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Abstract. Smart contracts are programs running on cryptocurrency
(e.g., Ethereum) blockchains, whose popularity stem from the possibility
to perform financial transactions, such as payments and auctions, in a
distributed environment without need for any trusted third party. Given
their financial nature, bugs or vulnerabilities in these programs may
lead to catastrophic consequences, as witnessed by recent attacks. Unfor-
tunately, programming smart contracts is a delicate task that requires
strong expertise: Ethereum smart contracts are written in Solidity, a ded-
icated language resembling JavaScript, and shipped over the blockchain
in the EVM bytecode format. In order to rigorously verify the security of
smart contracts, it is of paramount importance to formalize their seman-
tics as well as the security properties of interest, in particular at the level
of the bytecode being executed.

In this paper, we present the first complete small-step semantics of
EVM bytecode, which we formalize in the F* proof assistant, obtain-
ing executable code that we successfully validate against the official
Ethereum test suite. Furthermore, we formally define for the first time
a number of central security properties for smart contracts, such as call
integrity, atomicity, and independence from miner controlled parameters.
This formalization relies on a combination of hyper- and safety proper-
ties. Along this work, we identified various mistakes and imprecisions in
existing semantics and verification tools for Ethereum smart contracts,
thereby demonstrating once more the importance of rigorous semantic
foundations for the design of security verification techniques.

1 Introduction

One of the determining factors for the growing interest in blockchain technolo-
gies is the groundbreaking promise of secure distributed computations even in
absence of trusted third parties. Building on a distributed ledger that keeps
track of previous transactions and the state of each account, whose functionality
and security is ensured by a delicate combination of incentives and cryptogra-
phy, software developers can implement sophisticated distributed, transactions-
based computations by leveraging the scripting language offered by the underly-
ing cryptocurrency. While many of these cryptocurrencies have an intentionally
limited scripting language (e.g., Bitcoin [1]), Ethereum was designed from the
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ground up with a quasi Turing-complete language1. Ethereum programs, called
smart contracts, have thus found a variety of appealing use cases, such as finan-
cial contracts [2], auctions [3], elections [4], data management systems [5], trading
platforms [6,7], permission management [8] and verifiable cloud computing [9],
just to mention a few. Given their financial nature, bugs and vulnerabilities in
smart contracts may lead to catastrophic consequences. For instance, the infa-
mous DAO vulnerability [10] recently led to a 60M$ financial loss and similar vul-
nerabilities occur on a regular basis [11,12]. Furthermore, many smart contracts
in the wild are intentionally fraudulent, as highlighted in a recent survey [13].

A rigorous security analysis of smart contracts is thus crucial for the trust of
the society in blockchain technologies and their widespread deployment. Unfortu-
nately, this task is a quite challenging for various reasons. First, Ethereum smart
contracts are developed in an ad-hoc language, called Solidity, which resembles
JavaScript but features specific transaction-oriented mechanisms and a number
of non-standard semantic behaviours, as further described in this paper. Second,
smart contracts are uploaded on the blockchain in the form of Ethereum Vir-
tual Machine (EVM) bytecode, a stack-based low-level code featuring dynamic
code creation and invocation and, in general, very little static information, which
makes it extremely difficult to analyze.

Related Work. Recognizing the importance of solid semantic foundations for
smart contracts, the Ethereum foundation published a yellow paper [14] to
describe the intended behaviour of smart contracts. This semantics, however,
exhibits several under-specifications and does not follow any standard approach
for the specification of program semantics, thereby hindering program verifica-
tion. In order to provide a more precise characterization, Hirai formalizes the
EVM semantics in the proof assistant Isabelle/HOL and uses it for manually
proving safety properties for concrete programs [15]. This semantics, however,
constitutes just a sound over-approximation of the original semantics [14]. More
specifically, once a contract performs a call that is not a self-call, it is assumed
that arbitrary code gets executed and consequently arbitrary changes to the
account’s state and to the global state can be performed. Consequently, this
semantics can not serve as a general-purpose basis for static analysis techniques
that might not rely on the same over-approximation.

In a concurrent, unpublished work, Hildebrandt et al. [16] define the EVM
semantics in the K framework [17] – a language independent verification frame-
work based on reachability logics. The authors leverage the power of the K frame-
work in order to automatically derive analysis tools for the specified semantics,
presenting as an example a gas analysis tool, a semantic debugger, and a pro-
gram verifier based on reachability logics. The underlying semantics relies on
non-standard local rewriting rules on the system configuration. Since parts of
the execution are treated in separation such as the exception behavior and the
gas calculations, one small-step consists of several rewriting steps, which makes

1 While the language itself is Turing complete, computations are associated with a
bounded computational budget (called gas), which gets consumed by each instruction
thereby enforcing termination.
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this semantics harder to use as a basis for new static analysis techniques. This is
relevant whenever the static analysis tools derivable by the K framework are not
sufficient for the desired purposes: for instance, their analysis requires the user
to manually specify loop invariants, which is hardly doable for EVM bytecode
and clearly does not scale to large programs. Furthermore, all these works con-
centrate on the semantics of EVM bytecode but do not study security properties
for smart contracts.

Sergey and Hobor [18] compare smart contracts on the blockchain with con-
current objects using shared memory and use this analogy to explain typical
problems that arise when programming smart contracts in terms of concepts
known from concurrency theory. They encourage the application of state-of-the
art verification techniques for concurrent programs to smart contracts, but do
not describe any specific analysis method applied to smart contracts themselves.
Mavridou and Laszka [19] define a high-level semantics for smart contracts that
is based on finite state machines and aims at simplifying the development of
smart contracts. They provide a translation of their state machine specification
language to Solidity, a higher-order language for writing Ethereum smart con-
tracts, and present design patterns that should help users to improve the security
of their contracts. The translation to Solidity is not backed up by a correctness
proof and the design patterns are not claimed to provide any security guarantees.

Bhargavan et al. [20] introduce a framework to analyze Ethereum contracts
by translation into F*, a functional programming language aimed at program
verification and equipped with an interactive proof assistant. The translation
supports only a fragment of the EVM bytecode and does not come with a jus-
tifying semantic argument.

Luu et al. have recently presented Oyente [21], a state-of-the-art static anal-
ysis tool for EVM bytecode that relies on symbolic execution. Oyente comes
with a semantics of a simplified fragment of the EVM bytecode and, in partic-
ular, misses several important commands related to contract calls and contract
creation. Furthermore, it is affected by a major bug related to calls as well as
several other minor ones which we discovered while formalizing our semantics,
which is inspired by theirs. Oyente supports a variety of security properties,
such as transaction order dependency, timestamp dependency, and reentrancy,
but the security definitions are rather syntactic and described informally. As we
show in this paper, the lack of solid semantic foundations causes several sources
of unsoundness in Oyente.

