
High-Performance Symmetric
Cryptography Server with GPU

Acceleration

Wangzhao Cheng1,2,3, Fangyu Zheng1,2(B), Wuqiong Pan1,2, Jingqiang Lin1,2,
Huorong Li1,2,3, and Bingyu Li1,2,3

1 Data Assurance and Communication Security Research Center, Beijing, China
2 State Key Laboratory of Information Security,

Institute of Information Engineering, CAS, Beijing, China
{chengwangzhao,zhengfangyu,panwuqiong,linjingqiang,lihuorong,

libingyu}@iie.ac.cn
3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. With more and more sensitive and private data transferred
on the Internet, various security protocols have been developed to secure
end-to-end communication. However, in practical situations, applying
these protocols would decline the overall performance of the whole sys-
tem, of which frequently-used symmetric cryptographic operations on
the server side is the bottleneck. In this contribution, we present a high-
performance symmetric cryptography server. Firstly, a symmetric algo-
rithm SM4 is carefully scheduled in GPUs, including instruction-level
implementation and variable location improvement. Secondly, optimiza-
tion methods is provided to speed up the inefficient data transfer between
CPU and GPU. Finally, the overall server architecture is adopted for
mass data encryption, which can deliver 15.96 Gbps data encryption
through network, 1.23 times of the existing fastest symmetric crypto-
graphic server. Furthermore, the server can be boosted by 2.02 times
with the high-speed pre-calculation technique for long-term-key applica-
tions such as IPSec VPN gateways.

Keywords: Symmetric Cryptographic Algorithm
Graphics Processing Unit (GPU) · CUDA · SM4 implementation
Symmetric cryptography server · Performance

1 Introduction

Cloud computing, e-commerce, online bank and other Internet services are devel-
oping rapidly, more and more sensitive and private data is transferred on the

W. Cheng—This work was partially supported by the National 973 Program of China
under award No. 2014CB340603 and the National Cryptography Development Fund
under award No. MMJJ20170213.

c© Springer International Publishing AG, part of Springer Nature 2018
S. Qing et al. (Eds.): ICICS 2017, LNCS 10631, pp. 529–540, 2018.
https://doi.org/10.1007/978-3-319-89500-0_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89500-0_46&domain=pdf

530 W. Cheng et al.

Internet. SSL, TLS, IPSec and other security protocols have been developed
to support secure and reliable end-to-end communication. Under these security
protocols, servers and clients first use key exchange protocols to negotiate a
symmetric key, and then use the symmetric key to encrypt the communication
content. From 2011 to 2015, the total amount of global data have increased for
more than 10 times (from 0.7 ZB to 8.6 ZB), and CPU performance is only about
three times higher, CPU’s development can hardly meet the expanding demand.

In order to satisfy the need for symmetric calculation power, we present a
high-performance symmetric cryptography server. Our server can be deployed
in cloud computing, database encryption, end-to-end encrypted communication
and other applications. It works as a proxy and outsources these complex and
onerous symmetric computation from the original server.

To build the high-performance symmetric cryptography server, we accom-
plished a high speed SM4 kernel, used a GPU card as an SM4 algorithm accel-
erator, and optimized the network service based on the characteristics of GPU
card. Our work is to gradually optimize the following three aspects.

1. Speeding up the SM4 kernel. We used CUDA’s PTX (Parallel Thread Execu-
tion) instructions to accomplish bitwise exclusive OR operation and circular
shift operation in the algorithm. At the same time, we adjusted the order of
plain-text in global memory and modified its accessing method to increase
plain-text’s accessing rate. S-Box and round keys were also carefully arranged.
On NVIDIA GeForce GTX 1080, our SM4 kernel is able to encrypt 535.68 Gb
data per second. It achieves 12.59 times of the existing fastest SM4 imple-
mentation by Mart́ınez-Herrera et al. [12].

