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Abstract. When presenting a denotational semantics of a language with
recursion, it is necessary to show that the semantics is computationally
adequate, i.e. that every divergent term denotes the “bottom” element
of a domain.

We explain how to view such a theorem as a purely syntactic result.
Any theory (congruence) that includes basic laws and is closed under an
infinitary rule that we call “rational continuity” has the property that
every divergent term is equated with the divergent constant. Therefore,
to prove a model adequate, it suffices to show that it validates the basic
laws and the rational continuity rule. While this approach was inspired by
the categorical, ordered framework of Abramsky et al., neither category
theory nor order is needed.

The purpose of the paper is to present this syntactic result for call-by-
push-value extended with term-level recursion and polymorphic types.
Our account begins with PCF, then includes sum types, then moves to
call-by-push-value, and finally includes polymorphic types.

1 Introduction

Models of Recursion. A conventional denotational account of a language with
recursion proceeds as follows. First define the syntax and operational semantics.
Then give a denotational model. Lastly, prove soundness, i.e. if t evaluates to u
(written t ⇓ u) then �t� = �u�, and adequacy, i.e. if t diverges (written t ⇑) then
�t� = ⊥.

Because it is often convenient to structure a model categorically, Fiore and
Plotkin (1994) gave categorical axioms on a model that imply (soundness and)
adequacy. Crucially, in their work, as detailed by Fiore (1996), a model is required
to be “ωCpo-enriched”, meaning that a term denotes an element of a pointed
ω-cpo (poset with least element ⊥ and suprema of all increasing ω-chains), and
a term constructor is ω-continuous (preserves suprema of ω-chains). Thus (for
a call-by-name language) a term x : A � t : A gives a continuous endofunction
f , and the recursion recx .M denotes the supremum of (fn⊥)n∈N, the least
(pre)fixpoint of f .
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However, for the models of Abramsky et al. (2000), Abramsky and McCusker
(1997), and McCusker (1998), the requirement of ωCpo-enrichment is too
restrictive, because the posets arising do not have suprema of all increasing
ω-chains (Normann 2006). So these papers use a more relaxed ordered framework
where the only suprema that must be preserved are those of chains (fn⊥)n∈N of
iterated applications. This means that any so called rational chain (g ◦fn⊥)n∈N

has an upper bound given by g (
⊔

fn⊥)—a property known as rational continu-
ity (Wright et al. 1976; cf. also Bloom and Ésik 1993).

Recursion but Rationally. Our goal is to give an even more relaxed version of this
“rational” framework for adequacy; one that uses no category theory, order or
denotational model. It could be viewed as a purely syntactic result: a property
of a theory (congruence) ≈ rather than of a model. Thus we want t ⇓ u to imply
t ≈ u, and t ⇑ to imply t ≈ Ω, where Ω is a divergent constant. The benefit of such
a result is to modularize the narrative described at the start; we can get adequacy
out of the way before we start studying categorical and denotational semantics.

Rational Continuity. Currently we have accomplished this goal for term-level
recursion and polymorphic types. (Recursive and existential types are left to
future work; see Sect. 6). Our result is that any theory (congruence) ≈ will
be sound and adequate provided it (a) contains the β-laws, fixpoint law and
strictness laws and (b) is closed under an infinitary rule called rational continuity.
This rule says (for a call-by-name language) that if C[recn x . t] ≈ D[recn x . t]
for infinitely many n ∈ N, then C[recx . t] ≈ D[recx . t]. Here we write recn x . t
for the nth approximant to recursion, defined by the clauses rec0 x . t := Ω and
recn+1 x . t := t[recn x . t/x].

Plan. To include both call-by-value (CBV) and call-by-name (CBN), we have
established our result for call-by-push-value. The latter has both value types
and computation types, but the treatment of value types in our proof is more
complicated, so we begin in the CBN setting, which has only computation types.
Our CBN account itself begins with PCF, which has only base types and func-
tion types; we then include sum types, using a proof method adapted from
McCusker (1998). Next we move to call-by-push-value, and use ultimate pattern
matching of values (Lassen and Levy 2008) to treat the value types. Finally we
include polymorphic types.