Our Contributions. This work lays the semantic foundations for Ethereum
smart contracts. Specifically, we introduce

– The first complete small-step semantics for EVM bytecode;
– A formalization in F* of a large fragment of our semantics, which can serve

as a foundation for verification techniques based on encoding into this lan-
guage [20] as well as machine-checked proofs for other analysis techniques
(e.g., [21]). By compiling F* in OCaml, we could successfully validate our
semantics against the official Ethereum test suite;



246 I. Grishchenko et al.

– The first formal definitions of crucial security properties for smart con-
tracts, such as call integrity, for which we devise a dedicated proof technique,
atomicity, and independence from miner controlled parameters. Interestingly
enough, the formalization of these properties requires hyper-properties, while
existing static analysis techniques for smart contracts rely on reachability
properties and syntactic conditions;

– A collection of examples showing how the syntactic conditions employed
in current analysis techniques are imprecise and, in several cases, unsound,
thereby further motivating the need for solid semantic foundations and rig-
orous security definitions for smart contracts.

The complete semantics as well as the formalization in F* are publicly avail-
able [22].

Outline. The remainder of this paper is organized as follows. Section 2 briefly
overviews the Ethereum architecture, Sect. 3 introduces the Ethereum seman-
tics and our formalization in F*, Sect. 4 formally defines various security proper-
ties for Ethereum smart contracts, and Sect. 5 concludes highlighting interesting
research directions.

2 Background on Ethereum

Ethereum. Ethereum is a cryptographic currency system built on top of a
blockchain. Similar to Bitcoin, network participants publish transactions to the
network that are then grouped into blocks by distinct nodes (the so called min-
ers) and appended to the blockchain using a proof of work (PoW) consensus
mechanism. The state of the system – that we will also refer to as global state –
consists of the state of the different accounts populating it. An account can either
be an external account (belonging to a user of the system) that carries infor-
mation on its current balance or it can be a contract account that additionally
obtains persistent storage and the contract’s code. The account’s balances are
given in the subunit wei of the virtual currency Ether.2

Transactions can alter the state of the system by either creating new contract
accounts or by calling an existing account. Calls to external accounts can only
transfer Ether to this account, but calls to contract accounts additionally execute
the code associated to the contract. The contract execution might alter the
storage of the account or might again perform transactions – in this case we talk
about internal transactions.

The execution model underlying the execution of contract code is described
by a virtual state machine, the Ethereum Virtual Machine (EVM). This is quasi
Turing complete as the otherwise Turing complete execution is restricted by
the upfront defined resource gas that effectively limits the number of execu-
tion steps. The originator of the transaction can specify the maximal gas that
should be spent for the contract execution and also determines the gas prize

2 One Ether is equivalent to 1018 wei.
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(the amount of wei to pay for a unit of gas). Upfront, the originator pays for the
gas limit according to the gas prize and in case of successful contract execution
that did not spend the whole amount of gas dedicated to it, the originator gets
reimbursed with gas that is left. The remaining wei paid for the used gas are
given as a fee to a beneficiary address specified by the miner.

EVM Bytecode. The code of contracts is written in EVM bytecode – an Assem-
bler like bytecode language. As the core of the EVM is a stack-based machine,
the set of instructions in EVM bytecode consists mainly of standard instructions
for stack operations, arithmetics, jumps and local memory access. The classical
set of instructions is enriched with an opcode for the SHA3 hash and several
opcodes for accessing the environment that the contract was called in. In addi-
tion, there are opcodes for accessing and modifying the storage of the account
currently running the code and distinct opcodes for performing internal call and
create transactions. Another instruction particular to the blockchain setting is
the SELFDESTRUCT code that deletes the currently executed contract - but
only after the successful execution of the external transaction.

Gas and Exceptions. The execution of each instruction consumes a positive
amount of gas. There is a gas limit set by the sender of the transaction. Exceed-
ing the gas limit results in an exception that reverts the effects of the current
transaction on the global state. In the case of nested transactions, the occur-
rence of an exception only reverts its own effects, but not those of the calling
transaction. Instead, the failure of an internal transaction is only indicated by
writing zero to the caller’s stack.

Solidity. In practice, most Ethereum smart contracts are not written in EVM
bytecode directly, but in the high-level language Solidity which is developed
by the Ethereum Foundation [23]. For understanding the typical problems that
arise when writing smart contracts, it is important to consider the design of this
high-level language.

Solidity is a so called “contract-oriented” programming language that uses
the concept of class from object-oriented languages for the representation of con-
tracts. Similar to classes in object-oriented programming, contracts specify fields
and methods for contract instances. Fields can be seen as persistent storage of
a contract (instance) and contract methods can by default be invoked by any
internal or external transaction. For interacting with another contract one either
needs to create a new instance of this contract (in which case a new contract
account with the functionality described in the contract class is created) or one
can directly make transactions to a known contract address holding a contract of
the required shape. The syntax of Solidity resembles JavaScript, enriched with
additional primitives accounting for the distributed setting of Ethereum. In par-
ticular, Solidity provides primitives for accessing the transaction and the block
information, like msg.sender for accessing the address of the account invoking the
method or msg.value for accessing the amount of wei transferred by the transaction
that invoked the method.
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Solidity shows some particularities when it comes to transferring money to
another contract especially using the provided low level functions send and call. A
value transfer initiated using these functions is finally translated to an internal
call transaction which implies that calling a contract might also execute code and
in particular it can fail because the available gas is not sufficient for executing the
code. In addition – as in the EVM – these kinds of calls do not enable exception
propagation, so that the caller manually needs to checks for the return result.
Another special feature of Solidity is that it allows for defining so called fallback
functions for contracts that get executed when a call via the send function was
performed or (using the call function) an address is called that however does not
properly specifies the concrete function of the contract to be called.

3 Small-Step Semantics

We introduce a small-step semantics covering the full EVM bytecode, inspired
by the one presented by Luu et al. [21], which we substantially revise in order to
handle the missing instructions, in particular contract calls and call creation. In
addition, while formalizing our semantics, we found a major flaw related to calls
and several minor ones (cf. Sect. 3.7), which we fixed and reported to the authors.
Due to space constraints, we refer the interested reader to the full version of the
paper [22] for a formal account of the semantic rules and present below the most
significant ones.

3.1 Preliminaries

In the following, we will use B to denote the set {0, 1} of bits and accordingly B
x

for sets of bitstrings of size x. We further let Nx denote the set of non-negative
integers representable by x bits and allow for implicit conversion between those
two representations. In addition, we will use the notation [X] (resp. L(X)) for
arrays (resp. lists) of elements from the set X. We use standard notations for
operations on arrays and lists.

3.2 Global State

As mentioned before, the global state is a (partial) mapping from account
addresses (that are bitstrings of size 160) to accounts. In the case that an account
does not exist, we assume it to map to ⊥. Accounts, irrespectively of their type,
are tuples of the form (n, b, stor, code), with n ∈ N256 being the account’s nonce
that is incremented with every other account that the account creates, b ∈ N256

being the account’s balance in wei, stor ∈ B
256 → B

256 being the accounts per-
sistent storage that is represented as a mapping from 256-bit words to 256-bit
words and finally code ∈ [B8] being the contract that is an array of bytes. In
contrast to contract accounts, external accounts have the empty bytearray as
code. As only the execution of code in the context of the account can access
and modify the account’s storage, the fact that formally external accounts have
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persistent storage does not have any effect. In the following, we will denote the
set of addresses with A and the set of global states with Σ and we will assume
that σ ∈ Σ.

3.3 Small-Step Relation

In order to define the small-step semantics, we give a small-step relation Γ �
S → S′ that specifies how a call stack S ∈ S representing the state of the
execution evolves within one step under the transaction environment Γ ∈ Tenv.