2. Enhancing the overall throughput of the GPU card. Using GPUs as an accel-
erator, data transfer between GPUs and CPUs limits its overall throughput.
We took advantage of multi-stream’s parallel operation, and overlapped data
transfer and calculation process with each other. Finally, the overall through-
put of GPU card is enhanced to 76.89 Gbps, and our optimizations methods
make use of 85.4% of GTX 1080’s PCI-E bandwidth.

3. Optimizing the network service. Based on the characteristics that the GPU
card is weak performance under single thread, and strong performance under
multiple threads, we designed a queue to cache network service requests, and
the GPU card can handles multiple encryption requests in the queue at the
same time. The server’s peak throughput through network is 15.96 Gbps.
For the case that using a single key, like large IPSec VPN gateways, we
designed a memory management framework and used pre-calculation tech-
nique to decrease data copy operations and reduce the degree of coupling.
With these optimizations, the server’s peak throughput reaches 32.23 Gbps,
and it is 2.48 times faster than SSLShader [6].

The remainder of the paper is organized as follow. Section 2 introduces the
related work. Section 3 presents the overview of GPU, CUDA, and SM4 sym-
metric encryption. Section 4 describes in detail about the GPU-accelerated SM4
implementation, the optimization for data transfer, and how we enhance our

High-Performance Symmetric Cryptography Server with GPU Acceleration 531

server’s performance. Section 5 analyses the performance of proposed algorithm
and server, and it also compares them with previous works. Section 6 concludes
the paper.

2 Related Work

The SM4 algorithm is Chinese standard symmetric cipher for data protection,
and it is first declassified in 2006 and standardized in 2012. Researchers have done
a lot of works on its security and attacking methods [2,3]. Chinese government is
also vigorously promoting the SM4 algorithm as a standard for data protection.
However, the heavy cryptographic computation of SM4 limits its using scene,
and there are few studies to solve this problem.

As a graphics dedicated processor, GPUs are concentrated in the field of
computer graphics [1]. After CUDA was introduced, GPU became widely used
in the field of general purpose computing, many symmetric algorithms were
scheduled in GPUs for better performance. Manavski et al. [11] took the lead
in using CUDA to accelerate AES, which followed the Rijndael reference imple-
mentation, and provided optimal location for storing the T-tables to enhance the
benchmark performances, and their work was followed by most teams. Harrison
et al. completed AES-CTR on CUDA enabled GPUs [5]. While optimizing the
algorithm’s calculation rate, this work also contributed on how to schedule serial
and parallel execution of block ciphers on GPUs. On Tesla P100, Nishikawa [13]
increased the speed of the AES-ECB to 605.9 Gbps. Except for AES, the opti-
mization of other symmetric algorithms on the GPU has also been extensively
studied by researchers, including DES [10], Blowfish, IDEA, CAST-5, Camellia
[4], MD5-RC4 [8].

In addition to symmetric cryptography, GPUs were also widely applied in
asymmetric cryptography, including RSA [6,16] and ECC [17]. GPU-based cryp-
tographic servers were also growing rapidly. Using GPU as a general-purpose SSL
accelerators, SSLShader accelerated SSL cryptographic operations, and it han-
dled 29K SSL TPS and achieved 13 Gbps bulk encryption throughput [6]. Guess
[15] was a dedicated equipment for signature generation and verification, and it
was capable of 8.71× 106 operations per second (OPS) for signature generation
or 9.29 × 105 OPS for verification.

