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Abstract. Searchable symmetric encryption (SSE) provides private
searching over an encrypted database against an untrusted server.
Though various SSE schemes have been studied, recently, it is shown
that most of existing schemes are vulnerable to file injection attacks. At
ACM CCS 2016, Bost proposed a forward secure SSE scheme to resist
such attacks, called Σoφoς. Besides the basic scheme (Σoφoς) secure
against semi-honest servers, a verifiable scheme (Σoφoς-ε) secure against
malicious servers is also introduced. In Σoφoς-ε, each client keeps hash
values of indexes of documents corresponding to each keyword. Thus, the
client storage cost is higher than for Σoφoς, and the hash table must be
reconstructed when a new document is added. Also, since any security
definition and proof of security against malicious servers are not pro-
vided, what Σoφoς-ε guarantees against malicious server is unclear. In
this paper, we propose a new verifiable and forward secure SSE scheme
against malicious servers. An advantage of our scheme to Σoφoς-ε is the
client storage cost; that is, our scheme only needs the same storage cost
as Σoφoς. Our key idea is to bind each index and keyword with a tag gen-
erated by an algebraic pseudo-random function, and to store the tag to
the server as well as the encrypted index on an update phase. The client
can efficiently check validity of answers to search queries by verifying the
combined tag thanks to closed form efficiency of the algebraic pseudo-
random function; and thus, the client does not need to keep the hash
table. Also, we formally prove security against malicious servers. Specif-
ically, we show that our scheme satisfies the strong reliability definition.

Keywords: Searchable symmetric encryption · Forward security
Algebraic pseudo-random function · Strong reliability

1 Introduction

In our daily life, we use various cloud storage services, and our sensitive data
are stored in an outside server. Because many leakage incidents of databases
stored in cloud storage servers recently happen (e.g., “The Fappening” of Apple’s
iCloud in 2014), these data must be encrypted. However, if we use ordinary
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symmetric encryption schemes like AES, it is difficult to search a document
for clients. For this problem, Song et al. [1] introduced the notion of searchable
symmetric encryption (SSE). The aim of SSE is to provide private search over
the encrypted database store in an untrusted server. Specifically, the client wants
to hide information of keywords in the search phase as well as information of
documents. SSE schemes need to guarantee that small (or inevitable) information
only leaks to the server.

The first strongly secure SSE scheme was proposed by Curtmola et al. [2].
Their scheme is static; that is, the encrypted database is stored in the server
only in the setup phase, and if a new document is added, then the encrypted
database must be reconstructed. Hence, static SSE schemes are not suitable for
environments that data is frequently updated. Kamara et al. [3] proposed an
efficient dynamic SSE scheme1 that the client can add/delete a document cor-
responding to a set of keywords to/from the already stored encrypted database
without reconstructing it. Thus, dynamic SSE schemes are more useful in cloud
storage services than static SSE schemes. Various dynamic SSE schemes have
been studied to improve efficiency and search flexibility. From the viewpoint of
security, it is important to resist attacks by an untrusted server because some
malicious insiders may operate cloud storage services. Especially, we must con-
sider that the malicious server tries to respond a fake answer to a search query
(i.e., The true answer for keyword w is document D, but the server returns
another document D′). Kurosawa and Ohtaki [4] introduced the notion of ver-
ifiable SSE which guarantees that the client can verify if the answer is true or
not, and they extended it to the dynamic SSE setting [5]. Kurosawa et al. [6]
formally defined verifiability as strong reliability such that no malicious server
can make the client accepted for any fake answer.

In the sense of adversary, Islam et al. [7] introduced a new type of attacks
to SSE schemes, called leakage-abuse attacks. In this attack, if the server knows
(almost) all the contents of the client’s documents, then it can determine the
client’s queries from leakage of query pattern (i.e., when a query is repeated) and
the file-access pattern (i.e., which files are returned in response to each query).
Since such leakage is considered as practically small leakage, their attack clarifies
that security of some existing SSE schemes are not enough in reality. Moreover,
Cash et al. [8] extended the attack such that full plaintext of the encrypted
database can be recovered by allowing larger leakage. For dynamic SSE setting,
Zhang et al. [9] showed an attack to reveal the content of a past search query by
injecting few new documents in the update phase, called file injection attacks.
Their attack is very powerful because most of existing dynamic SSE schemes are
not resistant to the attack (i.e., The server can learn that the new document
matches a previous search query.).

