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Abstract. We present a trace model for Strachey parametric polymor-
phism. The model is built using operational nominal game semantics and
captures parametricity by using names. It is used here to prove an oper-
ational version of a conjecture of Abadi, Cardelli, Curien and Plotkin
which states that Strachey equivalence implies Reynolds equivalence in
System F.

1 Introduction

Parametricity was first introduced by Strachey [22] as a way to characterise the
behaviour of polymorphic programs as being uniform with respect to the type
of the arguments provided. He opposed this notion to ad-hoc polymorphism,
where a function can produce arbitrarily different outputs when provided inputs
of different types (for example an integer and a boolean). To formalise this
notion of parametricity, Reynolds introduced relational parametricity [21]. It is
defined using an equivalence on programs, that we call Reynolds equivalence
and is a generalisation of logical relations to System F. This equivalence uses
arbitrary relations over pairs of types to relate polymorphic programs. So a
parametric program that takes related arguments as input will produce related
results. Reynolds parametricity has been developed into a fundamental theory
for studying polymorphic programs [1,20,23].

Following results of Mitchell on PER-models of polymorphism [18], Abadi,
Cardelli, Curien and Plotkin [1,20] introduced another, more intentional notion
of equivalence, called Strachey equivalence. Two terms of System F are Strachey
equivalent whenever, by removing all their type annotations, we obtain two βη-
equivalent untyped terms. The authors conjectured that Strachey equivalence
implies Reynolds equivalence (the converse being easily shown to be false).

In this paper we examine a notion of Reynolds equivalence based on opera-
tional logical relations, and prove that, for this notion, the conjecture holds. To
do so, we introduce a trace model for System F based on operational nominal
game semantics [12,14]. Terms in our model are denoted as sets of traces, gener-
ated by a labelled transition system, which represent interactions with arbitrary
term contexts. In order to abstract away type information from inputs to poly-
morphic functions, our semantics uses names to model such inputs. The idea is
c© The Author(s) 2018
C. Baier and U. Dal Lago (Eds.): FOSSACS 2018, LNCS 10803, pp. 20–38, 2018.
https://doi.org/10.1007/978-3-319-89366-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89366-2_2&domain=pdf


A Trace Semantics for System F Parametric Polymorphism 21

Fig. 1. Typing rules and βη-equality axioms.

the following: since names have no internal structure, the function has no choice
but to act “the same way” on such inputs, i.e. be parametric. Our trace model
yields a third notion of equivalence: trace equivalence (i.e. equality of sets of
traces). Then, the result is proven by showing that trace equivalence is included
in (operational) Reynolds equivalence, while it includes Strachey equivalence.

The traces in our model are formed of moves, which represent interactions
between the modelled term (the Player) and its context (the Opponent): either
of Player or Opponent can interrogate the terms provided by the other one,
or respond to a previous such interrogation. These moves are called questions
and answers respectively. Names enter the scene when calling terms which are
of polymorphic type, in which case the calling party would replace the actual
argument type θ with a type name α, and record locally the correspondence
between α and θ. Another use of names in our model is for representing terms
that are passed around as arguments to questions. These are called computation
names, and are typed according to the term they each represent.

2 Definition of System F and Parametricity

We start off by giving the definitions of System F and of the parametric equiv-
alence relations we shall examine on it. The grammar for System F is standard
and given by:

Type � θ, θ′ ::= X | θ → θ′ | ∀X.θ
Term � M,N ::= λxθ.M | ΛX.M | MN | Mθ

We write x, etc. for (term) variables, sourced from a countable set Var; and X,
etc. for type variables, taken from TVar. We define substitutions of open variables
of either kind in the usual capture-avoiding way. For instance, the term obtained
by consecutively applying substitutions η : Var ⇀ Term and δ : TVar ⇀ Type on
M is written M{η}{δ}.

Terms are typed in environments Δ;Γ , where Δ is a finite set of type vari-
ables, and Γ is a set {x1 : θ1, . . . , xm : θm} of variable-type pairs. The typing
rules are given in Fig. 1. The operational semantics we examine is βη-equality,
defined as the least syntactic congruence =βη that includes the axioms given on
the RHS part of Fig. 1.
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We shall use the following common polymorphic encodings:

– Bool = ∀X. X → X → X, true = ΛX.λxX.λyX.x and false =
ΛX.λxX.λyX.y,

– Unit = ∀X. X → X and id = ΛX.λxX .x.

Reynolds Equivalence. We next introduce logical relations for System F. First, we
let Rel be the set of all typed relations between closed terms that are compatible
with =βη:

Rel = {(θ1, θ2, R) | R ⊆ Term × Term ∧ ∀(M1,M2) ∈ R. ·; · � Mi : θi

∧ ∀M ′
1 =βη M1.∀M ′

2 =βη M2. (M ′
1,M

′
2) ∈ R}

Logical relations R[[θ]]δ are defined below, indexed by environments δ : TVar ⇀
Rel:

R[[X]]δ = R when δ(X) = ( , , R)

R[[∀X.θ]]δ = {(M1, M2) | ∀(θ1, θ2, R) ∈ Rel. (M1θ1, M2θ2) ∈ R[[θ]]δ·[X �→(θ1,θ2,R)]}
R[[θ1 → θ2]]δ = {(M1, M2) | ∀(N1, N2) ∈ R[[θ1]]δ. (M1N1, M2N2) ∈ R[[θ2]]δ}

We can now define the first notion of parametric equivalence for System F.