3 Background

3.1 GPU and CUDA

Compared with CPUs, modern GPUs devote most of the transistor to arith-
metic processing unit with much less data cache and flow controler. This unique
hardware design is specialized for manipulating computer graphics, and it is also
quiet fit for compute-intensive operations and high parallel computation. CUDA
is a parallel computing platform, which was created and firstly introduced in

532 W. Cheng et al.

M
ultiprocessor 20

M
ultiprocessor 3

M
ultiprocessor 2

M
ultiprocessor 1

Cache
Texture

m
em

ory cache

Register

Cuda core
Cuda core

Cuda core
Cuda core

Cuda core
Cuda core

G
lobal m

em
ory

G
PU

CPU

Constant
m

em
ory cache

Shared m
em

ory

M
em

ory

Fig. 1. NVIDIA GeForce GTX 1080’s architecture and how it works in the system

2006 by NVIDIA [14]. By harnessing the power of GPUs, it enables dramatic
computing performance increases on GPUs.

The target platform in this paper is NVIDIA GeForce GTX 1080. As shown in
Fig. 1, GeForce GTX 1080 contains 20 streaming multiprocessors (SM) and each
SM owns 128 single precision CUDA cores, 8 texture mapping units (TMU),
and 256 KB L2 cache. 32 threads (grouped as a warp) within one SM run in
a clock concurrently. All GPU threads follow the Single Instruction Multiple
Threads (SIMT) architecture. When a warp is stalled due to memory access
delay, it may be preempted, and the scheduler may switch the runtime context
to another available warp. For better utilization of the pipeline, multiple warps
of threads are usually assigned to one SM and called one block. The maximum
number of GPU threads per block is 1024. Each block could access 96 KB fast
shared memory, 48 KB L1 cache, and 64K 32-bit registers. All SMs share 8 GB
global memory, cached read-only texture memory and cached read-only constant
memory. Global memory is the off-chip video RAM, and it is accessible to both
the device and the host through special functions provided by CUDA. Texture
memory and constant memory are special area of global memory, both of them
have separate on-chip catch.

3.2 SM4 Symmetric Encryption

SM4 is a 32 round unbalanced Feistel cipher, and it is Chinese standard symmet-
ric cipher for data confidentiality [9]. The processing block and the encryption
key are both 128-bit, and its security strength is same to that of AES-128.

4 Implementation Architecture

In this work, our main contributions are on these aspects: (i) Algorithm level
optimizations for scheduling SM4 encryption on GPUs. (ii) Optimizations for
data transfer between CPUs and GPUs. (iii) Optimizing the overall performance
of the server.

High-Performance Symmetric Cryptography Server with GPU Acceleration 533

4.1 Optimizing SM4 for GPU

For the SM4 kernel, naive porting of CPU algorithms to a GPU would waste most
GPU computational resources and cause server performance degradation, In this
part, we describe our approaches and design choices to maximize performance
of SM4 kernel on GPUs, and the key point in maximizing SM4 performance
lies in rational use of GPU storage resources and reducing GPU computational
resources consumption.

The plani-text of SM4 encryption is divided into 4 32-bit blocks. With the
corresponding round key, the round function uses these 4 blocks to generation
a new 32-bit block. Generated block and the last 3 blocks are the input for
the next round function, and the first block will never be used again. In order
to reduce the usage of registers, we use the first block of the original input to
store the generated block. SM4 symmetric encryption operation consists of 32
round functions, and the entire encryption process originally required 36 32-bit
registers. With our tricks, only 4 32-bit registers are used in the entire process.

Then we optimized the implementation of the round function. For the round
function, it carries out bitwise exclusive OR, left circular shift operations and
non-linear permutations on these 32-bit inputs. PTX instruction xor.b32 is used
to complete bitwise exclusive OR operation for two 32-bit units. The implemen-
tation for the left circular shift operation is more complicated, we used shl.b32,
shr.b32 and or.b32 these three instructions.

