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Abstract. Distributed pseudorandom functions (DPRFs) originally
introduced by Naor, Pinkas and Reingold (EUROCRYPT ’99) are pseu-
dorandom functions (PRFs), whose computation is distributed to multi-
ple servers. Although by distributing the function computation, we avoid
single points of failures, this distribution usually implies the need for mul-
tiple interactions with the parties (servers) involved in the computation
of the function. In this paper, we take distributed pseudorandom func-
tions (DPRFs) even further, by pursuing a very natural direction. We
ask if it is possible to construct distributed PRFs for a general class of
access mechanism going beyond the threshold access structure and the
access structure that can be described by a polynomial-size monotone
span programs. More precisely, our contributions are two-fold and can
be summarised as follows: (i) we introduce the notion of single round
distributed PRFs for a general class of access structure (monotone func-
tions in NP), (ii) we provide a provably secure general construction of
distributed PRFs for every mNP access structure from puncturable PRFs
based on indistinguishable obfuscation.
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1 Introduction

Distributing the computation of a function is a rather important method
employed in order to avoid performance bottlenecks as well as single point of
failures due to security compromises or even increased demand (i.e., overloaded
servers). Investigating the distribution of trapdoor functions for public key cryp-
tography has already received a lot of attention [2,3]. However, the computation
of distributed functions that are useful in secret key cryptography e.g., pseudo-
random functions (PRFs) has received limited attention [7–9].

As a motivating example for the use of distributed PRFs, let us consider the
scenario of a one-time password system (e.g., RSA SecurID). Users obtain one-
time passwords from this system by sending inputs. Each password should be
random and independent from the other passwords, and asking the evaluating
system on the same input twice should yield the same (random) output. In this
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system, one assumes the existence of an authentication server, who has a secret
key K and responds with PRF outputs PRFK(x) that are used as the users’ one-
time passwords. Since the server knows the secret PRF key, this authentication
server is a prime target for attacks. The natural solution to this problem is to
distribute the role of the authentication server among many servers. This leads
to the notion of distributed PRFs (DPRFs).

In this paper, we investigate whether it is possible to construct distributed
PRFs for a general class of access mechanism, going beyond the existing thresh-
old access structure (i.e., at least t-out-of-N servers are required to evaluate
the PRF) and the access structure that can be described by a polynomial-size
monotone span programs (e.g., undirected connectivity in a graph).

More precisely our contributions are two-fold: (i) we introduce the notion of
single round distributed PRFs for a general class of access structures (monotone
functions in NP), (ii) we provide a provably secure general construction of dis-
tributed PRFs for every mNP access structure from puncturable PRFs based on
indistinguishable obfuscation.

Distributed PRFs. Distributed pseudorandom functions (DPRFs), originally
introduced by Naor et al. [7], provide the properties of regular PRFs (i.e., indis-
tinguishability from random functions) and the capability to evaluate the func-
tion f (approximate of a random function) among a set of distributed servers.
More precisely, Naor et al. [7] considered the setting where the PRF secret key is
split among N key servers and at least t servers are needed to evaluate the PRF.
The distributed PRF in this setting is known as distributed PRF for threshold
access structure. Very importantly, evaluating the PRF is done without recon-
structing the key at a single location. Naor et al. [7] also presented constructions
of DPRFs based on general monotone access structures, such as monotone sym-
metric branching programs (contact schemes), and monotone span programs.

Although some distributed PRFs (DPRFs) schemes have been proposed, all
previous constructions have some limitations. Naor et al. [7] gave several efficient
constructions of certain weak variants of DPRFs. One of their DPRF construc-
tions requires the use of random oracles. To eliminate the use of random oracles,
Nielsen [9] provided the first regular DPRF by distributing a slightly modified
variant of the Naor-Reingold PRF [8]. Unfortunately, the resulting DPRF is
highly interactive among the servers and requires a lot of rounds.

Boneh et al. [1] gave an efficient construction of DPRF for t-out-of-N thresh-
old access structure from LWE using a key homomorphic PRF. Boneh et al.
apply Shamir’s t-out-of-N threshold secret sharing scheme [2] on top of their
LWE-based key homomorphic PRF scheme, which results in an one-round DPRF
with no interaction among the key servers. However, the question of constructing
single round, non-interactive distributed PRFs that support more general access
structures such as monotone functions in NP remained open prior to this work.