Related to file injection attacks, Chang and Mitzenmacher [10] proposed
an (inefficient) forward secure dynamic SSE scheme with linear search cost.
The notion of forward security guarantees that no server can tell if a newly

1 Though Song et al. [1] already proposed a dynamic SSE scheme, the search cost is
linear in the number of documents.
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inserted document matches previous search queries. Thus, forward secure SSE
schemes can resist to file injection attacks. Also, forward secure SSE schemes
allow for an online build of the encrypted database because the update phase
does not leak information. In most of non-forward secure SSE schemes, inverted
indexes of the database are necessary in the setup phase; and thus, an indexing
step may be an efficiency bottleneck of the system. Stefanov et al. [11] proposed
a forward secure dynamic SSE scheme based on the oblivious RAM (ORAM).
However, their scheme is not verifiable, and needs large bandwidth overhead on
updates due to ORAM. Bost et al. [12] extended Stefanov et al.’s scheme to
verifiable. Their scheme also need large bandwidth overhead on updates.

Recently, Bost [13] proposed an efficient forward secure dynamic SSE scheme
(Σoφoς) without relying on ORAM. Σoφoς achieves optimal search and update
complexity for both computation and communication for forward secure SSE.
The key idea of Σoφoς is that the location of the newly added encrypted docu-
ment and the search token are unlinkable by preventing the adversary to gener-
ate any new search token from old one, but the client can compute new one by
using trapdoor permutations. Also, he shows an extension to verifiable scheme
(Σoφoς-ε). The idea of Σoφoς-ε is that the client keeps each hash value of indexes
of documents for each keyword. If the malicious server returns a fake answer, then
the client can verify validity by comparing the hash value. However, Σoφoς-ε
needs the additional storage cost for clients than Σoφoς because of keeping
the hash table. Specifically, whereas Σoφoς needs O(W log D) storage, Σoφoς-ε
needs O(W (log D +κ)) storage, where W is the number of distinct keywords, D
is the number of documents and κ is the security parameter. For an implemen-
tation in [13], experimental parameters sizes are set as D ≤ 248, W ≤ 223 and
κ is 128 bit; and thus, the extra client storage cost of Σoφoς-ε is about 128MB
to the cost of Σoφoς. Therefore, to achieve both of forward security against
malicious servers and client storage efficiency is an important remaining prob-
lem. Also, any formal definition and proof of security against malicious servers
is not shown in [13]. Hence, it is unclear that Σoφoς-ε is actually secure against
malicious servers.

1.1 Our Contribution

The contribution of this paper is twofold: one is to resolve the problem on the
storage cost in Σoφoς-ε, and the other is to show the formal security against
malicious servers.

New Forward Secure Dynamic SSE. We propose a new forward secure
dynamic SSE scheme which is secure against malicious servers. The storage cost
of our scheme is asymptotically the same as Σoφoς; that is, O(W log D). We
show a comparison among previous forward secure SSE schemes and our scheme
in Table 1.

Our key idea is to change the way to verify the answer of the server. In
Σoφoς-ε, verifiability is achieved by using client’s hash table of indexes of
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Table 1. Comparison among previous forward secure SSE schemes and our scheme

Computation Communication Client Storage Malicious

server

Search Update Search Update

[11] O

(
min

{
aw + log N

nw log3N

})
O(log2N) O(nw + log N) O(log N) O(Nα) ×

[12] O

(
min

aw + log2N

nw log3N

)
O(log2N) O(nw + log N) O(log N) O(Nα) �

Σoφoς [13] O(aw) O(1) O(nw) O(1) O(W log D) ×
Σoφoς-ε [13] O(aw) O(1) O(nw) O(1) O(W (log D + κ)) not proven

Ours O(aw) O(1) O(nw) O(1) O(W log D) �
Part of this table is borrowed from [13]. N is the number of keyword/document pairs. W is the number of

distinct keywords. D is the number of documents. nw is the size of the search result set for keyword w. aw

is the number of times that the queried keyword w was historically added to the database.

documents for each keyword. Thus, an additional storage cost is necessary.
In our scheme, verifiability is achieved by using the mechanism of message-
authentication codes (MAC) based on a pseudo-random function (PRF). Specif-
ically, each client generates a secret key for the PRF in the setup phase, and
computes and sends a tag to bind the document index and the keyword with the
PRF to the server in the update phase. The client can erase tags after the update
phase. In the search phase, the client can check the validity of the search result
by receiving and verifying indexes and tags. Since the secret key for the PRF is
only known by the client, it is difficult to forge a tag by the server from the prop-
erty of the PRF. Thus, the security against malicious servers without increasing
the storage size can be achieved. However, in this approach, the communication
cost and the computational cost for the client are large.