For non-linear permutations, we build a 256 bytes size S-Box, and it needs
to query the S-Box for 4 times to implement the non-linear permutations for a
32-bit block, and we carefully considered the arrangement for the S-Box. The
naive way is to store the S-box in global memory. Global memory’s accessing rate
is slow, and it results in SM4 kernel performance degradation. Except for global
memory, GPUs have 32-bit register, constant memory and shared memory, which
also can be used to store S-Box. Through comparative tests, we find when S-box
is stored in constant memory, the performance of SM4 kernel is the best. GPUs
have specially on-chip cache for constant memory, and after data in constant
memory was loaded in the on-chip cache, the program get the data directly
from the cache, rather than device memory. Register is also optional in certain
circumstances, compared with using constant memory, the implementation of
SM4 kernel that uses register to store S-Box is resistant to key recovery timing
attack [7], although it has compromised in terms of performance.

After optimizing the round function, we also need a reasonable arrangement
of the data for the SM4 kernel. During the encryption process, there are three
kinds data: plain-text, round keys and S-box. As mentioned above, S-Box is
stored in constant memory. The arrangement for round keys varies depending
on the applications. When the application uses multiple keys, round keys for each
GPU thread is different, so each GPU thread must derives its own round keys and
store them in global memory. When only a single key is used in the application,
we use CPU to derive round keys in advance and store them in shared memory
for faster accessing rate. The plain-text is stored in global memory, because other
storage space on GPUs are not suitable. Register is very limited, and normally

534 W. Cheng et al.

the size of plain-text is quite big, using 64K 32-bit registers to store plain-text
results in degradation of the SM4 kernel. Every GPU thread access different
plain-text, so shared memory is not a good choice. Plain-text is not constant
value, so constant memory is not suitable too.

As plain-text is stored in global memory, and compared with other memory
space, global memory has lower bandwidth, and we then optimized the inefficient
accessing to the plain-text in global memory. We used the coalesced access to
improve the accessing efficiency. Coalesced access needs two conditions: (i) The
size of data accessed by a thread each time must be 4 bytes, 8 bytes or 16 bytes;
(ii) The memory space accessed by a warp must be continuous. We used INT,
INT2, and INT4 these unique instructions provided by the CUDA API to access
global memory. INT, INT2, and INT4 are used to access 4,8,16 bytes global
memory respectively. To meet the second condition, we adjust the order of the
data blocks, and every GPU thread accesses the global memory in a special
method. Under normal circumstances, each piece of plain-text encrypted by the
same key is processed by one GPU threads, and multiple pieces are combined
into one data block and then transferred to GPU’s global memory. In this case,
every thread is accessing a continuous memory space, but each time when a
warp performs a memory accessing operation, it accesses multiple discrete data
fragments, just as shown in Fig. 2(a). To benefit from coalesced access, we adjust
the order of the data blocks. First, every piece of plain-text is split into several
blocks, the size of the block depends on the instruction used to access global
memory, instruction INT, INT2 and INT4 corresponds to 4-bytes, 8-bytes and
16-bytes block size respectively. Second, rearranging these blocks, make sure
that all pieces’s first blocks are combined in the natural order, and so it is with
other blocks, as shown in Fig. 2(b). Every time a GPU thread accesses global
memory, the next hop of the pointer also needs to point to the corresponding
block. Under this condition, the accessed memory space by a warp is continuous,
and each thread is processing its corresponding data.

T0 T1 T31 access instruction 1

T0 T1 T31 access instruction 2

T0 T1 T31 access instruction 1

T0 T1 T31 access instruction 2

b) Coalesced accessa) Un-coalesced access

Fig. 2. How global memory is accessed by a warp

We designed a set of comparative experiments to evaluate which is the best
combination of instructions and access methods. In the experiments, except for
the difference in the methods of accessing global memory and the used instruc-
tions, other conditions are the same. We test the throughput of these SM4 kernel
implementations, and the result is shown in Table 1.

Compared with non-coalesced access, the throughput of coalesced access is
about 5 or 6 times higher. This is because that global memory resides in the

High-Performance Symmetric Cryptography Server with GPU Acceleration 535

device memory, which is accessed via 32, 64 or 128 bytes memory transactions
[14]. When a threads accesses global memory, the data need to be read in the
cache by generating 32, 64 or 128 bytes memory transactions, then the thread
gets data from the cache. As the size of the memory transactions is fixed, so more
data than the actual demand will be cached. When the conditions of coalesced
access are met, most threads directly gets the data from the cache without
generating more memory transactions. The result also shows that instruction
INT4 is the best choice.