Related Work. Adequacy of topos models has been studied using an internal lan-
guage (Simpson 2004). Other adequacy results for polymorphic models include
realizability semantics (Møgelberg 2009) and game semantics (Laird 2013).

2 PCF

Language. We begin by introducing a version of Plotkin’s PCF (1997) that
replaces fixpoint combinators with recursion operators and an explicit divergence
construct Ω (Table 1). As per usual, terms are taken up to α-equivalence. The set
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Table 1. PCF

of closed terms of type T will be denoted by CTermsT and that of normal forms
by NFT . For a closed term t there is at most one v such that t ⇓ v; when there
is none we say it diverges and represent this by t ⇑.

2.1 A Rationally Continuous Theory of PCF

The Theory. A congruence on terms is a type-indexed equivalence relation on
closed terms of said type satisfying t ≈ t′ =⇒ C[t] ≈ C[t′] for any context
C[−] where the hole is closed. (We omit type annotations.) A congruence is a
rationally continuous β-Ω-fix theory if it also satisfies the rules in Table 2.

The basis for the theory are the obvious β rules that mimic the reduction
rules. In a similar vein, the fixpoint rule establishes that each recursive term
is the fixpoint of a substitution. These rules alone are enough to establish the
soundness of the theory with respect to reduction.

Proposition 1 (Soundness). Any congruence ≈ satisfying the β and fixpoint
rules (Table 2) is sound: t ⇓ r =⇒ t ≈ r.

A Converse. Our sights now turn to proving that divergent terms are identical to
Ω. The extra requirement calls for a more refined theory that can more closely
mirror the behaviour of reduction. The last two sets of equations in Table 2
fill the gaps in what the reduction rules don’t say about divergence. The first



74 M. Devesas Campos and P. B. Levy

Table 2. Rationally continuous β-Ω-fix theory of PCF

relates to the strictness of the operators: divergence of an argument leads to the
divergence of the operator, e.g., Ωu ≈ Ω. The second is the rational continuity
rule presented in the introduction.

Rational Continuity and Chains. To prove adequacy, one often has to re-write
or equate certain terms built with recursion either with some constant or as
the unrolling of the recursive term a few times. In cpo models, continuity and
compositionality of the interpretations validate the following rule

∀n ∈ N.�C[recn x . t]� = �D[recn x . t]�

�C[recx . t]� = �D[recx . t]�

But this can be further weakened by requiring only equality at infinitely many
n, for then one would still be able to define chains with exactly the same least
upper bounds. We write ∃∞n.P (n) to mean there exist infinitely many n in N

for which P (n) holds. This leads us to the syntactic continuity rule in Table 2.
Since adequacy refers solely to closed terms, we only require this property for
x : T � t : T—and therefore recn x . t and recx . t are closed. Similarly, by
a rational chain we mean a chain of the form C[rec nx . t] for infinitely many
n ∈ N, and by its limit we mean the term C[recx . t].
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2.2 Adequacy

The Claim. We now embark on the syntactic journey towards a proof we have
an adequate theory—formally, that t ⇑ =⇒ t ≈ Ω. By the aforementioned
reasons the proof follows the usual approaches by replacing closure under bot-
tom elements and least upper bounds of the relevant chains with closure under
divergence and limits of rational chains.

Approximations. First we define abstractly1 the notion of an approximation can-
didate between terms and the values they approximate; these are then extended
to relations on terms. The concrete relations we use for each type are given by
certain actions on approximation candidates (cf., e.g., Pitts 2000). When using
the result of an action φ on approximation candidates �1, . . . , �n infix, we will
sometimes surround the result with brackets, as in t 〈φ(�1, . . . , �n)〉 u, to aid
readability.