Hence, we use the other idea to resolve the problems on costs. We use an
algebraic PRF (APRF) with closed form efficiency [14]. The APRF is a special
type of PRF such that certain algebraic operations on these outputs can be
computed more efficiently with the secret salt than computing separately. We
generate tags for document indexes by using the APRF instead of the standard
PRF. Then, in the search phase, the server composes these tags by using the
algebraic property of APRF, and the client can efficiently check the validity with
the secret salt. Hence, the communication and computation cost is comparable
to Σoφoς-ε without increasing the storage cost.

Formal Security Proof against Malicious Servers. We adapt strong relia-
bility [6] as the definition of security against malicious servers. Strong reliability
guarantees that no malicious server can make an client accept a fake answer
or a fake tag to a search query. It is a suitable definition for schemes which
uses tags to check the validity of the search result because tags are explicitly
defined. Hence, we use strong reliability. The SSE scheme in [12] is also proved
to be secure against malicious servers. Their security definition is called sound-
ness which also guarantees that no adversary output a fake search result that is
accepted by the client. However, in the soundness definition, since tags are not
explicitly defined, the adversary is not regarded to win even if a tag is forged but
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the search result is valid. On the other hand, in the strong reliability definition,
the adversary wins if a tag is forged but the search result is valid. Therefore,
strong reliability is stronger than soundness. The detailed discussion about the
difference between two types of definitions is shown in [6]. We formally prove
that our scheme satisfies strong reliability by assuming the APRF. Specifically,
we show a reduction to pseudo-randomness of the APRF from strong reliability.

Also, we prove that our scheme satisfies forward security by assuming the
APRF and the one-way trapdoor permutation in the random oracle model. The
definition of forward security is the same as in [13].

2 Preliminaries

Notations. Throughout this paper we use the following notations. We denote κ
as the security parameter, and negl(κ) as the negligible function in κ. Hereafter,
we omit the security parameter for inputs of algorithms except cases that we
must explicitly state it. If Set is a set, then by m ∈R Set we denote that m is
sampled uniformly from Set. If ALG is an algorithm, then by y ← ALG(x; r)
we denote that y is output by ALG on input x and randomness r (if ALG is
deterministic, r is empty). When X is a bit-string, we denote |X| as the bit
length, and when X is a set, we denote |X| as the number of elements.

2.1 Building Blocks

Pseudo-Random Function and Algebraic Pseudo-Random Function.
Let F = {Fκ : Saltκ × Domκ → Rngκ}κ be a function family with a family
of domains {Domκ}κ, a family of salt spaces {Saltκ}κ and a family of ranges
{Rngκ}κ.

Definition 1 (Pseudo-Random Function). We say that function family
F = {Fκ}κ is the pseudo-random function (PRF) family, if for any PPT dis-
tinguisher D and salt s ∈R Saltκ, advantage AdvD = |Pr[1 ← DFκ(s,·)] −
Pr[1 ← DRFκ(·)]| ≤ negl(κ), where RFκ : Domκ → Rngκ is a truly random
function.

Definition 2 (Algebraic Pseudo-Random Function [14]). We say that
PRF function family F = {Fκ}κ is the algebraic pseudo-random function
(APRF) family if the following two properties are satisfied:

Algebraic. The range Rng of PRF F (·) for every κ and the salt s forms an
Abelian multiplicative group. We require that the group operation on Rng be
efficiently computable.

Closed form Efficiency. Let N be the order of the range sets of F for secu-
rity parameter κ. Let z = (z1, . . . , z�) ∈ {{0, 1}m}�, k ∈ N , and effi-
ciently computable h : Z

k
N → Z

�
N with h(x) = 〈h1(x), . . . , h�(x)〉. There

exists an algorithm CFEvalh,z such that for every x ∈ Z
k
N , CFEvalh,z(x, s) =

∏�
i=1[F (s, zi)]hi(x) and the running time of CFEval is polynomial in κ,m, k

but sublinear in �.