Table 1. Comparing the throughput of non-coalesced access and coalesced access.

INT INT2 INT4

Non-coalesced access (Gbps) 78.58 81.29 81.80

Coalesced access (Gbps) 420.48 422.60 423.67

At last, we set the SM4 kernel’s parameters to 20 blocks and each block
owns 1024 GPU threads, so that the SM4 kernel maximize the use of GPU’s
computational resources.

4.2 Optimizing Data Transfer Between GPUs and CPUs

After optimizing SM4 kernel on GPUs, we used a GPU card as an SM4 accel-
erator. Using GPU card to complete the data encryption operation, first, it
needs to copy plain-text from the host memory to GPU’s global memory, then
encrypt plain-text. After the encryption operation is complete, it needs to copy
the cipher-text back to the host memory. These processes must be executed
serially. To make the most of GeForce GTX 1080’s two copy engines, we used
multiple streams to complete these operations in parallel, so that data transfer
between CPUs and GPUs overlaps with encryption operation, and the overall
throughput of GPU card increases. The specific optimization methods are as fol-
lows: First, we initialize multiple streams and divide the data into corresponding
fragments. Then these streams begin to perform operations such as data trans-
fer and calculation process on theirs respective data asynchronously, as shown
in Fig. 3.

Copy data from
host to device Calculation Copy data from

host to device
Copy data from
host to device Calculation Copy data from

host to deviceStream 0

Copy data from
host to device Calculation Copy data from

host to device
Copy data from
host to device CalculationStream 1

Fig. 3. How to overlap data transfer with calculation process

To achieve the highest throughput of the GPU card, the parameter of the SM4
kernel changed. We reduce the threads per block from 1024 to 512, every stream

536 W. Cheng et al.

only hold one block, and the stream number is 10. This is because our SM4
kernel is much faster than the data transfer, reducing the number of blocks and
the number of threads per block improve the efficiency of the parallel execution
between these streams.

After our optimization, the throughput of the GPU card reaches to
76.89 Gbps. Compared with the SM4 kernel, it is much slower. The test tool
provided by the NVIDIA CUDA Toolkit shows that the bandwidth of our target
platform’s (GeForce GTX 1080) PCI-E is about 90 Gbps. So Our optimization
makes use of 85.4% of the bandwidth, and this result is satisfactory.

4.3 Optimizing the Performance of the Server

We build a scalable SM4 encryption proxy that uses the high-performance SM4
encryption operations of GPU to outsources symmetric computation from the
original server. Meanwhile, we complete ECB, CBC and CTR these three main-
stream encryption modes, and the server is capable of providing data encryption
through TCP/IP protocol.

In the server, CPU accepts service requests from network and caches them in
a queue. When the GPU is task-free, CPU takes out requests and organize the
plain-text, then GPU is called for data encryption. In this way, GPU provide
data encryption for multiple service requests at the same time, and its parallel
execution ability can be fully exploited. For the case of using multiple keys, GPU
threads use different keys, so each GPU threads derives its own round keys, and
then uses them to encrypt plain-text.

In some applications, end to end communication data is encrypted by a single
key over a period of time, like large IPSec VPN gateways. For these applications,
round keys are derived for only one time by CPU, then stored in shared memory
and used by all GPU threads.