Definition 1. Given terms Δ;Γ � M1,M2 : θ, we say that they are Reynolds
equivalent , and write Δ;Γ � M1 	log M2 : θ, if:

∀δ ∈ R[[Δ]].∀(η1, η2) ∈ R[[Γ ]]δ. (M1{η1}{δ1},M2{η2}{δ2}) ∈ R[[θ]]δ

where R[[Δ]] = dom(Δ) → Rel, δ1 = {(X, θ1) | δ(X) = (θ1, , )} (similar for
δ2) and R[[Γ ]]δ = {(η1, η2) ∈ (dom(Γ ) ⇀ Term)2 | ∀(x, θ′) ∈ Γ. (η1(x), η2(x)) ∈
R[[θ′]]δ}.

The following result is standard [21].

Theorem 2 (Fundamental Property). If Δ;Γ � M : τ then Δ;Γ � M 	log

M : θ.

Remark 3. Note that our definition of Reynolds equivalence does not coincide
with either of the definitions given in [1,20]: therein, parametricity is defined
using relational logics (and accompanying proof systems), whereas here we use
quantification over concrete relations over closed terms.

Strachey Equivalence. Another notion of parametric equivalence is defined by
means of erasing types from terms. We define the type erasure erase(M) of a
term M by:

erase(ΛX.M) = erase(M) erase(MN) = erase(M)erase(N)
erase(λxθ.M) = λx.erase(M) erase(Mθ) = erase(M)

and erase(x) = x. Thus, erase(M) is an untyped λ-term. Below we overload =βη

to also mean βη-equality in the untyped λ-calculus.
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Definition 4. Given terms Δ;Γ � M1,M2 : θ, we say that they are Strachey
equivalent if erase(M1) =βη erase(M2).

It was conjectured in [1,20] that Reynolds equivalence includes Strachey
equivalence. We prove this holds for the version of Reynolds equivalence given
in Definition 1.

Theorem 5. Any two Strachey equivalent terms are also Reynolds equivalent.

It is interesting to think why a direct approach would not work in order
to prove this conjecture. Given Strachey equivalent terms M1,M2 of type
Bool, suppose we want to prove them Reynolds equivalent. We therefore take
(θ1, θ2, R) ∈ Rel, (N1,1, N2,1) ∈ R, and (N1,2, N2,2) ∈ R, and aim to prove that
(M1θ1N1,1N1,2,M2θ2N2,1N2,2) ∈ R. Ideally, we would like to prove that there
exists j ∈ {1, 2} s.t. for all i ∈ {1, 2}, MiθiNi,1Ni,2 =βη Ni,j , but that seems
overly optimistic. A first trick is to use Theorem 2, to get that M2 is related with
itself. Thus, we get that (M2θ1N1,1N1,2,M2θ2N2,1N2,2) ∈ R, and it would suffice
to prove M1θ1N1,1N1,2 =βη M2θ1N1,1N1,2 to conclude. However, our hypothesis
is simply that erase(M1) =βη erase(M2).

A possible solution to the above could be to β-reduce both Miθ1N1,1N1,2,
hoping that the distinction between the two terms will vanish. Our trace seman-
tics provides a way to model the interaction between such a term Mi and a
context • θjNj,1Nj,2, and to deduce properties about the normal form reached
by their application via head reduction.

3 A Nominal Trace Semantics for System F

In this section we introduce a trace semantics for open terms which will be our
main vehicle of study for System F. The terms in our semantics will be allowed
to contain special constants representing any term that could fill in their open
variables (these be term or type variables). The use of names can be seen as a
nominal approach to parametricity: parametric types and values are represented
in our semantics by names, without internal structure. Thus, e.g. a parametric
function is going to behave “the same way” for any input, since the latter will
be nothing but a name.

Our approach follows the line of work on nominal techniques [7,19] and nom-
inal operational game semantics [12,14]. We let the set of names be:

N = TN 
 CN

We therefore use two kinds of names: type names α, β ∈ TN; and computation
names c, d ∈ CN. We will range over arbitrary names by a and variants. We
extend the syntax of terms and types by including computation and type names
as constants, and call the resulting syntax namey terms and types:

M,N ::= c | x | λxθ.M | ΛX.M | MN | Mθ θ, θ′ ::= α | X | θ → θ′ | ΛX.θ
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A namey term or type is closed if it contains no free (type/term) variables –
but it may contain names. On the other hand, a value is a closed term in head
normal form that contains no names. We range over values with v and variants.