In Fig. 1 we give a full grammar for call stacks and transaction environments:

Fig. 1. Grammar for call stacks and transaction environments

Transaction Environments. The transaction environment represents the
static information of the block that the transaction is executed in and the
immutable parameters given to the transaction as the gas prize or the gas limit.
More specifically, the transaction environment Γ ∈ Tenv = A × N256 × H is a
tuple of the form (o, prize,H) with o ∈ A being the address of the account that
made the transaction, prize ∈ N256 denoting amount of wei that needs to paid
for a unit of gas in this transaction and H ∈ H being the header of the block
that the transaction is part of. We do not specify the format of block headers
here, but just assume a set H of block headers.

Callstacks. A call stack S is a stack of execution states which represents the
state of the execution within one internal transaction. We give a formal definition
of the set of possible callstacks S as follows:

S := {EXC :: Splain, HALT(σ, gas, d, η) :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N, Splain ∈ L(M × I × Σ × N)}

Syntactically, a call stack is a stack of regular execution states of the form
(μ, ι, σ, η) that can optionally be topped with a halting state HALT(σ, gas, d, η)
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or an exception state EXC. We summarize these three types of states as execu-
tion states S. Semantically, halting states indicate regular halting of an internal
transaction, exception states indicate exceptional halting, and regular execu-
tion states describe the state of internal transactions in progress. Halting and
exception states can only occur as top elements of the call stack as they represent
terminated internal transactions. Exception states of the form EXC do not carry
any information as in the case of an exception all effects of the terminated inter-
nal transaction are reverted and the caller state therefore stays unaffected, except
for the gas. Halting states instead are of the form HALT(σ, gas, d, η) specifying
the global state σ the execution halted in, the gas gas ∈ N256 remaining from the
execution, the return data d ∈ [B8] and the additional transaction effects η ∈ N
of the internal transaction. The additional transaction effects carry information
that are accumulated during execution, but do not influence the small-step exe-
cution itself. Formally, the additional transaction effects are a triple of the form
(b, L,S†) ∈ N = N256 × L(Evlog) × P(A) with b ∈ N256 being the refund balance
that is increased by account storage operations and will finally be paid to the
transaction’s beneficiary, L ∈ L(Evlog) being the sequence of log events that the
bytecode execution invoked during execution and S† ⊆ A being the so called
suicide set – the set of account addresses that executed the SELFDESTRUCT
command and therefore registered their account for deletion. The information
held by the halting state is carried over to the calling state.

The state of a non-terminated internal transaction is described by a regular
execution state of the form (μ, ι, σ, η). The state is determined by the current
global state σ of the system as well as the execution environment ι ∈ I that
specifies the parameters of the current transaction (including inputs and the
code to be executed), the local state μ ∈ M of the stack machine, and the
transaction effects η ∈ N collected during execution so far.

Execution Environment. The execution environment ι of an internal trans-
action specifies the static parameters of the transaction. It is a tuple of the form
(actor, input, sender, value, code) ∈ I = A × [B8] × A × N256 × [B8] with the
following components:

– actor ∈ A is the address of the account currently executing;
– input ∈ [B8] is the data given as an input to the internal transaction;
– sender ∈ A is the address of the account that initiated the internal

transaction;
– value ∈ N256 is the value transferred by the internal transaction;
– code ∈ [B8] is the code currently executed.

This information is determined at the beginning of an internal transaction exe-
cution and it can be accessed, but not altered during the execution.

Machine State. The local machine state μ represents the state of the under-
lying state machine used for execution and is a tuple of the form (gas, pc,m, i, s)
where
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– gas ∈ N256 is the current amount of gas still available for execution;
– pc ∈ N256 is the current program counter;
– m ∈ B

256 → B
8 is a mapping from 256-bit words to bytes that represents the

local memory;
– i ∈ N256 is the current number of active words in memory;
– s ∈ L(B256) is the local 256-bit word stack of the stack machine.

The execution of each internal transaction starts in a fresh machine state, with
an empty stack, memory initialized to all zeros, and program counter and active
words in memory set to zero. Only the gas is instantiated with the gas value
available for the execution.

3.4 Small-Step Rules

In the following, we will present a selection of interesting small-step rules in
order to illustrate the most important features of the semantics.

For demonstrating the overall design of the semantics, we start with the
example of the arithmetic expression ADD performing addition of two values on
the machine stack. Note that as the word size of the stack machine is 256, all
arithmetic operations are performed modulo 2256.

ι.code [μ.pc] = ADD
μ.s = a :: b :: s μ.gas ≥ 3 μ′ = μ[s → (a + b) :: s][pc += 1][gas −= 3]

Γ � (μ, ι, σ, η) :: S → (μ′, ι, σ, η) :: S

ι.code [μ.pc] = ADD (|μ.s| < 2 ∨ μ.gas < 3)

Γ � (μ, ι, σ, η) :: S → EXC :: S

We use a dot notation, in order to access components of the different state
parameters. We name the components with the variable names introduced for
these components in the last section written in sans-serif-style. In addition, we
use the usual notation for updating components: t[c → v] denotes that the
component c of tuple t is updated with value v. For expressing incremental
updates in a simpler way, we additionally use the notation t[c += v] to denote
that the (numerical) component of c is incremented by v and similarly t[c −= v]
for decrementing a component c of t.

The execution of the arithmetic instruction ADD only performs local changes
in the machine state affecting the local stack, the program counter, and the
gas budget. For deciding upon the correct instruction to execute, the currently
executed code (that is part of the execution environment) is accessed at the
position of the current program counter. The cost of an ADD instruction is
constantly three units of gas that get subtracted from the gas budget in the
machine state. As every other instruction, ADD can fail due to lacking gas or due
to underflows on the machine stack. In this case, the exception state is entered
and the execution of the current internal transaction is terminated. For better
readability, we use here the slightly sloppy ∨ notation for combining the two
error cases in one inference rule.
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A more interesting example of a semantic rule is the one of the CALL instruc-
tion that initiates an internal call transaction. In the case of calling, several
corner cases need to be treated which results in several inference rules for this
case. Here, we only present one rule for illustrating the main functionality. More
precisely, we present the case in that the account that should be called exists,
the call stack limit of 1024 is not reached yet, and the account initiating the
transaction has a sufficiently large balance for sending the specified amount of
wei to the called account.

ι.code [μ.pc] = CALL μ.s = g :: to :: va :: io :: is :: oo :: os :: s
σ(to) �= ⊥ |A| + 1 < 1024 σ(ι.actor).b ≥ va aw = M (M (μ.i, io, is), oo, os)

ccall = Cgascap (va, 1, g, μ.gas) c = Cbase (va, 1) + Cmem (μ.i, aw) + ccall
μ.gas ≥ c σ′ = σ

〈
to → σ(to)[b += va]

〉〈
ι.actor → σ(ι.actor)[b −= va]

〉

d = μ.m [io, io + is − 1] μ′ = (ccall, 0, λx. 0, 0, ε)
ι′ = ι[sender → ι.actor][actor → to][value → va][input → d][code → σ(to).code]

Γ � (μ, ι, σ, η) :: S → (μ′, ι′, σ′, η) :: (μ, ι, σ, η) :: S

For performing a call, the parameters to this call need to be specified on the
machine stack. These are the amount of gas g that should be given as budget to
the call, the recipient to of the call and the amount va of wei to be transferred
with the call. In addition, the caller needs to specify the input data that should
be given to the transaction and the place in memory where the return data of
the call should be written after successful execution. To this end, the remaining
arguments specify the offset and size of the memory fragment that input data
should be read from (determined by io and is) and return data should be written
to (determined by oo and os).