512*{IV} 512*{cipher stream}

Empty ID
poll

CPU GPU

ID

Pinned Memory Block array

Full ID poll

Plain text

Cipher text

Fig. 4. The specially designed memory management framework

In the single key case, we have further optimizations. Based on the feature
that CTR mode supports pre-calculation, we use the GPU to generate stream
ciphers and store them in host memory. When CPU received service request,

High-Performance Symmetric Cryptography Server with GPU Acceleration 537

it just encrypts the plain-text with the stream ciphers, and send the cipher-
text back. In the case of multiple keys, before plain-text is encrypted, it would
be copied for three times, including pushed in the queue, popped out from the
queue and copied to a piece of continuous pinned host memory. In the single
key case, with our optimizations, plain-text is directly encrypted with no other
copy operation. And at the same time, through our optimizations, CPU and
GPU work independently, the degree of the system’s coupling is greatly reduced.
It is worth mentioning that technique can be applied to enhance the overall
performance of GPU servers for other symmetric algorithms, such as AES-CTR,
and DES-CTR.

Figure 4 shows how our optimizations work in detail. First, we designed a
memory management framework. In the framework, there is a pinned memory
block array, each pinned memory block is pre-allocated and specially designed
to store 512×16 bytes IVs and the generated cipher streams. Every block has an
unique ID, and all these IVs and cipher streams could be accessed by querying
the ID. In the initialization process, CPU fills the IVs with random numbers and
pushes these IDs into the empty ID poll. After the initialization is completed,
GPU begins to generate cipher streams: it pulls out IDs from the empty ID
poll and uses the IVs in the block to generate cipher streams. When the cipher
streams are full filled, these IDs are pushed into the full ID poll. When GPU
is generating cipher streams, CPU gets an ID from the full ID poll and deals
with network requests. When it receives a request, it generates the cipher-text
with the cipher streams, and then sends the encrypted data back. If the cipher
streams are used up, CPU refills the IVs, pushes the ID back to the empty ID
poll and gets another ID from the full ID poll.

5 Performance Assessment

In this section, we evaluated our SM4 kernel, and compared it with other imple-
mentations. We tested the capabilities of our symmetric cryptography server,
and compared it with other servers. Our server platform was equipped with one
Intel E5-2699 v3 CPU, 8 GB memory, and one NVIDIA GTX 1080 cards.

Table 2. Comparison of the best obtained results including AES-128.

Our SM4
kernel

Our GPU
card

FPGA-based
SM4 [12]

Nishikawa’s
AES-128 kernel [13]

Platform GTX1080 GTX1080 xc6vhx380t-3ff1155 Tesla P100

Throughput (Gbps) 535.68 76.8 42.54 605.9

Gbps per CUDA core 0.21 - - 0.17

Gbps per $ 0.90 - - 0.1

538 W. Cheng et al.

5.1 Performance of Our SM4 Kernel and Comparison with Other
Implementations

The existing fastest SM4 implementation belongs to Mart́ınez-Herrera et al. [12].
Through speeding-up the polynomial multiplier in SM4 algorithm on an FGPA
(which is xc6vhx380t-3ff1155), their implementation reaches 42.54 Gbps.

In order to test the performance of our SM4 kernel, plain-text and secret key
are generated by CPUs with random value and then transferred to GPU’s global
memory. Each GPU thread generates its own round keys and loops the encryp-
tion for 1 KB plain-text. Our test result is shown in Table 2. The throughput
of our SM4 kernel reaches 535.68 Gbps, it is 12.59 times faster than Mart́ınez-
Herrera et al.’s work. The throughput of our GPU card is still satisfactory, and
it reaches 76.8 Gbps.

The security strength of AES-128 is same to that of SM4, we compared our
SM4 kernel with the fastest AES-128 kernel. Naoki Nishikawa et al. [13] accel-
erate AES-128 on Tesla P100. We think their hardware has a huge advantage,
and our SM4 kernel has better performance on each CUDA core. Considering
that Tesla P100 is about 10 times more expensive than GTX 1080, our work is
very competitive.