We will use the notation M̂, N̂ , and variants, to refer jointly to namey terms
and namey types. Namey terms are typed with additional typing hypotheses for
the added constants. These typings are made explicit in the trace model. By
abuse of terminology, we will drop the adjective “namey” and refer to the above
simply as “terms” and “types”. Formally speaking, namey terms and types form
nominal sets (cf. Definition 8).

Note 6 (what do c’s and α’s represent?). A computation name c represents a
term that can replace the open variables of a term M . That is, in order to
examine the semantics of λxθ.M , we will look instead at M{c/x} where c a
computation name of appropriate type. Type names α have a similar purpose,
for types.

Our trace semantics is built on top of head reduction, which is reminded
next. Moreover, we shall be using types in extended form, which determines the
number and types of arguments needed in order to fully apply a term of a given
type.

Definition 7. The (standard) head reduction rules are given in Fig. 2. Head
normal forms are given by the syntax on the LHS below,

Mhnf ::=E[x] | E[c] | λxθ.Mhnf | ΛX.Mhnf E ::= • | EM | Eθ

where E ranges over evaluation contexts (defined on the RHS). Evaluation
contexts are typed with types of the form θ � θ′. We write E : θ � θ′ if we can
derive • : θ � E : θ′.

An extended type form is a sequence (τ1, ..., τn, ξ) with ξ ∈ TVar∪TN and,
for each i, τi ∈ Type ∪ {∀X | X ∈ TVar}. Formally, the extended form of a type
θ, written ext(θ), is defined by:

ext(∀X.θ) = (∀X) :: ext(θ) ext(θ → θ′) = θ :: ext(θ′) ext(ξ) = (ξ)

where we write h :: t for the sequence with head h and tail t (cf. list notation).
Elements of the form ∀X in these sequences are binders that bind to their right.

We let →∗ be the reflexive-transitive closure of →. It is a standard result
that →∗ preserves typing and (strongly) normalises to head normal forms.

We finally introduce some infrastructure for working with objects with names.

Fig. 2. Head reduction rules. Condition (∗) stipulates that M be not a Λ/λ-abstraction.
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Definition 8. We call a permutation π : N → N finite if the set {a | π(a) �= a}
is finite, and component-preserving if, for all a ∈ N, a ∈ TN iff π(a) ∈ TN.

A nominal set [7] is a pair (Z, ∗) of a set Z along with an action (∗) from
the set of finite component-preserving computations of N on the set Z. For each
z ∈ Z, the set of names featuring in z form its support , written ν(z), which we
stipulate to be finite.

In the sequel, when constructing objects with names (such as moves or traces)
we shall implicitly assume that these form nominal sets, where the permutation
action is defined by taking π ∗z to be the result of applying π to each name in z.

3.1 Trace Semantics Preview

Before formally presenting the trace model, we look at some examples infor-
mally, postponing the full details for the next section. Head-reduction brings
terms into head normal form. The trace semantics allows us to further ‘reduce’
terms of the form E[cM̂1 · · · M̂n], where c is some computation name. For such a
term, following the game semantics approach [3,11], our model will issue a move
interrogating the computation c on arguments M̂i, and putting E on top of an
evaluation stack, denoted E . The move is effectively a call to c, and E functions
as a call stack which registers the calls that have been made and are still pend-
ing. This will effectively lead to a labelled transition system in which labels are
moves issued by two parties: a Player (P), representing the modelled term, and
an Opponent (O) representing its enclosing term context.

Traces are sequences of moves, which in turn are tuples of names belonging
to one of these four classes, taking c ∈ CN and ai ∈ N for each i:

– Player questions c̄(a1, ..., an) (also P-questions),
– Opponent questions c(a1, ..., an) (also O-questions),
– PO-answers OKOK, and OP -answers OKOK.

Given a question move as above, we let its core name be c. We distinguish a
computation name cin ∈ CN, and call questions with core name cin initial . We
define a trace T to be a finite sequence of moves. Traces will be restricted to
legal ones in Definition 12.

In the following examples we give traces produced by simple System F terms.
Traces are formally produced by an LTS over configurations whose main com-
ponent is an evaluation stack. An evaluation stack is a stack whose elements
are typed evaluation contexts, apart from the top element which can also be a
typed term:

E ::= E ′ | (M, θ) :: E ′ E ′ ::= ♦ | (E, θ � θ′) :: E ′

We denote the empty stack with ♦. In the next two examples, for simplicity,
configurations shall only contain evaluation stacks.
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Example 9. Recall that id = ΛX.λxX . x : Unit and Unit = ∀X.X → X. The
extended type of Unit, ext(Unit) = (∀X,X,X), indicates that id requires two
arguments in order to be evaluated: one type and one term of that given type.
Thus, the traces produced by id will start with an interrogating/calling move
cin(α, c) of O:

– cin is the computation name assigned (by convention) to the term being eval-
uated (in this case, id);

– α, c are names abstracting the actual type and term arguments which id is
called on. It is assumed that c is of type α.