Hereafter, we omit κ in Fκ for simplicity.
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2.2 Dynamic Searchable Symmetric Encryption

Syntax. In this paper, we focus on the single keyword search and inverted
index schemes (i.e., The server returns index lists corresponding to each search
query.). Let D = {D1, . . . , Dn} be a set of documents, and DB := (indi,Wi)n

i=1

be a database containing pairs of index indi corresponding to document Di and
set of keywords Wi included in Di, where indi ∈ {0, 1}l for constant l and
Wi ⊆ {0, 1}∗. Also, let W := ∪n

i=1Wi be the set of keywords, W := |W| be the
number of distinct keywords, D be the number of documents, and DB(w) =
{indi|w ∈ Wi} be the set of indexes of documents including keyword w. For
example, if DB(w) = {ind1, ind2, ind3}, then documents including keyword w are
D1, D2 and D3.

A dynamic SSE scheme consist of three phases (Setup,Search,Update).

Setup(DB): On input DB, the client outputs encrypted database EDB, secret
key K and state of the client σ, and stores EDB to the server.

Search(K,w, σ,EDB) = (SearchC(K,w, σ),SearchS(t(w),EDB)): On input sec-
ret key K, state σ and keyword w for the client, and encrypted database
EDB for the server, the client sends trapdoor t(w) to the server, and the
server returns DB(w). The server returns verifier Ver = {V eri|indi ∈ DB(w)}
as well as DB(w), and the client verifies Ver for DB(w). If the verification
holds, the client regards that DB(w) is the valid answer.

Update(K,σ, op, in,EDB) = (UpdateC(K,σ, op, in), UpdateS(EDB, u(in))): On
input K, σ, operation op ∈ {add, del} and a document/keyword pair in =
(ind, w) for index ind and keyword w for the client, and EDB for the server, the
client sends update information u(in) corresponding to in to the server, and
the server updates EDB, where add/del means the addition/deletion of in.

It is required that an honest server always returns the true answer for any
search query.

Definition 3 (Correctness). For any DB the following holds:

Pr[(EDB,K, σ) ← Setup(DB); repetition of Update(K,σ, op, in,EDB);
t(w) ← SearchC(K,w, σ);x ← SearchS(t(w),EDB);x 
= DB(w)] ≤ negl(κ)

Security Model. For SSE schemes, privacy against the server is required. It is
ideal if there is no leaked information to the server. However, it is not realistic in
the SSE setting. Hence, we define leakage function L = (LStp,LSrch,LUpdt) to
represent what a SSE scheme leaks to the adversary. LStp/LSrch/LUpdt means
the leakage function in the setup/search/update phase. The leakage function L
keeps the query list Q as it state. Q contains entries (i, w) for a search query
on keyword w, or entries (i, op, in) for an update query. i is incremented at each
query. The search pattern sp(w) is defined as sp(w) = {j : (j, x) ∈ Q}. The
history of keyword hist(w) contains the set of documents indexes matching w
at the setup phase, and the set of updated documents indexes matching w at
the update phase. As the security model of dynamic SSE schemes, we show
definitions of confidentiality, forward security, and strong reliability.
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Confidentiality. It is required that there is no leak from each phase except deriv-
able information from leakage functions. Confidentiality is defined by the simu-
lation paradigm (i.e., indistinguishability between the real world and the ideal
world), and is parametrized by leakage functions.

Definition 4 (Confidentiality). The real world SSEreal and the ideal world
SSEideal containing a simulator S are defined as follows:

1. An adversary A chooses database DB.
2. A obtains EDB ← Setup(DB) in SSEreal, or a simulated output EDB ←

S(LStp(DB)) in SSEideal.
3. A can repeatedly pose search (resp. update) queries with input w (resp.

(op, in)), and obtains DB(w) ← Search(K,w, σ,EDB) (resp. EDB ←
Update(K, σ, op, in,EDB)) in SSEreal, or a simulated output DB(w) ←
S(LSrch(w)) (resp. EDB ← S(LUpdt(op, in))) in SSEideal.

4. A outputs a bit b.

We say that a SSE scheme is L-adaptively secure if for any PPT A there exists
S such that

|Pr[1 ← AinSSEreal] − Pr[1 ← AinSSEideal]| ≤ negl(κ).

Forward Security. It is required that the adversary cannot tell if an updated
document is corresponding to keywords in previous search queries.

Definition 5 (Forward Security [13]). We say that a L′-adaptively secure
SSE scheme is forward secure if the update leakage function LUpdt is represented
as follows:

LUpdt(op, in) = L′(op, (indi, μi)),

where (indi, μi) is a set of modified documents paired with the number μi of
modified keywords for the updated document indi.