Definition 1 (Approximation Candidates). An approximation candidate �
for a type T is a subset of CTermsT × NFsT s.t.:

1. ≈ Extension: t ≈ t′ and t′ � v =⇒ t � v
2. Rational Admissibility: for x : T � t : T

(∃∞n.C[recn x . t] � v) =⇒ C[recx . t] � v

Proposition 2. If � is an approximation candidate for type T , then the binary
relation on CTermsT defined by

t �c u ⇐⇒ t ≈ Ω or (∃v.u ⇓ v and t � v)

satisfies the following properties:

1. Ω Property: Ω �c u , for any u ∈ CTermsT

2. ≈ Extension: t ≈ t′ and t′ �c u =⇒ t �c u
3. ⇓ Extension: t �c u and (∀v.u ⇓ v =⇒ u′ ⇓ v) =⇒ t �c u′

4. Rational Admissibility: for x : T � t : T

(∃∞n.C[recn x . t] �c u) =⇒ C[recx . t] �c u

Proof. To give a taste of how the proofs go using rational admissibility, assume
we have ∃∞n.C[recn x . t] �c u. From the definition, one of two options (possibly
both) is true: that an infinite number of terms on the left are identical to Ω; or
that for an infinite series of m, C[recm x . t] is related to the value v that u reduces
to (determinism of reduction is paramount here). Admissibility then follows by
rational continuity in the first case (using the obvious constant context), and by
admissibility of � (Definition 1) in the second.

1 Anticipating our treatment of polymorphism in Sect. 4, we have purposefully set up
here a proof structure in the style of Girard (1989).
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Proposition 3 (Base Type Actions). The two binary relations �Bool ⊆
CTermsBool × NFsBool and �Nat ⊆ CTermsNat × NFsNat defined by

t �Bool v ⇐⇒ t ≈ v and t �Nat v ⇐⇒ t ≈ v

are approximation candidates for Bool and Nat.

Proposition 4 (Arrow Action). Given approximation candidates �T for T
and �U for U , the binary relation between CTermsT→U and NFsT→U

t 〈�T → �U 〉 λx.u ⇐⇒ ∀p �c
T q . tp �c

U u[q/x])

is an approximation candidate for T → U .

Definition 2 (Approximation Relation). The approximation relation �T is
the type-indexed family of approximation candidates defined by induction on
types, where base types are covered by their respective actions (Proposition 3),
and �T→U= �T → �U (Proposition 4).

Definition 3 (Environments). Given a typing context Γ , an environment σ
for Γ is a substitution that maps each x : T ∈ Γ to a closed term of type
� σ(x) : T . If σ1 and σ2 are two such, we write σ1 �c

Γ σ2 to mean σ1(x) �c
T σ2(x)

for all x : T ∈ Γ .

Proposition 5. For any Γ � t : T and environments σ1 �c
Γ σ2, t[σ1] �c

T t[σ2].

Corollary 1 (Adequacy). For every closed � t : T , t ⇑ =⇒ t ≈ Ω.

Proof. Applying Proposition 5 to � t : T (for the empty substitution), we conclude
that t �c

T t; the definition of (−)c (Proposition 2) asserts, then, that either t ≈ Ω
or (t ⇓ v and t �T v); whereby if t ⇑, it can only be that t ≈ Ω.

3 PCF with Sums

The Extension. Sums provide a slight complication—but one which shows the
adaptability of the method. The extension to call-by-name sums is presented in
Table 3. With the new reduction rules come new β rules and divergence rules
in the theory (Table 4). As before, reduction is deterministic and the theory is
sound.

3.1 Adequacy

Action. The action for sums must reflect the structure of its parameters. That
is for �T we expect t �T+U inlu exactly when (modulo the theory) t decomposes
into some inl t′ for which t′ �T u. The assertion of that existence, though, causes
us a small hiccup2 in proving that − �T+U v is rationally admissible: If we have
2 A hiccup that will be much amplified in the proof of admissibility for �FA (Sect. 4).
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Table 3. Extension of PCF with binary sums

Table 4. Extension of the theory in Table 2 with binary sums

a series of C[recn x . t] �T+U inlu, then we know that each of the terms on the
left must be identical to some inl tn with tn �T u—but do the tn form a rational
chain? It turns out that for every t, simply from the existence of t ≈ inl t′,
and because each type is inhabited by Ω, there is a context that can extract
directly the t′ (up to equivalence, obviously) from the original term. (An idea
we borrowed from McCusker 1998)

Lemma 1. The contexts

T l[−] = match − as {inlx.x , inr y.Ω}

T r[−] = match − as {inlx.Ω , inr y.y}
satisfy t ≈ inlu =⇒ T l[t] ≈ u and t ≈ inru =⇒ T r[t] ≈ u.

