr/~xleroy/publi/memory-model-journal.pdf

Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted
web applications. In: S&P, Oakland (2010). https://www.doc.ic.ac.uk/~maffeis/
papers/oakland10.pdf

Memarian, K., Matthiesen, J., Lingard, J., Nienhuis, K., Chisnall, D., Watson,
R.N.M., Sewell, P.: Into the depths of C: elaborating the de facto standards. In:
PLDI (2016). http://doi.acm.org/10.1145/2908080.2908081

Meyerovich, L.A., Livshits, V.B.: Conscript: specifying and enforcing fine-grained
security policies for JavaScript in the browser. In: S&P, Oakland (2010). http://
dx.doi.org/10.1109/SP.2010.36

Morrisett, G., Felleisen, M., Harper, R.: Abstract models of memory management.
In: FPCA (1995). http://doi.acm.org/10.1145/224164.224182

Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: SoftBound: highly
compatible and complete spatial memory safety for C. In: PLDI (2009). http://
repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports
Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: CETS: compiler
enforced temporal safety for C. In: ISMM (2010). http://acg.cis.upenn.edu/
papers/ismm10_cets.pdf

Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: type-safe
retrofitting of legacy software. TOPLAS 27(3), 477-526 (2005). https://doi.org/
10.1145/1065887.1065892

Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York (2013)

Pottier, F., Protzenko, J.: Programming with permissions in Mezzo. In: ICFP
(2013)

https://www.cs.indiana.edu/~lepike/pubs/ivory.pdf
https://www.cs.indiana.edu/~lepike/pubs/ivory.pdf
https://research.microsoft.com/pubs/176601/js-star.pdf
https://research.microsoft.com/pubs/176601/js-star.pdf
http://spy.sci.univr.it/papers/Isa-orig/Sicurezza/NonInterferenza/noninter.pdf
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
https://doi.org/10.1109/SP.2012.19
https://www.seas.upenn.edu/~wmansky/mcast.pdf
https://www.seas.upenn.edu/~wmansky/mcast.pdf
http://robbertkrebbers.nl/research/thesis.pdf
http://www.crash-safe.org/node/27
http://www.crash-safe.org/node/27
http://pauillac.inria.fr/~xleroy/publi/memory-model-journal.pdf
http://pauillac.inria.fr/~xleroy/publi/memory-model-journal.pdf
https://www.doc.ic.ac.uk/~maffeis/papers/oakland10.pdf
https://www.doc.ic.ac.uk/~maffeis/papers/oakland10.pdf
http://doi.acm.org/10.1145/2908080.2908081
http://dx.doi.org/10.1109/SP.2010.36
http://dx.doi.org/10.1109/SP.2010.36
http://doi.acm.org/10.1145/224164.224182
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports
http://acg.cis.upenn.edu/papers/ismm10_cets.pdf
http://acg.cis.upenn.edu/papers/ismm10_cets.pdf
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1065887.1065892

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

The Meaning of Memory Safety 105

Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS (2002). http://dl.acm.org/citation.cfm?id=645683.664578

The Rust programming language (2017). http://www.rust-lang.org

Schlesinger, C., Pattabiraman, K., Swamy, N., Walker, D., Zorn, B.G.: Modular
protections against non-control data attacks. JCS 22(5), 699-742 (2014). https://
doi.org/10.3233/JCS-140502

Smith, G.: On the foundations of quantitative information flow. In: FoSSaCS 2009.
http://doi.org/10.1007/978-3-642-00596-1_21

Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazieres,
D.: Eliminating cache-based timing attacks with instruction-based scheduling. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
718-735. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-
6-40

Swamy, N., Hicks, M.W., Morrisett, G., Grossman, D., Jim, T.: Safe manual mem-
ory management in Cyclone. SCP 62(2), 122-144 (2006). http://www.cs.umd.edu/
~mwh /papers/cyc-mm-scp.pdf

Swasey, D., Garg, D., Dreyer, D.: Robust and compositional verification of object
capability patterns. In: OOPSLA (2017, to appear). https://people.mpi-sws.org/
~swasey /papers/ocpl

Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: IEEE
S&P (2013). http://lenx.100871.net /papers/War-oakland-CR.pdf

Taly, A., Erlingsson, U., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis
of security-critical JavaScript APIs. In: S&P, Oakland (2011). http://dx.doi.org/
10.1109/SP.2011.39

Turon, A.: Rust: from POPL to practice (keynote). In: POPL (2017). http://dL
acm.org/citation.cfm?id=3011999

Williams, C.: Oracle’s Larry Ellison claims his Sparc M7 chip is hacker-proof
— errr... The Register (2015). http://www.theregister.co.uk/2015/10/28 /oracle_
sparc.m7/

Yang, E.Z., Maziéres, D.: Dynamic space limits for Haskell. In: PLDI (2014).
http://doi.acm.org/10.1145/2594291.2594341

Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In: FoSSaCS (2002).
http://dl.acm.org/citation.cfm?id=646794.704850

Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: PLDI (2012). http://doi.acm.org/10.1145/2254064.2254078

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dl.acm.org/citation.cfm?id=645683.664578
http://www.rust-lang.org
https://doi.org/10.3233/JCS-140502
https://doi.org/10.3233/JCS-140502
http://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-642-40203-6_40
https://doi.org/10.1007/978-3-642-40203-6_40
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
https://people.mpi-sws.org/~swasey/papers/ocpl
https://people.mpi-sws.org/~swasey/papers/ocpl
http://lenx.100871.net/papers/War-oakland-CR.pdf
http://dx.doi.org/10.1109/SP.2011.39
http://dx.doi.org/10.1109/SP.2011.39
http://dl.acm.org/citation.cfm?id=3011999
http://dl.acm.org/citation.cfm?id=3011999
http://www.theregister.co.uk/2015/10/28/oracle_sparc_m7/
http://www.theregister.co.uk/2015/10/28/oracle_sparc_m7/
http://doi.acm.org/10.1145/2594291.2594341
http://dl.acm.org/citation.cfm?id=646794.704850
http://doi.acm.org/10.1145/2254064.2254078
http://creativecommons.org/licenses/by/4.0/

	The Meaning of Memory Safety
	1 Introduction
	2 An Idealized Memory-Safe Language
	3 Reasoning with Memory Safety
	3.1 Basic Properties of Memory Safety
	3.2 Memory Safety and Noninterference
	3.3 Memory Safety and Separation Logic
	3.4 Discussion

	4 Relaxing Memory Safety
	4.1 Forging Pointers
	4.2 Observing Pointers
	4.3 Uninitialized Memory
	4.4 Dangling Pointers and Freshness
	4.5 Infinite Memory

	5 Case Study: A Memory-Safety Monitor
	5.1 Tag-Based Monitor
	5.2 Abstract Machine
	5.3 Verifying Memory Safety
	5.4 Discussion

	6 Related Work
	7 Conclusions and Future Work
	References