Calculating the cost in terms of gas for the execution is quite complicated in
the case of CALL as it is influenced by several factors including the arguments
given to the call and the current machine state. First of all, the gas that should
be given to the call (here denoted by ccall) needs to be determined. This value is
not necessarily equal to the value g specified on the stack, but also depends on
the value va transferred by the call and the currently available gas. In addition,
as the memory needs to be accessed for reading the input value and writing the
return value, the number of active words in memory might be increased. This
effect is captured by the memory extension function M . As accessing additional
words in memory costs gas, this cost needs to be taken into account in the
overall cost. The costs resulting from an increase in the number of active words
is calculated by the function Cmem. Finally, there is also a base cost charged for
the call that depends on the value va. As the cost also depends on the specific case
for calling that is considered, the cost calculation functions receive a flag (here
1) as arguments. These technical details are spelled out in the full version [22].

The call itself then has several effects: First, it transfers the balance from
the executing state (actor in the execution environment) to the recipient (to).
To this end, the global state is updated. Here we use a special notation for the
functional update on the global state using 〈〉 instead of []. Second, for initializing
the execution of the initiated internal transaction, a new regular execution state
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is placed on top of the execution stack. The internal transaction starts in a fresh
machine state at program counter zero. This means that the initial memory is
initialized to all zeros and consequently the number of active words in memory is
zero as well and additionally the initial stack is empty. The gas budget given to
the internal transaction is ccall calculated before. The transaction environment
of the new call records the call parameters. This includes the sender that is the
currently executing account actor, the new active account that is now the called
account to as well as the value va sent and the input data given to the call. To
this end the input data is extracted from the memory using the offset io and the
size is. We use an interval notation here to denote that a part of the memory
is extracted. Finally, the code in the execution environment of the new internal
transaction is the code of the called account.

Note that the execution state of the caller stays completely unaffected at this
stage of the execution. This is a conscious design decision in order to simplify
the expression of security properties and to make the semantics more suitable
to abstractions.

Besides CALL there are two different instructions for initiating internal call
transactions that implement slight variations of the simple CALL instruction.
These variations are called CALLCODE and DELEGATECALL, which both allow
for executing another’s account code in the context of the caller. The difference
is that in the case of CALLCODE a new internal transaction is started and the
currently executed account is registered as the sender of this transaction while
in the case of DELEGATECALL an existing call is really forwarded in the sense
that the sender and the value of the initiating transaction are propagated to the
new internal transaction.

Analogously to the instructions for initiating internal call transactions, there
is also one instruction CREATE that allows for the creation of a new account. The
semantics of this instruction is similar to the one of CALL, with the exception
that a fresh account is created, which gets the specified transferred value, and
that the input provided to this internal transaction, which is again specified
in the local memory, is interpreted as the initialization code to be executed in
order to produce the newly created account’s code as output. In contrast to the
call transaction, a create transaction does not await a return value, but only an
indication of success or failure.

For discussing how to return from an internal transaction, we show the rule
for returning from a successful internal call transaction.

ι.code [μ.pc] = CALL μ.s = g :: to :: va :: io :: is :: oo :: os :: s
flag = σ(to) = ⊥ ? 0 : 1 aw = M (M (μ.i, io, is), oo, os)

ccall = Cgascap (va,flag, g, μ.gas) c = Cbase (va,flag) + Cmem (μ.i, aw) + ccall
μ′ = μ[i → aw][s → 1 :: s][pc += 1][gas += gas − c][m → μ.m[[oo, oo + s − 1] → d]]

Γ � HALT(σ′, gas, d, η′) :: (μ, ι, σ, η) :: S → (μ′, ι, σ′, η′) :: S

Leaving the caller state unchanged at the point of calling has the negative
side effect that the cost calculation needs to be redone at this point in order
to determine the new gas value of the caller state. But besides this, the rule is
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straightforward: the program counter is incremented as usual and the number
of active words in memory is adjusted as memory accesses for reading the input
and return data have been made. The gas is decreased, meaning that the overall
amount of gas c allocated for the execution is subtracted. However, as this cost
already includes the gas budget given to the internal transaction, the gas gas
that is left after the execution is refunded again. In addition, the return data
d is written to the local memory of the caller at the place specified by oo and
os. Finally, the value one is written to the caller’s stack in order to indicate
the success of the internal call transaction. As the execution was successful, as
indicated by the halting state, the global state and the transaction effects of the
callee are adopted by the caller.

EVM bytecode offers several instructions for explicitly halting (internal)
transaction execution. Besides the standard instructions STOP and RETURN,
there is the SELFDESTRUCT instruction that is very particular to the blockchain
setting. The STOP instruction causes regular halting of the internal transaction
without returning data to the caller. In contrast, the RETURN instruction allows
one to specify the memory fragment containing the return data that will be
handed to the caller.

Finally, the SELFDESTRUCT instruction halts the execution and lists the
currently execution account for later deletion. More precisely, this means that
this account will be deleted when finalizing the external transaction, but its
behavior during the ongoing small-step execution is not affected. Additionally,
the whole balance of the deleted account is transferred to some beneficiary spec-
ified on the machine stack.

We show the small-step rules depicting the main functionality of
SELFDESTRUCT. As for CALL, capturing the whole functionality of
SELFDESTRUCT would require to consider several corner cases. Here we con-
sider the case where the beneficiary exists, the stack does not underflow and the
available amount of gas is sufficient.

ωμ,ι = SELFDESTRUCT μ.s = aben :: s

a = aben mod 2160 σ(a) �= ⊥ μ.gas ≥ 5000 g = μ.gas − 5000
σ′ = σ

〈
ι.actor → σ(ι.actor)[balance → 0]

〉〈
a → σ(a)[balance += σ.(ι.actor).balance]

〉

r = (ι.actor ∈ Γ.S†) ? 0 : 24000 η′ = η[S† → η.S† ∪ {ι.actor}][balance += r]

Γ � (μ, ι, σ, η) :: S → HALT(σ′, g, ε, η′) :: S

The SELFDESTRUCT command takes one argument aben from the stack spec-
ifying the address of the beneficiary that should get the balance of the account
that is destructed. If all preconditions are satisfied, the balance of the executing
account (ι.actor) is transferred to the beneficiary address and the current internal
transaction execution enters a halting state. Additionally, the transaction effects
are extended by adding ι.actor to the suicide set and by possibly increasing the
refund balance. The refund balance is only increased in case that ι.actor is not
already scheduled for deletion. The halting state captures the global state σ after
the money transfer, the remaining gas g after executing the SELFDESTRUCT
and the updated transaction effects η′. As no return data is handed to the caller,
the empty bytearray ε is specified as return data in the halting state.
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Note that SELFDESTRUCT deletes the currently executing account ι.actor
which is not necessarily the same account as the one owning the code ι.code.
This might be due a previous execution of DELEGATECALL or CALLCODE.