Proposition 6 (Sum Action). Given approximation candidates �T for T and
�U for U , the relation between CTermsT+U and NFsT+U defined by

t 〈�T + �U 〉 inl v ⇐⇒ (∃t′ �c
T u.t ≈ inl t′)
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t 〈�T + �U 〉 inr v ⇐⇒ (∃t′ �c
U u.t ≈ inr t′)

is an approximation candidate for A + B.

Proof. For rational admissibility, the pre-condition must hold for (at least) one
of the two clauses in the definition. Say we have ∃∞n.C[recn x . t] 〈�T + �U 〉
inlu with each term on the left equivalent to some inl tn; rewriting tn ≈
T l[C[recn x . t]] (Lemma 1) it follows that (Proposition 2)

C[recn x . t] ≈ inl T l[C[recn x . t]] and T l[C[recn x . t]] �c
T u

An application of rational continuity of the theory, and one of rational admis-
sibility of �c

T (again, Proposition 2) yields C[recx . t] ≈ inl T l[C[recx . t]] and
also T l[C[recx . t]] �c

T u so that C[recx . t] 〈�T + �U 〉 inlu. (Likewise for the
right injection.)

Adequacy. The rest of the proof of adequacy follows exactly as before. Approxi-
mation candidates for sums are derived by induction using the sum action; and
with them we can extend Proposition 5.

4 Call-by-Push-Value

Values vs. Computations. We now turn to Call-by-push-value (Levy 2004). This
language (Table 5) distinguishes between values and computations, with value
types represented by A, A′, etc., and computation types by B, B′, etc. The set of
closed values of type A will be represented by ValsA; that of closed computations
by CompsB . Variables always have value type. Here we include value products
and sums, products of computation types B Π B′, types FA for computations
aiming to return a value, and functions which in CBPV are computations taking
values to computations. Central to CBPV, we also include value types UB of
suspended computations of type B—which can be of one of two forms.

Recursion. In addition to the usual thunks of computations, we also have recur-
sively defined thunks threcx.t. An alternative would be to use recursive com-
putations Γ �c recx.t : B. Although the two are equivalent via the definitions
recx.t := force threcx.t and threcx.t := thunk recx.t, there are two reasons
for preferring threc: One is that, in some denotational models (e.g. state or
continuation passing), threc has a simpler denotation than rec. The other is
that a treatment based on threc would be more easily adapted to call-by-value,
where recursion and lambda are combined.

Evaluation. Evaluation (Table 6) pertains only to computations. To those on the
co-domain side of the evaluation relation ⇓, we call the terminal computations
or, alternatively, the normal forms; and their (typed-indexed) set is represented
by NFsB . Since we have two forms of thunked computations, the action of forc-
ing one such into execution much act accordingly; this unthunk ing (a derived
operation on the syntax) returns the computations suspended inside thunks,
or plucks out the computation from a threcx . t suitably instantiated by the
recursive thunk itself—i. e. t[threcx . t/x]. Note that reduction is deterministic.
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Table 5. Call-by-push with recursion-value—syntax

Table 6. Call-by-push-value with recursion—reduction
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4.1 Theory

Theory. By a (CBPV) congruence on closed terms we mean a type-indexed
equivalence relation ≈ on closed values and computations such that for all closed
terms t ≈ t′ and (value or computation) context C[−] we have C[t] ≈ C[t′],
respectively. A congruence is a rationally continuous β-Ω-fix theory when it
satisfies the rules in Table 7. Rational chains are now those built by the
application of a context C[−] to the (thunked) approximants threcn of recur-
sive thunks and which are defined by the clauses threc0 x . t = thunkΩ and
threcn+1 x . t = thunk t[threcn x . t/x]; continuity is defined accordingly. Any
congruence including the β and fixpoint rules is easily seen to be sound. We shall
show that with the remaining rules it is also adequate.

Table 7. Call-by-push-value with recursion—rationally continuous β-Ω-fix theory

4.2 Adequacy

Values: Empty Shells. In the proof of adequacy for PCF with sums we were
required to introduce the tests so that we could, metaphorically, peek inside the
injections and transform the rational chains there into equivalent ones with the
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properties we needed (cf. proof of Proposition 6). Here the problem expands to
all value types. When checking rational admissibility, we need to decompose a
value into its ultimate pattern and its constituent thunks (Lassen and Levy 2008,
following ideas from Abramsky and McCusker 1997; also discernible in the work
of Zeilberger 2008) and use those to find equivalent chains that can be used to
establish adequacy.