Starting from the initial move cin(α, c), a trace of id can be produced as follows:

〈♦〉 cin(α,c)−−−−−→ 〈(idα c, α)〉 → 〈(c, α)〉 c̄()−−→ 〈(•, α �α)〉 OKOK−−−→ 〈♦〉

Thus, O starts the interaction by interrogating id with α, c. This results in
idα c, which gets head reduced to c. At this point, c is a head normal form
of type α, and P can answer the initial question cin(α, c). This is done in two
steps. First, P further reduces c by playing a move c̄() (here c takes 0 arguments
as ext(α) = (α)), and pushes the current evaluation context (•, α �α) on the
stack. O then responds by triggering a pair of answers OKOK, which answer both
questions played so far. The resulting trace is: cin(α, c) · c̄() · OKOK.

Note 10 (what are OKOK and OKOK?). As System F base types are type vari-
ables, there is no real need for answer moves: a type X has no return values. For
example, in the game models of Hughes [9] and Laird [15], answer moves were
effectively suppressed (either explicitly, or by allowing moves c(· · · ) to function
as answers). Here, to give the semantics an operational flavour, we introduce
instead explicit ‘dummy’ answers OK.

Example 11. Consider now M = λfUnit. f : Unit → Unit. We have that
ext(Unit → Unit) = (Unit,∀X,X,X), and therefore M requires three argu-
ments for its evaluation: one term of type Unit, one type, and one term if that
latter type. We can therefore start a trace of M with an initial move cin(c1, α1, c)
and continue as follows.

〈♦〉 cin(c1,α1,c2)−−−−−−−−→ 〈(Mc1α1 c2, α1)〉 → 〈(c1 α1 c2, α1)〉 c̄1(α2,c3)−−−−−−→ 〈(•, α2 �α1)〉

Thus, the initial move leads to Mc1α1c2, which in turn reaches the hnf c1α1c2,
with c1 : Unit, and at that point P needs to invoke c1 with arguments α1 and
c2. These are abstracted away by fresh names α2 and c3 respectively, which
are passed as arguments to c1. c3 in particular has type α2. The result of this
invocation will be of type α2, which is the hole type in (• : α2 �α1). O can only
produce a term of α2 by simply returning c3. Similarly to before, this is done
in two steps: by O playing c3(), which brings c2 (the term represented by c3) at
the top of the stack, which in turn triggers a pair of answers OKOK and brings
c2 inside the context (• : α2 � α1).
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〈(•, α2 � α1)〉 c3()−−−→ 〈(c2, α2) :: (•, α2 � α1)〉 OKOK−−−→ 〈(c2, α1)〉 c̄2()−−−→ 〈(•, α1 � α1)〉 OKOK−−−→ 〈♦〉

The latter step leaves us with (c2, α1), which reaches ♦ as in the previous
example.

3.2 Definition of the LTS

We now proceed with the formal definition of the trace semantics. We start off
with a series of definitions setting the conditions for a trace to be legal.

The names appearing in a trace are owned by whoever introduces them. A
move m introduces a name a in a trace T if m is a question q(�a) with ai = a
for some i. For each A ∈ {O,P}, we let the set of names of T that are owned by
A be:

A(T ) = {a ∈ N | ∃m. m is an A-question in T ∧ m introduces a}.

We will be referring to the names appearing in A(T ) as A-names.
Each move in a trace needs to be justified, i.e. depend on an earlier move

(unless the move is initial). Justification is defined in different ways for questions
and answers. Given a trace T and two moves m,m′ in T , we say that m′ justifies
m when m′ is before m in T and:

– m is a question with core name c and m′ introduces c, or
– m is an answer which answers m′ (and m′ is a question).

Answering of questions is defined as follows. Each answer (occurrence) m answers
the pair of question moves (m1,m2) containing the last two question moves in
T which are before m and have not been answered yet.

We can now define legality conditions for traces. Below, for A ∈ {O,P}, we
say that a move is A-starting if it is an A-question or an AA⊥-answer (where
O⊥ = P and P⊥ = O). Similarly, a move is A-ending if it is either an A-question
or an A⊥A-answer.

Definition 12. A trace T is said to be legal when, for each A ∈ {O,P}:

1. A-ending moves can only be followed by A⊥-starting moves;
2. all moves in T are justified, apart from the first move which must be initial;
3. apart from cin, every name of T is introduced exactly once in it;
4. for each A-question with core name c �= cin, we have c ∈ A⊥(T );
5. if an AA⊥-answer answers (m,m′) then these are A- and A⊥-questions respec-

tively.

The conditions above can be given names (suggesting their purpose) as follows: 1.
alternation, 2. justification, 3. well-introduction, 4. well-calling, 5. well-answering.