Our Contributions. In this work, we consider single round distributed PRFs
for a more general class of access structures than the existing monotone access
structures: monotone functions in NP, also known as mNP (firstly considered
by Komargodski et al. [6]). An access structure that is defined by a function in
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mNP is called an mNP access structure. We also give a generic construction of
distributed PRFs for every mNP access structure from puncturable PRFs based
on indistinguishable obfuscation [4].

Intuitively, a single round distributed PRF for an mNP access structure is
defined as follows: given an access structure, the setup algorithm outputs a public
parameter PP and a secret key α which defines a PRF. On input the secret key α,
there is an algorithm that allows to “split” α into many “shares” αi and then to
distribute the shares to a collection of servers. Using its own key, αi, each server
can compute a partial evaluation on input x. For the “qualified” subsets, there
is a witness attesting to this fact and given the witness and the partial values
of these “qualified” servers it should be possible to reconstruct the evaluation of
PRF on input x. On the other hand, for the “unqualified” subsets there is no
witness, and so it should not be possible to reconstruct the PRF on input x. For
example, consider the Hamiltonian access structure. In this access structure, the
parties correspond to edges of a complete undirected graph, and a set of parties
X is said to be “qualified”, if and only if the corresponding set of edges contains
a Hamiltonian cycle and the set of parties knows a witness attesting to this fact.

Our central challenge is to reconstruct a function value on some input from a
set of partial evaluations of the “qualified” servers. Prior solutions are based on
specific PRFs with particular algebraic structures, in combination with Shamir’s
secret sharing scheme. These solutions employ the homomorphic property of
the PRF to distribute the function value into different parts, from which in
turn the PRF value can be reconstructed. Here, we explore a solution based on
general PRFs with no algebraic structure. Our approach achieves these goals by
employing program obfuscation. Both our general constructions of distributed
PRFs are based on indistinguishability obfuscation [4] and we prove formally
their security in the full version of this paper.

Overview of Our Techniques. We now give a high level overview of our
technical approach. A formal treatment is given in the main body of the paper.

We propose a general method that makes any puncturable PRF to be a dis-
tributed PRF for any mNP access structure based on indistinguishability obfus-
cation [4]. Our basic scheme is rather easy to describe. Let A ∈ mNP be an access
structure on N servers S1, . . . , SN . Given the verification procedure VA for an
mNP access structure A, a trusted third party samples the PRF key K as well
as N PRF keys K1, . . . , KN , and creates an obfuscated program iO(Prog) which
with keys K, K1, . . . , KN and VA hardwired, takes as input the valid witness w
of the set of qualified servers Γ ⊆ S1, . . . , SN , {σi}i∈Γ and x and checks if the
condition VA(Γ,w) = 1 and σi = PRF(Ki, x) holds for every i ∈ Γ . If the condi-
tion holds, the program Prog outputs PRF(K,x); otherwise it outputs ⊥. Each
server’s key is given as Ki. For input x, each server computes σi = PRF(Ki, x)
and outputs σi as the partial share of the function value PRF(K,x). In order to
reconstruct the function value on input x from a set of shares of qualified servers
Γ , with witness w the client runs the public obfuscated program iO(Prog). We
also show that the resulting distributed PRF remains selectively pseudorandom
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even when a set of unqualified servers T ⊆ {S1, . . . , SN}, namely T /∈ A, are cor-
rupted and the adversary is given the share of the servers that are uncorrupted
on the inputs of its choice.

2 Preliminaries

2.1 Monotone-NP and Access Structures

A function f : 2[n] → {0, 1} is said to be monotone if for every Γ ⊆ [n], such that
f(Γ ) = 1 it also holds that ∀Γ ′ ⊆ [n] such that Γ ⊆ Γ ′ it holds that f(Γ ′) = 1.

A monotone Boolean circuit is a Boolean circuit with AND and OR gates
(without negations). A non-deterministic circuit is a Boolean circuit whose
inputs are divided into two parts: standard inputs and non-deterministic inputs.
A non-deterministic circuit accepts a standard input if and only if there is some
setting of the non-deterministic input that causes the circuit to evaluate to 1.
A monotone non-deterministic circuit is a non-deterministic circuit, where the
monotonicity requirement applies only to the standard inputs, that is, every path
from a standard input wire to the output wire does not have a negation gate.

Definition 1 ([5]). We say that a function L is in mNP if there exists a uniform
family of polynomial-size monotone non-deterministic circuit that computes L.

Lemma 1 ([5]). mNP = NP
⋂
mono, where mono is the set of all monotone

functions.