Definition 4 (Ultimate Patterns). The set of of ultimate patterns UPA for
a value type A is given by induction on the following rules: −UB ∈ UPUB,
〈〉 ∈ UP1 and

p ∈ UPA p′ ∈ UPA′

〈p, p′〉 ∈ UPA×A′
p ∈ UPA

inl p ∈ UPA+A′
p ∈ UPA′

inr p ∈ UPA+A′

For a given ultimate pattern p ∈ UPA the finite sequence of hole-types in pattern
p is given by induction by

H(−UB) = (UB) H(〈〉) = ε H(〈p, p′〉) = H(p) ++ H(p′)
H(inl p) = H(p) H(inr p) = H(p)

Proposition 7 (Value Decomposition). Given �v v : A, there is a unique
p ∈ UPA and a unique sequence (�v vi : H(p)i)i<|H(p)|—the filling—for which
v = p @ (vi)i<|H(p)|, using the reassembly function

(−UB) @ (v) = v 〈〉 @ ε = 〈〉
inl p @ (vi)i<|H(p)| = inl(p @ (vi)i<|H(p)|)
inr p @ (vi)i<|H(p)| = inr(p @ (vi)i<|H(p)|)

〈p, p′〉 @
(
(vi)i<|H(p)| ++ (v′

i)i<|H(p′)|
)

=
〈
(p @ (vi)i<|H(p)|), (p′ @ (v′

i)i<|H(p′)|)
〉

Tests. Ultimate patterns let us define the tests that extract the computations
embedded in a given value. Like in the PCF sum case, we can use them to define
values that are equivalent to a given one but make use only of the latter. If the
values are derived from some family of contexts for the holes, then we can derive
an equivalent context from the respective ultimate pattern.

Definition 5. For p ∈ UPA, and i < |H(p)|, we define a context T p
i [−] by

induction on p ∈ UPA using the rules below. Note that when Γ �v − : A the test
has type Γ �c T p

i [−] : Bi where UBi = H(p)i.

T −UB
0 [−] = force−

T inl p
i [−] = match − as {inlx. T p

i [x], inr y.Ω}
T inr p

i [−] = match − as {inlx.Ω, inr y. T p
i [y]}

T 〈p,p′〉
i<|H(p)|[−] = match − as < x, y > . T p

i [x]

T 〈p,p′〉
i=|H(p)|+i′ [−] = match − as < x, y > . T p′

i′ [y]
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Proposition 8 (Tests Decompose). Given a pattern p ∈ UPA, a sequence
(� wi : H(p)i)i<|H(p)|, and i < |H(p)|, we have T p

i [p @ (wi)i<|H(p)|] ≈ forcewi.

Proposition 9. For �c t : FA , and p ∈ UPA, if t ≈ return p @ (vi)i<|H(p)|
then, successively:

1. ∀i < |H(p)|. thunk(t to x. T p
i [x]) ≈ vi

2. p @ (vi)i<|H(p)| ≈ p @ (thunk(t to x. T p
i [x]))i<|H(p)|

3. t ≈ return p @ (thunk(t to x. T p
i [x]))i<|H(p)|

Approximation Candidates. Unlike PCF where we have computations and nor-
mal forms, CBPV has three levels of syntax: values, terminals, and computations.
For the purposes of defining the needed approximation candidates, terminals
(read: normal forms) and computations, behave like their PCF counterparts and
have (now) familiar definitions of approximation candidates. Approximation can-
didates for value types enforce that: only structurally similar values are related;
that they are (left) closed under equivalence of their holes; and that they are
closed under the usual chains.