Strong Reliability. It is required that no malicious server can make a client
accept a fake answer to a search query. Especially, strong reliability guarantees
unforgeability of a verifier corresponding to a document.

Definition 6 (Strong Reliability [6]). We consider the following game
between an honest client and an adversary A.

Setup phase A chooses DB, and sends it to the client. The client generates
secret key K and EDB, and sends EDB to A.

Update phase A chooses (opi, ini), and sends it to the client. The client gener-
ates update information u(ini), and sends (opi, u(ini)) to A.

Search phase A chooses keyword wi, and sends it to the client. The client gen-
erates t(wi), and sends it to A. A returns (DB(w)′,Ver′) to the client.

We note that the Update phase and the Search phase can be adaptively repeated
by A. We define that the adversary A wins if for some Search phase the client
accepts (DB(w)′,Ver′) as a true answer, and (DB(w)′,Ver′) 
= (DB(w),Ver),
where (DB(w),Ver) ← Search(K,w, σ,EDB). We say that a dynamic SSE scheme
is strong reliable if for any PPT A, Pr[Awins] ≤ negl(κ).
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3 Σoφoς-ε, Revisited

In this section, we recall Σoφoς-ε, a forward secure dynamic SSE scheme secure
against malicious servers.

3.1 Overview of Σoφoς and Σoφoς-ε

To guarantee forward security, Σoφoς introduces a search token update mecha-
nism with a one-way trapdoor permutation (OWTP) π. Here, we roughly recall
the design of Σoφoς. In the Setup phase, the client generates secret key sk for
OWTP. In the Update phase to add a new index ind corresponding to keyword
w, for the first addition of keyword w the client randomly chooses the initial
search token ST

(w)
0 , sets counter c(w) := −1, keeps (ST

(w)
0 , c(w)) as the current

search token, computes update token UT
(w)
0 = H1(ST

(w)
0 ) and the encrypted

index e
(w)
0 = ind ⊕ H2(ST

(w)
0 ) with hash function H1 and H2 (modelled as

random oracles (ROs)), and sends (UT
(w)
0 , e

(w)
0 ) to the server. For previously

added keyword w the client computes new search token ST
(w)
c+1 = π−1

sk (ST
(w)
c ),

keeps (ST
(w)
c+1, c

(w) + 1) as the current search token, computes update token
UT

(w)
c+1 = H1(ST

(w)
c+1) and the encrypted index e

(w)
c+1 = ind ⊕ H2(ST

(w)
c+1), and

sends (UT
(w)
c+1, e

(w)
c+1) to the server. The server stores (UT

(w)
c+1, e

(w)
c+1) to EDB. We

note that the malicious server cannot compute ST
(w)
c+1 even if UT

(w)
c+1 is given

because RO H1 is not invertible. Similarly, ind is hidden even if e
(w)
c+1 is given

because RO H2 is not invertible. In the Search phase for keyword w, the client
sends the current search token ST

(w)
c to the server. Since the server know public

key pk, the server can derive ST
(w)
i 0≤i≤c−1. Also, since UT

(w)
i = H1(ST

(w)
i ),

then the server can find DB(w) by decrypting each e
(w)
i for 0 ≤ i ≤ c − 1.

We note that the malicious server cannot compute STc+1 even if STc is given
because secret key sk is only known to the client. Therefore, Σoφoς guarantees
forward security.

Σoφoς-ε is a verifiable version of Σoφoς. In the Update phase, the client
also keeps H(DB(w)) for each keyword w as well as (ST

(w)
c+1, c

(w) + 1) with a
collision resistance hash function H. In the Search phase, the client verifies if
DB(w)′ sent from the server is valid by checking H(DB(w)) ?= H(DB(w)′). From
collision resistance of H, it is infeasible to find DB(w)′ 
= DB(w) such that
H(DB(w)) = H(DB(w)′). Thus, Σoφoς-ε is secure against malicious servers.

3.2 Complexity of Σoφoς-ε

In the sense of the storage cost, each client must keep table W and H. Table W
contains (iw, c) for every keyword; and hence, the storage cost is O(W log D).
Table H contains H3(DB(w)) for every keyword; and hence, the storage cost is
O(Wκ). Therefore, the total storage cost for a client is O(W (log D + κ)).
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The computational cost is O(aw) in the Search phase and O(1) in the Update
phase, where aw is the number of times that the queried keyword w was his-
torically added to the database. Also, the communication cost is O(nw) in the
Search phase and O(1) in the Update phase, where nw is the size of the search
result set.