3.5 Transaction Execution

The outcome of an external transaction execution does not only consist of the
result of the EVM bytecode execution. Before executing the bytecode, the trans-
action environment and the execution environment are determined from the
transaction information and the block header. In the following we assume T
to denote the set of transactions. An (external) transaction T ∈ T , similar
to the internal transactions, specifies a gas limit, a recipient and a value to
be transferred. In addition, it also contains the originator and the gas prize
that will be recorded in the transaction environment. Finally, it specifies an
input to the transaction and the transaction type that can either be a call or
a create transaction. The transaction type determines whether the input will
be interpreted as input data to a call transaction or as initialization code for
a create transaction. In addition to the transaction of the environment initial-
ization, some initial changes on the global state and validity checks are per-
formed. For the sake of presentation we assume in the following a function
initialize (·, ·, ·) ∈ T × H × Σ → (Tenv × S) ∪ {⊥} performing the initialization
phase and returning a transaction environment and initial execution state in
the case of a valid transaction and ⊥ otherwise. Similarly, we assume a function
finalize (·, ·, ·) ∈ T × S × N × Σ that given the final global state of the execu-
tion, the accumulated transaction effects and the transaction, computes the final
effects on the global state. These include for example the deletion of the contracts
from the suicide set and the payout to the beneficiary of the transaction.

Formally we can define the execution of a transaction T ∈ T in a block with
header H ∈ H as follows:

(Γ, s) = initialize (T, H, σ)
Γ � s :: ε →∗ s′ :: ε final (s′) σ′ = finalize (s′, η′, T )

σ
T,H−−−→ σ′

where →∗ denotes the reflexive and transitive closure of the small-step relation
and the predicate final (·) characterizes a state that cannot be further reduced
using the small-step relation.

3.6 Formalization in F*

We provide a formalization of a large fragment of our small-step semantics in the
proof assistant F* [24]. At the time of writing, we are formalizing the remaining
part, which only consists of straightforward local operations, such as bitwise
operators and opcodes to write code to (resp. read code from) the memory.
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F* is an ML-dialect that is optimized for program verification and allows for
performing manual proofs as well as automated proofs leveraging the power of
SMT solvers.

Our formalization strictly follows the small-step semantics as presented in
this paper. The core functionality is implemented by the function step that
describes how an execution stack evolves within one execution state. To this end
it has two possible outcomes: either it performs an execution step and returns
the new callstack or – in the case that a final configuration is reached (which
is a stack containing only one element that is either a halting or an exception
state) – it reports the final state. In order to provide a total function for the step
relation, we needed to introduce a third execution outcome that signalizes that
a problem occurred due to an inconsistent state. When running the semantics
from a valid initial configuration this result, however, should never be produced.
For running the semantics, the function execution is defined that subsequently
performs execution steps using step until reaching the final state and reports it.

The current implementation encompasses approximately thousand lines of
code. Since F* code can be compiled into OCaml, we validate our semantics
against the official EVM test suite [25]. Our semantics passes 304 out of 624
tests, failing only in those involving any of the missing functionalities.

We make the formalization in F* publicly available [22] in order to facili-
tate the design of static analysis techniques for EVM bytecode as well as their
soundness proofs.

3.7 Comparison with the Semantics by Luu et al. [21]

The small-step semantics defined by Luu et al. [21] encompasses only a variation
of a subset of EVM bytecode instructions (called EtherLite) and assumes a
heavily simplified execution configuration. The instructions covered span simple
stack operations for pushing and popping values, conditional branches, binary
operations, instructions for accessing and altering local memory and account
storage, as well as as the ones for calling, returning and destructing the account.
Essential instructions as CREATE and those for accessing the transaction and
block information are omitted. The authors represent a configuration as a tuple
of a call stack of activation records and the global state. An activation record
contains the code to be executed, the program counter, the local memory and
the machine stack. The global state is modelled as mapping from addresses to
accounts, with the latter consisting of code, balance and persistent storage.

The overall abstraction contains a conceptual flaw, as not including the global
state in the activation records of the call stack does not allow for modelling
that, in the case of an exception in the execution of the callee, the global state
is rolled back to the one of the caller at the point of calling. In addition, the
model cannot be easily extended with further instructions – such as further call
instructions or instructions accessing the environment – without major changes
in the abstraction as a lot of information, e.g., the one captured in our small-step
semantics in the transaction and the execution environment, are missing.
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4 Security Definitions

In the following, we introduce the semantic characterization of the most sig-
nificant security properties for smart contracts, motivating them with typical
vulnerabilities recurring in the wild.

For selecting those properties, we inspected the classification of bugs per-
formed in [13,21]. To our knowledge, these are the only works published so far
that aim at systematically summarizing bugs in Ethereum smart contracts.

For the presented bugs, we synthesized the semantic security properties that
were violated. In this process we realized that some bugs share the same under-
lying property violation and that other bugs can not be captured by such generic
properties – either because they are of a purely syntactic nature or because they
constitute a derivation from a desired behavior that is particular to a specific
contract.

Preliminary Notations. Formally, we represent a contract as a tuple of the
form (a, code) where a ∈ A denotes the address of the contract and code ∈ [B]
denotes the contract’s code. We denote the set of contracts by C and assume
functions address (·) and code (·) that extract the contract address and code
respectively.

As we will argue about contracts being called in an arbitrary setting, we
additionally introduce the notion of reachable configuration. Intuitively, a pair
(Γ, S) of a transaction environment Γ and a call stack S is reachable if there
exists a state s such that S, s are the result of initialize (T , H, σ), for some
transaction T , block header H, a global state σ, and S is reachable from s.

Definition 1 (Reachable Configuration). The pair (Γ,A) ∈ Tenv × S is a
reachable configuration if for some transaction T ∈ T , some block header H ∈ H
and some global state σ ∈ A → A of the blockchain it holds that

(Γ, s) = initialize (T,H, σ) ∧ Γ � s :: ε →∗ S

In order to give concise security definitions, we further introduce, and assume
throughout the paper, an annotation to the small step semantics in order to
highlight the contract c that is currently executed. In the case of initialization
code being executed, we use ⊥. Specifically, we let

Sn := {EXCc :: Splain, HALT(σ, gas, η, d)c :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N, Splain ∈ L((M × I × Σ × N) × C)}

where c ∈ C ∪ {⊥} = C⊥.
Next, we introduce the notion of execution trace for smart contract execution.

Intuitively, a trace is a sequence of actions. In our setting, the actions to be
recorded are composed of an opcode, the address of the executing contract,
and a sequence of arguments to the opcode. We denote the set of actions with
Act. Accordingly, every small step produces a trace consisting of a single action.
Again, we lift the resulting trace semantics to multiple execution steps that then
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produce sequences of actions π ∈ L(Act). We only report the trace semantics
definition for the CALL case here, referring to the full version of the paper for
the details [22].