Each trace T has a complement, which we denote T⊥ and is obtained from T
by switching O/P in all of its moves (i.e. each c(�a) becomes c̄(�a), OKOK becomes
OKOK, etc). T is legal iff T⊥ is.
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Traces are produced by use of a labelled transition system. The LTS com-
prises moves as labels, and of configurations as nodes. Each configuration con-
tains an evaluation stack of terms and environments that need to be evaluated, as
well as mappings containing type/term information on names that have appeared
so far. We introduced evaluation stacks in the previous section. Here we shall
restrict the allowed shapes thereof as follows. We let passive and active eval-
uation stacks be defined by the following two grammars respectively, and take
evaluation stacks to be E ::= Epass | Eactv,

Epass ::= ♦ | [(E,α � θ)] | (E,α �α′) :: Epass , Eactv ::= [(M, θ)] | (M,α) :: Epass ,

where θ ranges over closed types with ν(θ) = ∅, and ♦ is the empty stack.
The other two components of configurations will be maps γ and φ of the

shape:

γ ∈ (CN⇀(Term×Type))⊗(TN⇀(Type×{U})), φ ∈ (CN⇀Type)⊗(TN⇀{U}),

with F ⊗ G = {f ∪ g | f ∈ F ∧ g ∈ G}. U is a special “universe” symbol that
represents the type of types – it is only used for convenience. Then, in words:

– γ assigns term-type pairs to computation names, and type-U pairs to type
names,

– φ assigns types to computation names, and U to type names.

The role of a map γ is to abstract away terms to computational names, and types
to type names. On the other hand, a map φ simply types names. In the LTS,
when P wants to interrogate an O-computation name c with some arguments,
they will abstract away the actual arguments to names, record the abstraction
in γ, and call c on these names. On the other hand, when O interrogates a P -
computation name c with some move c(�a), we will record in φ the types of the
(new!) O-names �a.

The abstraction of arguments to names is instrumented by a dedicated oper-
ation AVal. This operation assigns to each sequence ((M̂1, τ1), ..., (M̂n, τn), ξ),
where (τ1, ..., τn, ξ) is an extended type (i.e. the type of the computation name
we want to call) and each M̂i is a closed term or type (the i-th argument), a set
of triples of the form (�a, γ, β) where:

– �a is a sequence (a1, ..., an) of names (abstracting each of the arguments M̂i),
– γ is a map as above, with domain {a1, ..., an},
– β is the result type one gets after applying each ai for each τi.

The operator is formally defined next. In the same definition we introduce the
semantics of types, [[θ]], as sets of triples of the form (�a, φ, β), which represent all
possible input-output name tuples (�a, β) that are allowed for θ, including their
typing φ.
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Fig. 3. Reduction rules for the LTS.

Definition 13. Given a closed type θ (which may contain type names), we let
its semantics be [[θ]] = [[ext(θ)]], where the latter is defined inductively by:

[[(α)]] = {(ε, ε, α)}
[[θ ::L]] = {((c,�a), φ · [c �→ θ], α) | c ∈ CN, (�a, φ, α) ∈ [[L]]}

[[∀X ::L]] = {((β,�a), φ · [β �→ U ], α) | β ∈ TN, (�a, φ, α) ∈ [[L{α/X}]]}
On the other hand, to each sequence ((M̂1, τ1), ..., (M̂n, τn), ξ) we assign a set of
abstract values AVal(((M̂1, τ1), ..., (M̂n, τn), ξ)) inductively by:

AVal((α)) = {(ε, ε, α)}
AVal((M, θ) ::L) = {((c,
a), γ · [c �→ (M, θ)], α) | c ∈ CN, (
a, γ, α) ∈ AVal(L)}
AVal((θ, ∀X) ::L) = {((β,
a), γ · [β �→ (θ, U)], α) | β ∈ TN, (
a, γ, α) ∈ AVal(L{β/X})}

Both φ and γ are finite partial functions whose domains are sets of names. For
such maps, the extension notation we used e.g. in φ · [c �→ z] (for appropriate z)
means fresh extension: φ · [c �→ z] = φ ∪ {(c, z)} and given that c /∈ dom(φ).
This notation is extended to whole maps: e.g. φ · φ′ = φ ∪ φ′ and given that
dom(φ) ∩ dom(φ′) = ∅. Moreover, for each map γ we write fst(γ) for its first
projection: fst(γ) = {(a, M̂) | γ(a) = (M̂, )}. Similarly, second projection is
given by: snd(γ) = {(a, Z) | γ(a) = ( , Z)}.

Definition 14. A configuration is a triple 〈E , γ, φ〉 where E is an evaluation
stack and γ and φ are as above. The reduction rules of the LTS are given in
Fig. 3. We write Tr(C) for the set of traces generated by a configuration C.

Given a typed term Δ;Γ � M : θ, with Δ = {X1, . . . , Xn}, Γ = {x1 :
θ1, . . . , xm : θm}, we set 〈Δ;Γ � M : θ〉 = 〈♦, [cin �→ (˜M, ˜θ)], ε〉 and

[[Δ;Γ � M : θ]] = {T ∈ Tr(〈Δ;Γ � M : θ〉) | T has at most one initial move }
where ˜θ = ∀X1. . . . ∀Xn.θ1 → · · · → θm → θ and ˜M = ΛX1. . . . ΛXn.λxθ1

1 . . . .
λxθm

m .M .
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A configuration is active (resp. passive) if its evaluation stack is so. An
active configuration stands for a term being computed and it may only produce
P -moves. A passive configuration, on the other hand, stands for a scenario where
O is next to play. Moreover, the map φ in a configuration contains information
on the O-names that have been played, i.e. dom(φ) contains O-names, while
dom(γ) contains P -names.