0 10000 20000

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
(G

bp
s)

TCP connection number

ECB
CBC
CTR

a) Multiple keys, 64 bytes packet

0 2000 4000 6000

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

TCP connection number

ECB
CBC
CTR

b) Multiple keys, 1440 bytes packet

0 1000 2000 3000

5

10

15

20

Th
ro

ug
hp

ut
 (G

bp
s)

TCP connection number

ECB
CBC
CTR

c) Multiple keys, 4096 bytes packet

0 1000 2000
0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (G

bp
s)

TCP connection number

64Byte
1440Byte
4096Byte

d) Single key under CTR mode

Fig. 5. The throughput of our symmetric cryptography server

High-Performance Symmetric Cryptography Server with GPU Acceleration 539

5.2 Performance of the Our Server and Comparison with Other
GPU Servers

We test the performance of the server when it encrypts different size packets: 64
bytes, 1440 bytes and 4096 bytes packet. Our server is capable of providing CBC,
CTR and ECB these three modes of data encryption, and the test result is shown
in Fig. 5. As the packet size becomes larger, the peak throughput of the server
increases. When the packet size is 4096 bytes, the peak throughput is 15.96 Gbps.

For the case that using a single key under CTR mode, our optimizations
raised the throughput of the server almost two to three times. As shown
in Fig. 5(d), when using a single key, our server’s peak throughput reaches
32.23 Gbps.

In SSLShader [6], they used 2 CPUs and 2 GPUs in a NUMA (Non Uniform
Memory Access Architecture) system. NUMA can make a set of CPU and GPU
run independently of another set, just like two servers, and SSLShader achieves
13 Gbps symmetric encryption throughput. Our server only used 1 CPU and 1
GPU, the peak throughput of our server is 15.96 Gbps, and for the case that using
a single key to do data encryption under CTR mode, our server’s throughput
reaches 32.23 Gbps, which is 2.48 times faster than SSLShader.

6 Conclusion

In this work, we have presented how to use GPUs to accelerate SM4 encryp-
tion. On GeForce GTX 1080, the speed of our SM4 kernel reaches 535.68 Gbps,
it is 12.59 times faster than the existing fastest SM4 implementation. We have
sped up inefficient data transfer between GPUs and CPUs, and our optimization
makes use of 85.4% bandwidth of GTX 1080’s PCI-E. We also have showed the
potential of using GPUs to enhance the performance of symmetric cryptogra-
phy servers. Our symmetric cryptography server is capable of providing data
encryption under ECB mode, CBC mode and CTR mode. For the case that uses
a single key for a long term, like IPSec VPN gateways, the throughput of our
server reaches 32.23 Gbps, it is 2.48 times faster than SSLShader

For SM4 symmetric algorithm, the kernel rate is much higher than data trans-
fer rate. While the GPU performs SM4 operations, other algorithms can be oper-
ated at the same time to avoid the waste of GPU’s computational resources. The
inefficiency in the Linux TCP/IP stack is limiting the potential of our server, and
Intel’s DPDK seems to be a possible solution. These issues are our future work.

References

1. Bolz, J., Farmer, I., Grinspun, E., Schröoder, P.: Sparse matrix solvers on the
GPU: conjugate gradients and multigrid. ACM Trans. Graph. (TOG) 22(3), 917–
924 (2003)

2. Erickson, J., Ding, J., Christensen, C.: Algebraic cryptanalysis of SMS4: Gröbner
basis attack and SAT attack compared. In: Lee, D., Hong, S. (eds.) ICISC 2009.
LNCS, vol. 5984, pp. 73–86. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14423-3 6

https://doi.org/10.1007/978-3-642-14423-3_6
https://doi.org/10.1007/978-3-642-14423-3_6

540 W. Cheng et al.

3. Etrog, J., Robshaw, M.J.B.: The cryptanalysis of reduced-round SMS4. In: Avanzi,
R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 51–65. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4 4

4. Gilger, J., Barnickel, J., Meyer, U.: GPU-acceleration of block ciphers in the
OpenSSL cryptographic library. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012.
LNCS, vol. 7483, pp. 338–353. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33383-5 21