ι.code [μ.pc] = CALL
μ.s = g :: to :: va :: io :: is :: oo :: os :: s · · · μ′ = · · · ι′ = · · · σ′ = · · ·

Γ � (μ, ι, σ)c :: S
CALLc(g,to,io,is,oo,os)−−−−−−−−−−−−−−→ (μ′, ι′, σ′)to :: (μ, ι, σ)c :: S

We will write π ↓callsc to denote the projection of π to calls performed by con-
tract c, i.e., actions of the form CALLc(g, to, va, io, is, oo, os), CREATEc(va, io, is),
CALLCODEc(g, to, va, io, is, oo, os), and DELEGATECALLc(g, to, io, is, oo, os).

4.1 Call Integrity

Dependency on Attacker Code. One of the most famous bugs of Ethereum’s
history is the so called DAO bug that led to a loss of 60 million dollars in June
2016 [10]. This bug is in the literature classified as reentrancy bug [13,21] as the
affected contract was drained out of money by subsequently reentering it and
performing transactions to the attacker on behalf of the contract. More gener-
ally, the problem of this contract was that malicious code was able to affect the
outgoing money flows of the contract. The cause of such bugs mostly roots in
the developer’s misunderstanding of the semantics of Solidity’s call primitives.
In general, calling a contract can invoke two kinds of actions: Transferring Ether
to the contract’s account or Executing (parts of) a contracts code. In particular,
the call construct invokes the called contract’s fallback function when no partic-
ular function of the contract is specified (2). Consequently, the developer may
expect an atomic value transfer where potentially another contract’s code is exe-
cuted. For illustrating how to exploit this sort of bug, we consider the following
contracts:

1 contract Bob{
2 bool sent = false;
3 function ping( address c){
4 if (!sent) { c.call.value (2)();
5 sent = true; }}}

1 contract Mallory{
2 function (){
3 Bob(msg.sender).ping(this);}}

The function ping of contract Bob sends an amount of 2 wei to the address
specified in the argument. However, this should only be possible once, which
is potentially ensured by the sent variable that is set after the successful money
transfer. Instead, it turns out that invoking the call.value function on a contract’s
address invokes the contract’s fallback function as well.

Given a second contract Mallory, it is possible to transfer more money than
the intended 2 wei to the account of Mallory. By invoking Bob’s function ping with
the address of Mallory’s account, 2 wei are transferred to Mallory’s account and
additionally the fallback function of Mallory is invoked. As the fallback function
again calls the ping function with Mallory’s address another 2 wei are transferred
before the variable sent of contract Bob was set. This looping goes on until all gas
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of the initial call is consumed or the callstack limit is reached. In this case, only
the last transfer of wei is reverted and the effects of all former calls stay in place.
Consequently the intended restriction on contract Bob’s ping function (namely to
only transfer 2 wei once) is circumvented.

Call Integrity. In order to protect from this class of bugs, it is crucial to
secure the code against being reentered before regaining control over the control
flow. From a security perspective, the fundamental problem is that the contract
behaviour depends on untrusted code, even though this was not intended by
the developer. We capture this intuition through a hyperproperty, which we
name call integrity. The idea is that no matter how the attacker can schedule
c (callstacks S and S′ in the definition), the calls of c (traces π, π′) cannot be
controlled by the attacker, even if c hands over the control to the attacker.

Definition 2 (Call Integrity). A contract c ∈ C satisfies call integrity for a set
of addresses AC ⊆ A if for all reachable configurations (Γ, sc :: S), (Γ, s′

c :: S′)
with s, s′ differing only in the code with address in AC , it holds that for all t, t′

Γ � sc :: S
π−→∗

tc :: S ∧ final (tc) ∧ Γ � s′
c :: S′ π′

−→
∗

t′c :: S′ ∧ final (t′c)
=⇒ π ↓callsc= π′ ↓callsc

4.2 Proof Technique for Call Integrity

We now establish a proof technique for call integrity, based on local properties
that are arguably easier to verify and that we show to imply call integrity. As
a first observation, we identify the different ways in which external contracts
can influence the execution of a smart contract c and introduce corresponding
security properties:

Code Dependency. The contract c might access (information on) the
untrusted contracts code via the EXTCODECOPY or the EXTCODESIZE
instructions and make his behaviour depend on those values;

Effect Dependency. The contract c might call the untrusted contract and
might depend on its execution effects and return value;

Re-entrancy. The contract c might call the untrusted contract, with the lat-
ter influencing the behaviour of the former by performing changes to the
global state itself or “on behalf” of c by reentering it and thereby potentially
decreasing the balance of c.

The first two of these properties can be seen as value dependencies and there-
fore can be formalized as hyperproperties. The first property says that the calls
performed by a contract should not be affected by the effects on the execution
state produced by adversarial contracts. Technically, we consider a contract c
calling an adversarial contract c′ (captured as Γ � sc :: S → s′′

c′ :: sc :: S in the
premise), which we let terminate in two arbitrary states s′, t′: we require that
c’s continuation code performs the same calls in both states.
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Definition 3 (AC-effect Independence). A contract c ∈ C is AC-effect
independent of for a set of addresses AC ⊆ A if for all reachable configu-
rations (Γ, sc :: S) such that Γ � sc :: S → s′′

c′ :: sc :: S for some s′′ and
address (c′) ∈ AC , it holds that for all final states s′, t′ whose global state might
differ in all components but the code from the global state of s,

Γinit � s′
c′ :: sc :: S

π−→∗
s′′

c :: S ∧ final (s′′)

∧ Γinit � t′c′ :: sc :: S
π′
−→

∗
t′′c :: S ∧ final (t′′)

=⇒ π ↓callsc= π′ ↓callsc

The second property says that the calls of a contract should not be affected
by the code read from the blockchain (e.g., the code does not branch on code read
from the blockchain). To this end we introduce the notation Γ 
 s :: S

π−→
f

∗
s′ :: S

to denote that the local small-step execution of state s on stack S under Γ results
in several steps in state s′ producing trace π given that in the local execution
steps of EXTCODECOPY and EXTCODESIZE, which are the operations used
to access the code on the global state, the code returned by these functions is
determined by the partial function f ∈ A �→ [B] as opposed to the global state. In
other words, we consider in the premise a contract c reading two different codes
from the blockchain and terminating in both runs (captured as Γ 
 sc :: S

π−→
f

∗

s′
c :: S and Γ 
 sc :: S

π′
−→
f ′

∗
s′′

c :: S), and we require that c performs the same

calls in both runs.

Definition 4 (AC-code Independence). A contract c ∈ C is AC-code inde-
pendent for a set of addresses AC ⊆ A if for all reachable configurations
(Γ, sc :: S) it holds for all local code updates f, f ′ ∈ A �→ [B] on AC that

Γ 
 sc :: S
π−→
f

∗
s′

c :: S ∧ final (s′) ∧ Γ 
 sc :: S
π′
−→
f ′

∗
s′′

c :: S ∧ final (s′′)

=⇒ π ↓callsc= π′ ↓callsc

Both these independence properties can be overapproximated by static anal-
ysis techniques based on program dependence graphs [26], as done by Joana to
verify non-interference in Java [27]. The idea is to traverse the dependence graph
in order to detect dependencies between the sensitive sources, in our case the
data controlled by the adversary and returned to the contract, and the observable
sinks, in our case the local contract calls.