To better grasp Fig. 3 let us consider an initial configuration 〈♦, [cin �→
(M, θ)], ε〉 and look at its traces, for some closed term M (so no need for ˜M, ˜θ)
with empty support.

– At the beginning, the only rule that can be applied is (OQ0), whereby O
interrogates the term M by issuing a move cin(�a). The names �a are selected
from [[θ]] and represent arguments that O fully applies the term M on. Since
θ has empty support, its extended form is of the shape (τ1, ..., τn,X) with
X bound by one of the τi’s. Consequently, when the names a1, ..., an are
applied for τ1, ..., τn, the variable X will be replaced by some type name α.
The rule makes this explicit, by requiring that (�a, φ′, α) ∈ [[θ]]. Thus, writing
φ0 instead of φ′ and setting γ0 = [cin �→ (M, θ)], the transition brings us to a
configuration 〈[(M�a, α)], γ0, φ0〉, where dom(φ0) = {a1, ..., an}.

– At this point, the term M�a can be reduced using head reduction and
brought to head normal form. Applying the (INT) rule we reach some
〈[(E[cM̂1 · · · M̂k], α)], γ0, φ0〉.

– We next interrogate the computation name c. The latter must have come from
the a1, ..., an that were applied to M , hence is an O-name. To interrogate it,
P plays a question c̄(�a′), using the (PQ) rule and assuming (�a′, γ′, α′) ∈
AVal(((M̂1, τ

′
1), ..., (M̂k, τ ′

k), ξ)), φ0(c) = θ′, ext(θ′) = (τ ′
1, ..., τ

′
k, ξ). This leads

to 〈[(E,α′ �α)], γ1, φ0〉 (γ1 = γ0 · γ′).
– We are now at a passive configuration, where E has been stored on the stack

and O is required to produce a response of type α′. By definition of AVal,
either α′ = α or α′ is in a′

1, ..., a
′
k and hence belongs to P . In the latter

case, O can only produce such a response by calling back P , using rule (OQ),
playing an O-question and adding a new term on the evaluation stack. In the
former case, O would directly respond with a hnf of type α, say N . But, since
E : α � α and therefore E = •, P would simply reply back playing N again.
To avoid this copycat of hnf’s, we simply play an OP -answer and remove the
top of the evaluation stack – this is what the (OA) rule achieves.

Example 15. In Fig. 4 we include example traces for terms M1,M2 : Unit →
Unit (taken from [1], Instance 3.25) and for the Church numerals Mk : Nat.
The former pair is an instance of Theorem 21 – Strachey equivalence implies trace
equivalence.

In our scenario above we started from a passive configuration with empty
stack and a singleton γ. A different way to produce a trace is to start from
an active configuration with a stack containing only a term E[cinM̂1 · · · M̂n], in
which case the rule (PQ0) would commence the trace. More generally, we call a
configuration C with stack E :
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Fig. 4. Top: traces for two terms of type Unit→Unit. Bottom: traces for Church
numeral Mk.

– a term configuration , if E = ♦ or the bottom element of E has type α or
α �α′;

– a context configuration , if the bottom of E has type θ or α � θ, and θ is a
closed with empty support.

Each reduction sequence in the LTS can only contain either term or context con-
figurations. In our discussion above and in Example 15 we examine the semantics
of terms, and therefore use term configurations. In later sections, when we shall
start looking at the semantics of contexts, we will be using context configurations
as well.

While we have not defined leaves for our LTS, there is a natural notion of
a trace being “completed”. In particular, we call a trace T complete if all its
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questions have been answered. We write CTr(C) for the set of complete traces
generated from C. Term and context configurations can both produce complete
traces. Given a term configuration C and a complete trace T , we write C ⇓T

if C
T−→ C ′ and C ′ has an empty evaluation stack. On the other hand, given a

context configuration C, a complete trace T and a value v, we write C ⇓T,v if

C
T−→ C ′ and C ′ has an evaluation stack with a single element (v, θ).

Lemma 16. Given a term configuration C and T ∈ Tr(C), then T is complete
iff C ⇓T .

We conclude this section by looking at some restrictions characterising actual
configurations. We first extend fst to evaluation stacks by: fst(♦) = ♦ and
fst((Z, ) :: E) = Z :: fst(E).