5. Harrison, O., Waldron, J.: Practical symmetric key cryptography on modern graph-
ics hardware. In: USENIX Security Symposium, vol. 2008 (2008)

6. Jang, K., Han, S., Han, S., Moon, S.B., Park, K.: SSLShader: cheap SSL acceler-
ation with commodity processors. In: NSDI (2011)

7. Jiang, Z.H., Fei, Y., Kaeli, D.: A complete key recovery timing attack on a GPU. In:
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 394–405. IEEE (2016)

8. Li, C., Wu, H., Chen, S., Li, X., Guo, D.: Efficient implementation for MD5-RC4
encryption using GPU with CUDA. In: 3rd International Conference on Anti-
counterfeiting, Security, and Identification in Communication. ASID 2009, pp. 167–
170. IEEE (2009)

9. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.-P.: Analysis
of the SMS4 block cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 158–170. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73458-1 13

10. Luken, B.P., Ouyang, M., Desoky, A.H.: AES and DES encryption with GPU. In:
ISCA PDCCS, pp. 67–70 (2009)

11. Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In: IEEE International Conference on Signal Processing and
Communications. ICSPC 2007, pp. 65–68. IEEE (2007)

12. Mart́ınez-Herrera, A.F., Mancillas-López, C., Mex-Perera, C.: GCM implementa-
tions of Camellia-128 and SMS4 by optimizing the polynomial multiplier. Micro-
process. Microsyst. 45, 129–140 (2016)

13. Nishikawa, N., Amano, H., Iwai, K.: Implementation of bitsliced AES encryption
on CUDA-enabled GPU. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.)
NSS 2017. LNCS, vol. 10394, pp. 273–287. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-64701-2 20

14. NVIDIA. CUDA C Programming Guide 8.0 (2017). http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#introduction

15. Pan, W., Zheng, F., Zhao, Y., Zhu, W.-T., Jing, J.: An efficient elliptic curve
cryptography signature server with GPU acceleration. IEEE Trans. Inf. Forensics
Secur. 12(1), 111–122 (2017)

16. Zheng, F., Pan, W., Lin, J., Jing, J., Zhao, Y.: Exploiting the floating-point com-
puting power of GPUs for RSA. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K.,
Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 198–215. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13257-0 12

17. Zheng, F., Pan, W., Lin, J., Jing, J., Zhao, Y.: Exploiting the potential of GPUs
for modular multiplication in ECC. In: Rhee, K.-H., Yi, J.H. (eds.) WISA 2014.
LNCS, vol. 8909, pp. 295–306. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15087-1 23

https://doi.org/10.1007/978-3-642-04159-4_4
https://doi.org/10.1007/978-3-642-33383-5_21
https://doi.org/10.1007/978-3-642-33383-5_21
https://doi.org/10.1007/978-3-540-73458-1_13
https://doi.org/10.1007/978-3-540-73458-1_13
https://doi.org/10.1007/978-3-319-64701-2_20
https://doi.org/10.1007/978-3-319-64701-2_20
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction
https://doi.org/10.1007/978-3-319-13257-0_12
https://doi.org/10.1007/978-3-319-15087-1_23
https://doi.org/10.1007/978-3-319-15087-1_23

	High-Performance Symmetric Cryptography Server with GPU Acceleration
	1 Introduction
	2 Related Work
	3 Background
	3.1 GPU and CUDA
	3.2 SM4 Symmetric Encryption

	4 Implementation Architecture
	4.1 Optimizing SM4 for GPU
	4.2 Optimizing Data Transfer Between GPUs and CPUs
	4.3 Optimizing the Performance of the Server

	5 Performance Assessment
	5.1 Performance of Our SM4 Kernel and Comparison with Other Implementations
	5.2 Performance of the Our Server and Comparison with Other GPU Servers

	6 Conclusion
	References