The last property constitutes a safety property. Specifically, single-entrancy
states that it cannot happen that when reentering the contract c another call
is performed before returning (i.e., after reentrancy, which we capture in the
call stack as two distinct states with the same running contract c, the call stack
cannot further increase).
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Definition 5 (Single-entrancy). A contract c ∈ C is single-entrant if for all
reachable configurations (Γ, sc :: S), it holds for all s′, s′′, S′ that

Γ � sc :: S →∗ s′
c :: S′ + +sc :: S

=⇒ ¬∃s′′ ∈ S, c′ ∈ C⊥. Γ � s′
c :: S′ + +sc :: S →∗ s′′

c′ :: s′
c :: S′ + +sc :: S

This safety property can be easily overapproximated by syntactic conditions, as
for instance done in the Oyente analyzer [21].

Finally, the next theorem proves the soundness of our proof technique, i.e.,
the two independence properties and the single-entrancy property together entail
call integrity.

Theorem 1. Let c ∈ C be a contract and AC ⊆ A be a set of untrusted
addresses. If c is AC-local independent, c is AC-effect independent, and c is
single-entrant then c provides call integrity for AC .

Proof Sketch. Let (Γ, sc :: S), (Γ, s′
c :: S′) be reachable configurations such that

s, s′ differ only in the code with address in AC . We now compare the two small-
step runs of those configurations. Due to AC-code independence, the execution
until the first call to an address a ∈ AC produces the same partial trace until
the call to a. Indeed, we can express the runs under different address mappings
through the code update from the AC-code independence property, as long as no
call to one of the updated addresses is performed. When a first call to a ∈ AC

is performed, we know due to single-entrancy that the following call cannot
produce any partial execution trace for any of the runs as this would imply that
contract c is reentered and a call out of the contract is performed. Due to AC-
code independence and AC-effect independence , the traces after returning must
coincide till the next call to an address in AC . This argument can be iteratively
applied until reaching the final state of the execution of c.

4.3 Atomicity

Exception Handling. As discussed in Sect. 2, the way exceptions are prop-
agated varies with the way contracts are called. In particular, in the case of
call and send, exceptions are not propagated, but a manual check for the suc-
cessful completion of the called function’s execution is required. This behavior
reflects the way exceptions are reported during bytecode execution: Instead of
propagating up through the call stack, the callee reports the exception to the
caller by writing zero to the stack. In the context of Ethereum, the issue of
exception handling is particularly delicate as due to the gas restriction, it might
always happen that a call fails simply because it ran out of gas. Intuitively, a
user would expect a contract not to depend on the concrete gas value that is
given to it, with the exception that a contract might always fail completely (and
consequently does not perform any changes on the global state). Such a behavior
would prevent contracts from entering an inconsistent state as the one presented
in the following excerpt of a simple banking contract:
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1 contract SimpleBank{mapping( address => uint) balances;
2 function withdraw (){ msg.sender.send(balances[msg.sender]));
3 balances[msg.sender] = 0;}}

The contract keeps a record of the user balances and provides a function
that allows a user to withdraw its own balance – which results in an update
of the record. A developer might not expect that the send might fail, but as it
is on the bytecode level represented by a CALL instruction, additional to the
Ether transfer, code might be executed that runs out of gas. As a consequence,
the contract would end up in a state where the money was not transferred (as
all effects of the call are reverted in case of an exception), but still the internal
balance record of the contract was updated and consequently the money cannot
be withdrawn by the owner anymore.

Inspired by such situations where an inconsistent state is entered by a con-
tract due to mishandled gas exceptions, we introduce the notion of atomicity
of a contract. Intuitively, atomicity requires that the effects of the execution on
the global state do not depend on the amount of gas available – except when an
exception is triggered, in which case the overall execution should have no effect
at all. The last condition is captured by requiring that the final global state is
the same as the initial one for at least one of the two executions (intuitively, the
one causing the exception).

Definition 6. A contract c ∈ C satisfies atomicity if for all reachable configu-
rations (Γ, S′) such that Γ � S′ → sc :: S, it holds for all gas values g, g′ ∈ N256

that

Γ � sc[μ.gas → g] :: S →∗ s′
c :: S ∧ final (s′)

∧ Γ � sc[μ.gas → g′] :: S →∗ s′′
c :: S ∧ final (s′′)

=⇒ s′.σ = s′′.σ ∨ s.σ = s′.σ ∨ s.σ = s′′.σ

4.4 Independence of Miner Controlled Parameters

Another particularity of the distributed blockchain environment is that users
while performing transactions cannot make assumptions on large parts of the
context their transaction will be executed in. A part of this is due to the asyn-
chronous nature of the system: it can always be that another transaction that
alters the context was performed first. Actually, the situation is even more del-
icate as transactions are not processed in a first-come-first-serve manner, but
miners have a big influence on the execution context of transactions. They can
decide upon the order of the transactions in a block (and also sneak their own
transactions in first) and in addition they can even control some parameters
as the block timestamp within a certain range. Consequently, contracts whose
(outgoing) money flows depend either on miner controlled block information or
on state information (as the state of their storage or their balance) that might
be changed by other transactions are prone to manipulations by miners. A typ-
ical example adduced in the literature is the use of block timestamps as source
of randomness [13,21]. In a classical lottery implementation that randomly pays
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out to one of the participants and uses the block timestamp as source of random-
ness, a malicious miner can easily influence the result in his favor by selecting a
beneficial timestamp.

We capture the absence of the miner’s influence by two definitions, one saying
that the outgoing Ether flows of a contract should not be influenced by compo-
nents of the transaction environment that can be (within a certain range) set
by miners and the other one saying that the Ether flows should not depend on
those parts of the contract state that might have been influenced by previously
executed transactions. The first definition rules out what is in the literature often
described as timestamp dependency [13,21].

First, we define independence of (parts of) the transaction environment. To
this end, we assume CΓ to be the set of components of the transaction environ-
ment and write Γ =/cΓ

Γ ′ to denote that the transaction environments Γ, Γ ′

are equal up to component cΓ .

Definition 7 (Independence of the Transaction Environment). A con-
tract c ∈ C is independent of a subset I ⊆ CΓ of components of the transaction
environment if for all cΓ ∈ I and all reachable configurations (Γ, sc :: S) it holds
for all Γ ′ that

cΓ (Γ ) �= cΓ (Γ ′) ∧ Γ =/cΓ
Γ ′

∧ Γ � sc :: S
π−→∗

s′
c :: S ∧ final (s′) ∧ Γ ′ � sc :: S

π′
−→

∗
s′′

c :: S ∧ final (s′′)
=⇒ π ↓callsc= π′ ↓callsc

Next, we define the notion of independence of the account state. Formally, we
capture this property by requiring that the outgoing Ether flows of the contract
under consideration should not be affected by those parameters of the contract
that might have been changed by previous executions which are the balance, the
account’s nonce, and the account’s persistent storage.

Definition 8 (Independence of Mutable Account State). A contract c ∈
C is independent of the account state if for all reachable configurations (Γ, sc ::
S), (Γ, sc :: S′) with s, s′ differing only in the nonce, balance and storage for
address (c), it holds that

Γ � sc :: S
π−→∗

s′
c :: S ∧ final (s′

c) ∧ Γ � sc :: S′ π′
−→

∗
s′′

c :: S ∧ final (s′′
c)

=⇒ π ↓callsc= π′ ↓callsc

As far the other independence properties, both these properties can be stat-
ically verified using program dependence graphs.