Definition 2 (Access structure [6]). An access structure A on S is a mono-
tone set of subsets of S. That is, for all Γ ∈ A it holds that Γ ⊆ S and for all
Γ ∈ A and Γ ′ such that Γ ⊆ Γ ′ ⊆ S it holds that Γ ′ ∈ A.

We may think of A as a characteristic function A : 2P → {0, 1} that outputs 1
given as input Γ ⊆ S if and only if Γ is in the access structure, namely Γ ∈ A. We
view A either as a function or as a language. Throughout this paper, we deal with
distributed PRFs for access structures over N servers S = SN = {S1, . . . , SN}.

3 Distributed Pseudorandom Functions

We now formally define the syntax and security notion of distributed pseudo-
random functions (DPRFs) for any mNP access structure A on N servers. It
is a natural generalization of the definition of DPRFs given in [7] (which was
proposed for threshold access structures).

Consider a PRF F : K × X → Y that can be computed by a deterministic
polynomial time algorithm: on input (K,x) ∈ K × X the algorithm outputs
F (K,x) ∈ Y. To define distributed PRFs, we follow the partial exposition of
Naor et al. [7]. The model comprises of N servers S1, . . . , SN and for each of the
servers Si the share space is Zi. Note we identify a server Si with its index i.
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Definition 3 (Distributed PRFs). For N ∈ N, let A be an mNP access struc-
ture on N servers S1, . . . , SN . A distributed PRF for A is a tuple of polynomial
time algorithms Π = (Setup, Func, Gen, Eval, Comb) with the following syntax:

– Setup(1λ, N, VA): On input the security parameter λ, the number N of servers
and the verification procedure VA for an mNP access structure A on N servers,
the setup algorithm outputs the public parameters PP and a master secret
key α.

– Func(α, x): On input the master secret key α and an input string x ∈ X , the
function evaluation algorithm outputs a function value y ∈ Y.

– Gen(α): On input the master secret key α, the key generation algorithm out-
puts N keys, (α1, . . . , αN ).

– Eval(i, αi, x): On input a server index i, key αi and input string x ∈ X , the
partial evaluation algorithm outputs a pair (x, yi) where yi ∈ Zi is the server’s
Si share of function value Func(α, x).

– Comb
(
PP, VA, w, {Eval(i, αi, x)}i∈Γ

)
: On input the public parameters PP, the

verification procedure VA for an mNP language A, a witness w, and a set
of shares {Eval(i, αi, x)}i∈Γ for a set of servers Γ ⊆ {S1, . . . , SN} where we
recall that we identify a server Si with its index i, the combining algorithm
outputs a value y ∈ Y ∪ ⊥;

and satisfying the following correctness and pseudorandomness requirements:

Correctness: If for all λ,N ∈ N, any mNP access structure A, any x ∈ X ,
and any set of qualified servers Γ ⊆ {S1, . . . , SN} with valid witness w (i.e.,
VA(Γ,w) = 1), it holds that:

Pr[(PP, α) ← Setup(1λ, N, VA), (α1, . . . , αN ) ← Gen(α) :

Comb
(
PP, VA, w, {Eval(i, αi, x)}i∈Γ

)
= Func(α, x)] = 1.

Selective Pseudorandomness: Consider the following indistinguishability
challenge experiment for corrupted servers T ⊆ [N ]:
1. On input the security parameter 1λ and number N , the adversary A out-

puts the challenge input x∗, an access structure A ∈ mNP and an unqual-
ified set T ⊆ [N ] (that is, T /∈ A).

2. The challenger runs (PP, α) ← Setup(1λ, N, VA) and (α1, . . . , αN ) ←
Gen(α), and publishes the public parameters PP to the adversary A.

3. The challenger sends the corresponding keys {αi}i∈T to A.
4. The adversary (adaptively) sends queries x1, . . . , xQ ∈ X to the chal-

lenger, and for each query xj the challenger responds with Eval(i, αi, xj)
for all i ∈ [N ]\T .

5. The adversary submits a challenge query x∗ /∈ {x1, . . . , xQ} to the chal-
lenger. The challenger chooses a random bit b ← {0, 1}. If b = 0, the
challenger returns a uniformly random y∗ ∈ Y to the adversary. If b = 1,
the challenger responds with y∗ = Func(α, x∗).

6. The adversary continues to issue polynomially more queries of the form
xj 	= x∗, to which the challenger responds with {Eval(i, αi, xj)}i∈[N ]\T .