3.3 Naive Approach to Reduce Storage Cost

There are several naive approaches to reduce the extra O(W log D) storage cost
for Σoφoς-ε. For example, the client encrypts H3(DB(w)) and stores it to the
server instead of storing by him/her. Then, in the Search phase, the client receives
the ciphertext of H3(DB(w)) and DB(w), decrypts the ciphertext, and can check
the validity of DB(w). Thus, the storage cost can be the same as Σoφoς. However,
in the Update phase, an additional round is necessary to receive the ciphertext
of H3(DB(w)) because the client does not memorize it and H3(DB(w)) must be
updated. Therefore, this naive approach is not very good from the viewpoint of
round complexity.

4 Our Scheme

In this section, we show the protocol of our scheme. It is based on Σoφoς, but
achieves verifiability by another way than Σoφoς-ε.

4.1 Design Principle

In our scheme, we do not use any client-local verification table like table H
in Σoφoς-ε, but use a “tag” binding the keyword and the index as a verifier.
Specifically, the client sends a verifier V er

(w)
c+1 as well as (UT

(w)
c+1, e

(w)
c+1) to the

server in the Update phase, and checks if V er
(w)
c+1 is correctly bound with DB(w)

in the Search phase. We note that the client do not have to keep V er
(w)
c+1 after

sending it, but the client receives the verifier corresponding to indexes. We use
a PRF to generate the verifier, and unforgeability of the verifier is guaranteed
from pseudo-randomness of the PRF.

However, if the client receives V er
(w)
c+1 for nw indexes matching with w in each

Search phase, the communication complexity increases by nw PRF values and the
client needs to compute nw PRF values. Hence, we use a algebraic PRF (APRF)
AF with closed form efficiency. APRF is a special type of PRF with a range that
forms an Abelian group such that group operations are efficiently computable.
In addition, certain algebraic operations on these outputs can be computed sig-
nificantly more efficiently if one possesses the salt of the PRF that was used to
generate them. As Definition 2, since

∏nw

i=1[AF (s, zi)]hi(x) can be efficiently com-
puted by CFEvalh,z(x, s), the server can just compute and send

∏nw

i=1[AF (s, zi)]
to the client, and the client can just compute CFEvalh,z(x, s) with a sublinear
running time in nw to check the validity of the verifier, where h(x) = 〈1, . . . , 1〉.
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It saves the increase of the communication complexity only to one group ele-
ment, and the computational cost for the client is bounded by sublinear in nw.
For example, we can use the APRF from the decisional Diffie-Hellman (DDH)
assumption [15] or from the strong DDH assumption proposed [14].

4.2 Protocol Description

Let π be a OWTP with the key generation algorithm KeyGen, F : {0, 1}κ ×
{0, 1}∗ → {0, 1}κ be a PRF, AF : {0, 1}κ × {0, 1}∗ → G be an APRF (where G
is an Abelian group and h(x) = 〈1, . . . , 1〉), and H1 and H2 are hash functions
modelled as random oracles.

– Setup(DB):
1. KS ∈R {0, 1}κ

2. KV ∈R {0, 1}κ

3. (sk, pk) ← KeyGen(1κ)
4. W,T ← empty tables
5. store DB to W and T according to Update phase
6. return (KS ,KV , sk) as secret key K and W as the state of the client σ
7. return T as encrypted database EDB

– Update(add,W, (ind, w),T):
• Client:

1. Kw ← F (KS , w)
2. (ST

(w)
c , c(w)) ← W[w]

3. if (ST
(w)
c , c(w)) = ⊥ then

4. generate ST
(w)
0 by using the storage reducing technique [13]

5. c(w) ← −1
6. else
7. ST

(w)
c+1 ← π−1

sk (ST
(w)
c ) by using the storage reducing technique [13]

8. end if
9. W[w] ← (iw, c(w) + 1)

10. V er
(w)
c+1 ← AF (KV , (c(w) + 1, w, ind))

11. UT
(w)
c+1 ← H1(Kw, ST

(w)
c+1)

12. e
(w)
c+1 ← ind ⊕ H2(Kw, ST

(w)
c+1)