Definition 17. A configuration 〈E , γ, φ〉 is said to be legal when:

– dom(γ) ∩ dom(φ) = ∅ and ν(fst(E)) ∪ ν(cod(fst(γ))) ⊆ dom(φ);
– for all c ∈ dom(γ) ∩ CN, given γ(c) = (M, θ), we have Δφ;Γφ,γ � M : θ{γv};
– if the top of E is (M, θ), then Δφ;Γφ,γ � M : ˜θ with either θ = α ∈ dom(γ)

and γ(α) = (˜θ,U), or θ = α ∈ dom(φ) and ˜θ = θ, or θ = ˜θ is a closed type
with empty support and E = [(M, θ)];

– If E = (M,α1) :: (E,α2 � θ) :: E ′, either α1 = α2 or α1 ∈ dom(φ);
– for all (E,α � θ) in E with α ∈ dom(γ), Δφ;Γφ,γ ,� E : γv(α) � θ, and either

θ = α ∈ dom(φ) or θ is a closed type with empty support, and (E,α � θ) is
at the bottom of E ;

– for all (E,α � θ) in E with α ∈ dom(φ), we have θ = α and E = •;

where Δφ = dom(φ) ∩ TN and Γφ,γ = {(x, θ{fst(γ)}) | (x, θ) ∈ φ}.

Lemma 18. If C is a legal configuration and C
m−→ C ′ then C ′ is a legal con-

figuration.

4 Parametricity in the Trace Model, and Proof of
Theorem 5

We next examine the relationship between trace equivalence and the notions
of Reynolds and Strachey equivalence. We prove that Strachey equivalence is
included in trace equivalence (Theorem 21), which in turn is included in Reynolds
equivalence (Theorem 28).

4.1 From Strachey to Trace Equivalence

Definition 19. Let Ci = 〈Ei, γi, φi〉, for i = 1, 2, be two configurations. We say
that C1 and C2 are Strachey-equivalent when E1 and E2 have the same size,
dom(γ1) = dom(γ2), φ1 = φ2 and:
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– for all c ∈ dom(γ1), if γi(c) = (Mi, θi) then θ1 = θ2 and erase(M1) =βη

erase(M2);
– if (Zi, αi) is the j-th element of Ei, then α1 = α2 and erase(Z1) =βη

erase(Z2);

where E1 =βη E2 just if E1[x] =βη E2[x] for some/all fresh x.

The first inclusion can then be proven as follows.

Lemma 20. Given two Strachey-equivalent legal configurations C1, C2, if C1
m−→

C ′
1 for some m,C ′

1 then there is C2
m−→ C ′

2 such that C ′
1 and C ′

2 are Strachey-
equivalent.

Theorem 21. For all Strachey-equivalent Δ,Γ � M1,M2 : θ, we have [[M1]] =
[[M2]].

Proof. Taking T ∈ [[Δ;Γ � M1 : θ]], we prove that T ∈ [[Δ;Γ � M2 : θ]] by
induction on the length of T , using the previous lemma. ��

The inclusion above is strict. This is shown, for example, by the follow-
ing terms Mtrue,Mfalse : Unit → Unit, which are trace equivalent but not
Strachey-equivalent:

Mb = λfUnit.ΛX.λxX .snd(f(Bool × X)〈b, x〉) (b = true, false)

Here we use the impredicative encoding of product types [8]: θ1 × θ2 =
∀X.(θ1 → θ2 → X) → X, 〈M,N〉 = ΛX.λfθ1→θ2→X .fMN and snd =
λxθ1×θ2 .xθ2(λyθ1 .λzθ2 .z). Setting γ0 = [cin �→ (Mb,Unit → Unit)] and
Cb = 〈·; · � Mb : Unit → Unit〉, we have:

Cb

cin(cf ,α,c)−−−−−−−−→ 〈(snd(cf (Bool × α)〈b, c〉), α), γ0, φ0〉 (φ0 = [cf �→ Unit, α �→ U , c �→ α])
c̄f (β,c′)−−−−−−→ 〈(snd•, β � α), γ1, φ0〉 (γ1 = γ0 · [β �→ (Bool × α, U), c′ �→ (〈b, c〉, β)])
c′()−−→ 〈(〈b, c〉, β) :: (snd•, β � α), γ1, φ0〉 OKOK−−−→ 〈(snd〈b, c〉, α), γ1, φ0〉
−−−→ 〈(c, α), γ1, φ0〉 c̄()−−→ 〈(•, α � α), γ1, φ0〉 OKOK−−−→ 〈�, γ1, φ0〉

and this is the only complete trace in [[Mb]]. Indeed, O cannot interrogate another
name, as cin can only be played once, and c′ cannot be played with the (OQ0)
rule.

The other inclusion (trace included in Reynolds) is more challenging and
requires us to introduce machinery for relating the semantics of terms and seman-
tics of contexts to that of terms and contexts composed.