7. The adversary A outputs a bit b′ ∈ {0, 1}.
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Let us denote by AdvpseudoΠ,A := Pr[b′ = b] − 1/2 the advantage of the adversary
A in guessing b in the above experiment, where the probability is taken over
the randomness of the challenger and of A. We say the distributed PRFs Π
for an mNP access structure A is selectively pseudorandom if there exists a
negligible function negl(λ) such that for all non-uniform PPT adversaries A,
it holds that AdvpseudoΠ,A ≤ negl(λ).

4 General Construction of Distributed PRFs

In this section, we describe our construction of DPRFs in details. The construc-
tion is parameterized over a security parameter λ and a number N , has input
space X = {0, 1}inp(λ) and range space Y = {0, 1}out(λ) for some polynomial
functions inp(·) and out(·). It relies on the following primitives:

– A puncturable PRF (SetupPRF,PuncturePRF,EvalPRF), that accepts inputs of
length inp(λ) and outputs strings of length out(λ).

– N puncturable PRFs (SetupPRFi
,PuncturePRFi

,EvalPRFi
), for each i ∈ [N ],

that accepts inputs of length inp(λ) and outputs strings of length �(λ).

Prog

Hardwired into the circuit: VA, K and {Ki}i∈[N ].

Input to the circuit: {σi}i∈Γ , x, w.

Algorithm:
1. Check VA(Γ, w) = 1. If it is true, go to the next step; else output ⊥.

2. For all i ∈ Γ check σi = PRF(Ki, x).
If it is true, output y = PRF(K, x); else output ⊥.

Fig. 1. The description of the programs Prog.

Our construction of a DPRF is composed of the following algorithms:

Setup(1λ, N, VA): On input 1λ, N and VA, it does as follows:
– sample PRF key K ← SetupPRF(1λ) and N keys Ki ← SetupPRFi

(1λ).
– create an obfuscated program iO(Prog), where the program Prog is

defined in Fig. 1.
– set the secret key α = (K,{Ki}i∈[N ]) and the public parameters PP =

iO(Prog).
Func(α, x): It parses α = (K,{Ki}i∈[N ]). The function value for input x ∈

{0, 1}inp is defined as: Func(α, x) = PRF(K,x) = y.
Gen(α): It parses α = (K,{Ki}i∈[N ]) and sets αi = Ki for every i ∈ [N ], where

αi is the key used to compute the corresponding server’s share of the function
value.
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Eval(i, αi, x): It parses αi = Ki, computes σi = PRF(Ki, x) and outputs (σi, x),
where σi is the server’s Si share of the function value Func(α, x).

Comb
(
PP, VA, w, {Eval(i, αi, x)}i∈Γ

)
: It parses Eval(i, αi, x) = (σi, x) for every

i ∈ Γ and runs y ← iO(Prog)({σi}i∈Γ , x, w) to obtain value y. Output y.

Theorem 1. If iO is a secure indistinguishability obfuscator, PRF(K, ·) is a
secure puncturable PRF, and for each i ∈ [N ] PRF(Ki, ·) is a secure puncturable
PRF, then our distributed PRF given above is a selectively pseudorandom dis-
tributed PRF for the mNP access structure A, as defined in Definition 3.

The complete proof is provided in the full version of this article.

5 Conclusion

In this paper, we consider single round distributed PRFs for a more general class
of access structures: monotone functions in NP. We also give a generic construc-
tion of distributed PRFs for every mNP access structure from puncturable PRFs
based on indistinguishable obfuscation.

Acknowledgements. This work was partially supported by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement n 608743 and the STINT grant IB 2015-
6001.

References

1. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part
I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

2. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: Proceedings of STOC 1994, pp. 522–533. ACM, New York (1994)

3. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.
1007/0-387-34805-0 28

4. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of FOCS 2013, Washington, D.C., USA, pp. 40–49. IEEE Computer Society
(2013)

5. Grigni, M., Sipser, M.: Monotone complexity (1990)
6. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. J. Cryptol. 30(2),

444–469 (2017)
7. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

8. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM (JACM) 51(2), 231–262 (2004)

9. Nielsen, J.B.: A threshold pseudorandom function construction and its applications.
In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 401–416. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-45708-9 26

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-45708-9_26

	Distributed Pseudorandom Functions for General Access Structures in NP
	1 Introduction
	2 Preliminaries
	2.1 Monotone-NP and Access Structures

	3 Distributed Pseudorandom Functions
	4 General Construction of Distributed PRFs
	5 Conclusion
	References