13. send (UT
(w)
c+1, e

(w)
c+1, V er

(w)
c+1) to the server as update information

u(ind, w)
• Server:

1. T[UT
(w)
c+1] ← (e(w)

c+1, V er
(w)
c+1)

– Search(w,W,T):
• Client:

1. Kw ← F (KS , w)
2. (ST

(w)
c , c(w)) ← W[w]
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3. if (ST
(w)
c , c(w)) = ⊥

4. return ∅
5. send (Kw, ST

(w)
c , c(w)) to the server as trapdoor t(w)

• Server:
1. for i = c to 0 do
2. UT

(w)
i ← H1(Kw, ST

(w)
i )

3. (e(w)
i , V er

(w)
i ) ← T[UT

(w)
i ]

4. ind
(w)
i ← e

(w)
i ⊕ H2(Kw, ST

(w)
i )

5. STi−1 ← πpk(STi)
6. end for
7. send (DB(w) = {ind(w)

i }0≤i≤c,Ver
(w) =

∏c
i=0 V er

(w)
i ) to the client

• Client:
1. if |DB(w)| ≥ c + 1 or Ver(w) 
= CFEval

h,{i,w,ind
(w)
i }0≤i≤c

(0,KV )
2. return 0

Remark 1. The input of AF is (c, w, ind). If the domain of APRF AF is also
required to be a group, the input is hashed by some collision-resistance hash
function which maps to the group.

4.3 Correctness

According to the protocol, for any search query, an honest server can return
true answer (DB(w),Ver(w)), and the client always accept the answer except the
probability that some collision on UT occur. If a collision of UT for distinct
inputs to H1 occurs, the server cannot find the correct encrypted index and
verifier. However, since H1 is a RO, the collision probability is negligible in κ.

4.4 Deletion Support

Our scheme is easily extended to supporting deletions of indexes by duplicating
the data structure as the extension of Σoφoς-ε. Specifically, one instance of our
scheme is used for insertions, and the other for deletions. In the Search phase, the
server derives two DB(w) for two instances, and regards the difference of them
as indexes to be returned. The verifier is also duplicated for each instance, and
the client can check the validity of both instances respectively. If the verification
of one of instances is rejected, then the client decides that the response is not
valid. Therefore, strong reliability is also satisfied for this extension.

4.5 Complexity of Our Scheme

Each client must keep only table W. It is not necessary to keep ev
(w)
c+1 sent in

the Update phase because the client can check validity of verifier V er
(w)
i only

with secret salt KV , state ST
(w)
c and received indi. Table W contains (iw, c) for

every keyword; and hence, the storage cost is O(W log D). Therefore, the total
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storage cost for a client is O(W log D). It is the same as Σoφoς whereas Σoφoς
is not secure against malicious servers.

The computational cost and communication cost are asymptotically the same
as Σoφoς-ε. The exact additional communication cost is only one group element
(i.e., 160-bit for 80-bit security) both in the Update phase and the Search phase.
Also, the exact additional computational cost for the client is an APRF com-
putation in the Update phase and a sublinear computation in nw in the Search
phase. Therefore, our scheme is still efficient even in exact costs.

5 Security of Our Scheme

In this section, we prove that our scheme satisfies forward security and strong
reliability. Especially, to prove strong reliability as verifiability is a distinguished
point from Σoφoς-ε because there is no formal security proof of verifiability of
Σoφoς-ε in [13].

5.1 Forward Security

Theorem 1. We assume that F is a PRF, AF is an APRF, and π is a OWTP.
Then, our scheme satisfies forward security for leakage functions LStp(DB) = ⊥,
LSrch(w) = (sp(w), hist(w)) and LUpdt(add, (ind, w)) = ⊥ in the RO model,
where sp(w) is the search pattern and hist(w) is the history of keyword w.

The proof of Theorem1 is almost the same as [13, Theorem 1]. We use hybrid
games that proceed from the real world game to the ideal world game. The
difference from the previous proof is the treatment of verifier Ver. We add a
hybrid game to change the computation of V er

(w)
c+1 in the Update phase and the

Search phase to using a random function RF instead of using APRF AF . The
proof is given in the full version.

5.2 Strong Reliability

Theorem 2. We assume that AF is an APRF. Then, our scheme satisfies
strong reliability.

We can directly reduce the security of APRF to strong reliability. It means
that, if there exists an adversary who breaks strong reliability, then a distin-
guisher for APRF can be constructed. The proof is given in the full version.
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