264 I. Grishchenko et al.

4.5 Classification of Bugs

The previously presented security definitions are motivated by the bugs that
were observed in real Ethereum smart contracts and studied in [13,21]. Table 1
gives an overview on the bugs from the literature that are ruled out by our
security properties.

Table 1. Bugs from [13,21] ruled out by the security properties

Security property Bug

Call integrity Reentrancy [13,21]

Call to the unknown [13]

Atomicity Mishandled exceptions [13,21]

Independence of mutable account state Transaction order dependency [21]

Unpredictable state [13]

Independence of transaction environment Timestamp dependancy [21]

Time constraints [13]

Generating randomness [13]

Our security properties do not cover all bugs described by Atzei et al. [13],
as some of the bugs do not constitute violations of general security properties,
i.e., properties that are not specific to the particular contract implementation.
There are two classes of bugs that we do not consider: The first class deals
with the occurrence of unexpected exceptions (such as the Gasless Send and
the Call stack Limit bug) and the second class encompasses bugs caused by
the Solidity semantics deviating from the programmer’s intuitions (such as the
Keeping Secrets, Type Cast and Exception Disorders bugs).

The first class of bugs encompasses runtime exceptions that are hard to
predict for the developer and that are consequently not handled correctly. Of
course, it would be possible to formalize the absence of those particular kinds
of exceptions as simple reachability properties using the small-step semantics.
Still, such properties would not give any insight about the security of a contract:
the fact that a particular exception occurs can be unproblematic in the case
that proper exception handling is in place. In general, the notion of a correct
exception handling highly depends on the specific contract’s intended behavior.
For the special case of out-of-gas exceptions, we could introduce the notion of
atomicity in order to capture a generic goal of proper exception handling. But
such a notion is not necessarily sufficient for characterizing reasonable ways of
dealing with other kinds of runtime exceptions.

The second class of bugs are introduced on the Solidity level and are similarly
hard to account for by using generic security properties. Even though these
bugs might all originate from similar idiosyncrasies of the Solidity semantics,
the impact of the bugs on the contract’s semantics might deviate a lot. This
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might result in violations of the security properties discussed before, but also
in violating the contract’s functional correctness. Consequently, catching those
bugs might require the introduction of contract-specific correctness properties.

Finally, Atzei et al. [13] discuss the Ether Lost in Transfer bug. This bug is
introduced by sending Ether to addresses that do not belong to any contract
or user, so called orphan addresses. We could easily formalize a reachability
property stating that no valid contract execution should ever send Ether to
such an address. We omit such a definition here as it is quite straightforward
and at the same time it is not a property that directly affects the security of
an individual contract: Sending Ether to such an orphan address might have
negative impacts on the overall system as money is effectively lost. For the
specific contract sending this money, this bug can be seen as a corner case of
sending Ether to an unintended address which rather constitutes a correctness
violation.

4.6 Discussion

As previously discussed, we are not aware of any prior formal security definitions
of smart contracts. Nevertheless, we compared our definitions with the verifica-
tion conditions used in Oyente [21]. Our investigation shows that the verification
conditions adopted in this tool are neither sound nor complete.

For detecting mishandled exceptions, it is checked whether each CALL
instruction in the contract code is directly followed by the ISZERO instruction
that checks whether the top element of the stack is zero. Unfortunately, Oyente
(although stated in the paper) does not implement this check, so that we needed
to manually inspect the bytecodes for determining the outcomes of the syntactic
check. As shown in Fig. 2a a check for the caller returning zero does not neces-
sarily imply a proper exception handling and therefore atomicity of the contract.
This excerpt of a simple banking contract that keeps track of the users’ balances
and allows users to withdraw their balances using the function withdraw checks
for the success of the performed call, but still does not react accordingly. It only
makes sure that the number of successes is updated consistently, but does not
perform the update on the user’s balance record according to the call outcome.

On the other hand, not performing the desired check does not imply the
absence of atomicity as illustrated in Fig. 2b. Writing the outcome in some vari-
able before checking it, satisfies the negative pattern, but still correct excep-
tion handling is performed. For detecting timestamp dependency, Oyente checks
whether the contract has a symbolic execution path with the timestamp (that
is represented as own symbolic variable) being included in one of its constraints.
This definition however, does not capture the case shown in Fig. 2c.

This contract is clearly timestamp dependent as whether or not the function
pay pays out some money to the sender depends on the timestamp set when
creating the contract. A malicious miner could consequently manipulate the
block timestamp for a transaction that creates such a contract in a way that
money is paid out and then subsequently query it for draining it out. This is
however, not captured by the characterization of the property in Oyente as they
only capture the local execution paths of the contract.
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(a)

(c)

(e) (f)

(d)

(b)

Fig. 2. (a) Exception handling: false negative (b) Exception handling: false positive
(c) Timestamp dependency: false negative (d) Timestamp dependency: false positive
(e) Reentrancy: false negative (f) Reentrancy: false positive

On the other hand, using the block timestamp in path constraints does not
imply a dependency as can easily be seen by the example in Fig. 2d.

For the transaction order dependency and the reentrancy property, we were
unfortunately not able to reconcile the property characterization provided in the
paper with the implementation of Oyente.

For checking reentrancy according to the paper, it should be checked whether
the constraints on the path leading to a CALL instruction can still be satisfied
after performing the updates on the path (e.g. changing the storage). If so, the
contract is flagged as reentrant. According to our understanding, this approach
should not flag contracts that correctly guard their calls as reentrant. Still, by
the version of Oyente provided with the paper the contract in Fig. 2f is tagged
as reentrant.

There exists an updated version of Oyente [28] that is able to precisely tag this
contract as not reentrant, but we could not find any concrete information on the
criteria used for checking this property. Still, we found out that the underlying
characterization can not be sufficient for detecting reentrancy as the contract in
Fig. 2e is classified not to exhibit a reentrancy vulnerability even though it should
as the send command also executes the recipient’s callback function (even though
with limited gas). The example is taken from the Solidity documentation [23]
where it is listed as negative example. For transaction order dependency, Oyente
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should check whether execution traces exhibiting different Ether flows exists.
But it turned out that not even a simple example of a transaction dependent
contract can be detected by any of the versions of Oyente.

5 Conclusions

We presented the first complete small-step semantics of EVM bytecode and for-
malized a large fragment thereof in the F* proof assistant, successfully validating
it against the official Ethereum test suite. We further defined for the first time a
number of salient security properties for smart contracts, relying on a combina-
tion of hyper- and safety properties. Our framework is available to the academic
community in order to facilitate future research on rigorous security analysis of
smart contracts.

In particular, this work opens up a number of interesting research directions.
First, it would be interesting to formalize in F* the semantics of Solidity code
and a compiler from Solidity into EVM, formally proving its soundness against
our semantics. This would allow us to provide software developers with a tool
to verify the security of their code, from which they could obtain bytecode that
is secure by construction. Second, we intend to design an efficient static analysis
technique for EVM bytecode and to formally prove its soundness against our
semantics.
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17. Stefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program ver-
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