Definition 6 (Approximation Candidates). Given a value type A, an
approximation candidate � for A is a subset of ValsA × ValsA such that

1. Structural Matching: p @ (vi)i � p′ @ (wi)i =⇒ p = p′

2. Computational ≈ Extension: if p @ (v′
i)i<|H(p)| � p @ (wi)i<|H(p)| then

(∀i < |H(p)|.vi ≈ v′
i) =⇒ p @ (vi)i<|H(p)| � p @ (wi)i<|H(p)|

3. Rational Admissibility: for x : UB �c t : B

(∃∞n.V [threcnx.t] � w) =⇒ V [threcx . t] � w

Given a computation type B, an approximation candidate � for B is a subset
of CompsB × NFB such that

1. ≈ Extension: t ≈ t′ and t′ � r =⇒ t � r
2. Rational Admissibility: for x : UB �c t : B

∃∞n.C[threcn x . t] � r =⇒ C[threcx . t] � r

Proposition 10. Given a (computation) approximation candidate � on B,
define its closure as the binary relation CompsB × CompsB where

t �c u ⇐⇒ t ≈ Ω or (∃r.u ⇓ r and t � r)

It satisfies the following properties:

1. Ω Property: Ω �c u for any u ∈ CompsB

2. ≈ Extension: t ≈ t′ and t′ �c u =⇒ t �c u
3. ⇓ Extension: t �c u′ and (∀r.u′ ⇓ r =⇒ u ⇓ r) =⇒ t �c u
4. Rational Admissibility: for x : UB �c t : B

(∃∞n.C[threcnx . t] �c u) =⇒ C[threcx . t] �c u
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Actions. We can then define the actions on these approximation candidates
associated with each type constructor. Mostly this is done by structure (for
values) or by use (for computations); the exceptions are U types and F types that
we define, respectively, by structure, and by use. Note that it is the existential
quantification in the definition of the F action that—very much like PCF sums—
requires the use of the tests. Using them, we can easily define, by induction, the
approximation relation and thereby establish the adequacy of the theory.

Proposition 11 (Thunk Action). Let � be an approximation candidate for
B. Then the binary relation

v 〈U(�)〉 w ⇐⇒ force v �c unthunk w

is an approximation candidate for UB.

Proposition 12 (F Action). Let � be an approximation candidate for A. Then
the following is an approximation candidate for FA:

t 〈F (�)〉 return w ⇐⇒ ∃v � w.t ≈ return v

Definition 7 (Enviroments). Given a typing context Γ , an environment σ for
Γ is a substitution that maps each x : A ∈ Γ to a closed term of type �v σ(x) : A.
If σ1 and σ2 are two such, we write σ1 �Γ σ2 to mean σ1(x) �A σ2(x) for all
x : A ∈ Γ .

Proposition 13. For any Γ �c t : B (resp. Γ �v v : A), and environments
σ1 �Γ σ2 we have t[σ1] �c

B t[σ2] (resp. v[σ1] �A v[σ2]).

Corollary 2 (Adequacy). For any computation �c t : B, if t ⇑ then t ≈ Ω.

5 Polymorphic Call-by-Push-Value

Adequacy, Now For All. Our final extension deals with polymorphism. In Call-
by-push-value, polymorphic types are computation types. We may quantify over
both value and computation types. The extension is presented in Table 8.

We assume two disjoint countable sets of variables, X,Y, . . . ∈ VVars and
X,Y , . . . ∈ CVars, for value and computation types (resp.). Types are now also
considered up to α-equivalence. They will also be considered under context,
Θ �C B and Θ �V A, where Θ is some finite subset of VVars ∪ CVars that
includes the free type variables of the A or B. (These type judgements have
an obvious inductive definition). The proper extension of a type context Θ by
a type variable χ will be denoted by χ,Θ. Typing judgements also need to be
annotated by a type context, as in Θ;Γ �c t : B where Θ includes all the free
type variables in the types of Γ and B. The previous typing rules are extended
in the evident way.
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Table 8. Polymorphic Call-by-push-value with recursion

Table 9. Extension of the theory in Table 7 to polymorphism

Reduction and Theory. Reduction—defined only for closed terms of closed
type—is still deterministic. On the theory end of things, we equate only closed
terms of closed type so that we need only extend the theory of Sect. 4 with the
obvious β and divergence rules (Table 9). Unsurprisingly, soundness still stands.

5.1 Adequacy

Approximation Candidates and Actions. Throughout we have worked with
approximation candidates—and now we can reap the fruits of that work. The
definition of approximation candidates (Definition 6) and of their extension to
computations (Proposition 10) can stay exactly the same; as can the actions for
non-polymorphic type constructors. The actions of polymorphic types follow.

Proposition 14. Let Y �C B be a computation type, and φ a mapping that
assigns to every closed type T and approximation candidate � ∈ ACsT an approx-
imation candidate φT,� ∈ ACsB[T/Y ]; then

t
〈∏

Y.φ
〉

ΛY.u ⇐⇒ for all �C T, � ∈ ACsT . tT 〈φT,�〉c
u[T/Y ]

is an approximation candidate for
∏

Y.B—and likewise for
∏

Y .B
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Approximations. The approximation relations need to be parametrized by the
candidates that will instantiate the type variables so that in the end we arrive at a
candidate for a closed type. As usual, we have that it satisfies the weakening and
substitution properties that are used in the proof of adequacy for abstractions
and type instantiations, respectively.

Definition 8 (Approximation Environment). An approximation environ-
ment γ for Θ is a map taking each χ ∈ Θ to a closed type γT (χ) of the same
kind as χ and an adequacy candidate γC(χ) ∈ ACsγT (χ).

Definition 9 (Parametrized Approximation Relations). Let Θ �V A
(resp. Θ �C B) be a (possibly open) type and γ an approximation environment
for Θ. The following parametrized approximation relations, defined by induction
on types, determine an approximation candidate for A[γT ]—i.e. A with each type
variable χ replaced with γT (χ) (resp. B[γT ]).

�γ
Θ�V X

= γC(X) �γ
Θ�CX

= γC(X)

�γ
Θ�V 1

=�1 �γ
Θ�V A×A′ = (�γ

Θ�V A
) × (�γ

Θ�V A′)

�γ
Θ�V 0

=�0 �γ
Θ�V A+A′ = (�γ

Θ�V A
) + (�γ

Θ�V A′)

�γ
Θ�V UB

= U(�γ
Θ�CB

) �γ
Θ�CFA

= F (�γ
Θ�V A

)

�γ
Θ�C1Π

= (�1Π
) �γ

Θ�CBΠB′ = (�γ
Θ�CB

) Π (�γ
Θ�CB′)

�γ
Θ�CA→B

= (�γ
Θ�V A

) → (�γ
Θ�CB

)

�γ
Θ�C

∏
Y.B

=
∏

Y.
(
�

γ[Y �→(−,=)]

Y,Θ�CB
}
)

�γ
Θ�C

∏
Y .B

=
∏

Y .
(
�

γ[Y �→(−,=)]

Y ,Θ�CB
}
)

Definition 10. For any Θ and approximation environment γ for Θ, if σ1 and
σ2 are environments for Γ [γT ], we write σ1 �γ

Θ;Γ σ2 to mean σ1(x) �γ
Θ�V A

σ2(x)
for every x : A ∈ Γ .

Proposition 15. For any Θ;Γ �c t : B (resp. Θ,Γ �v v : A), approximation
environment γ for Θ, and environments σ1 �γ

Θ;Γ σ2 for Γ

t[γT ][σ1]
〈
�γ

Θ�CB

〉c

t[γT ][σ2]
(
resp. v[γT ][σ1]

〈
�γ

Θ�V A

〉
v[γT ][σ2]

)

6 Concluding Remarks

We have thus seen how, for term-level recursion, the rational continuity rule
coupled with β, the fixpoint property of recursion, and strictness of the basic
constructors of the language suffices to make a theory adequate. The recipe of
the previous sections applies to both call-by-name and call-by-value languages
and is compatible with polymorphic types. Along the way we used no category
theory; no models were mentioned. We relied only on syntactic constructions
and required no external machinery.



86 M. Devesas Campos and P. B. Levy

Two extensions are conspicuous for their absence: to existential types and to
recursive types. In Call-by-push-value, existential types are value types. We con-
jecture our theorem holds for them but we must find a way to quantify over
ultimate patterns. For recursive types, even finding suitable conditions on ≈ is
challenging. We would like to adapt Pitts’ (1996) method of minimal invari-
ant relations but we will need type constructors to be functorial over suitable
syntactic categories.

For term-recursion and polymorphism, however, we now know that to prove a
model adequate we need only to show that it satisfies the basic laws and rational
continuity.
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