4.2 Composite LTS

We let a composite configuration be a tuple 〈EP , EO, γP , γO〉, where γP and
γO are maps γ as above, EP is a term evaluation stack, and EO is a context
evaluation stack. These configurations represent the interaction between a term
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Fig. 5. Composite LTS.

and a context. The term-part in the interaction is played by EP and γP , while the
context-part by EO and γO. As with ordinary configurations, we define an LTS
for composite ones in Fig. 5. Given a composite configuration C, a trace T and a
value v (hnf with empty support) we write C ⇓T,v when C

T−→ 〈♦, [(v, θ)], γP , γO〉.
Composite configurations allow us to compose a term and a context seman-

tically: we essentially play the traces of one against the other. Another way to
obtain a composite semantics is to work syntactically, i.e. by composing config-
urations and then executing the resulting term. This is defined next.

Definition 22. Given two evaluation stacks (EP , EO), we build their merge
(which may not always be defined) EP ||EO inductively by ♦||[(M, θ)] = M and:

((M,α) :: EP )||((E,α � θ) :: EO) = EP ||((E[M ], θ) :: EO)
((E,α � θ) :: EP )||((M,α) :: EO) = ((E[M ], θ) :: EP )||EO

When it is defined, we say that EP , EO are compatible . Then, a composite
configuration C = 〈EP , EO, γP , γO〉 is legal when (EP , EO) are compatible and
when both 〈EP , γP , snd(γO)〉 and 〈EO, γO, snd(γP )〉 are legal.

We now relate the reduction of a composite configuration with the head
reduction of the merge of its two evaluation stacks. First, taking the two envi-
ronments γP , γO of a legal composite configuration, we compute their closure
(γP · γO)∗ as follows. Setting γ0 = fst(γP · γO), and γi = {(a, M̂{γ}) | (a, M̂) ∈
γi−1} (i > 0), there is an integer n such that ν(cod(γn)) = ∅. We write (γP ·γO)∗

for the environment defined as γn, for the least n satisfying this latter condition.

Theorem 23. Given a legal composite configuration C = 〈EP , EO, γP , γO〉, then
C ⇓T,v iff (EP ||EO){(γP · γO)∗} →∗ v.

Finally, we relate the LTS’s for composite configurations and ordinary config-
urations (Theorem 26). Combined with Theorem 23, this gives us a correlation
between the traces of two compatible configurations and the head reduction we
obtain once we merge their evaluation stacks.
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Definition 24. Given legal configurations CP = 〈EP , γP , φP 〉 and CO =
〈EO, γO, φO〉, we say that they are compatible when EP , EO are compatible,
snd(γP ) = φO and snd(γO) = φP . For each pair (CP , CO) of compatible con-
figurations, we define their merge CP ∧∧ CO as the composite configuration
〈EP , EO, γP , γO〉.
Lemma 25. Taking (CP , CO) a pair of compatible configurations, CP∧∧CO ⇓T,v

iff CP ⇓T and CO ⇓T ⊥,v.

Theorem 26. Given CP,1, CP,2, CO such that CP,1, CO and CP,2, CO are pair-
wise compatible and Tr(CP,1) = Tr(CP,2), if CP,1∧∧CO ⇓T,v, then CP,2∧∧CO ⇓T,v.

Proof. From Lemma 25 we get CP,1 ⇓T and CO ⇓T ⊥,v. Thus, T ∈ Tr(CP,1)
and hence T ∈ Tr(CP,2). Lemma 16 then yields CP,2 ⇓T and, from Lemma 25,
CP,2∧∧CO ⇓T,v. ��

4.3 Proof of Theorem 5

Theorem 5 follows from Theorems 21 and 28. Theorem 28, which is proved
below, shows that any trace equivalent terms are also Reynolds equivalent. This
is achieved as follows. In the previous section we saw how to relate reductions
of terms-in-context to the semantics of terms and contexts. Given terms M1,M2

which are trace equivalent, and fully applying them to related arguments, we
obtain head reductions to values. These reductions can be decomposed into LTS
reductions producing corresponding traces, for the terms and their argument
terms (which form contexts). But, since the terms are trace equivalent, M2 can
simulate the behaviour of M1 in the context of M1, and that allows us to show
that the two composites reduce to the same value.

We start by extending logical relations to extended types with empty support.
We define R[[ext(θ)]]δ by:

R[[(X)]]δ = {R | δ(X) = ( , , R)}
R[[θ ::L]]δ = {(M1, N1) ::L′ | (M1, N1) ∈ R[[θ]]δ ∧ L′ ∈ R[[L]]δ}

R[[∀X ::L]]δ = {(θ1, θ2) ::L′ | (θ1, θ2, R) ∈ Rel ∧ L′ ∈ R[[L]]δ·[X 	→(θ1,θ2,R)]}

Lemma 27. (M1,M2) ∈ R[[θ]]δ iff for all ((N̂1
1 , N̂1

2 ), . . . , (N̂n
1 , N̂n

2 ), R) ∈
R[[ext(θ)]]δ, (M1N̂

1
1 · · · N̂n

1 ,M2N̂
1
2 · · · N̂n

2 ) ∈ R.

Theorem 28. For all trace equivalent Δ;Γ � M1,M2 : θ, we have that
M1 	log M2.

Proof. Taking δ ∈ R[[Δ]] and (η1, η2) ∈ R[[Γ ]]δ, we show (M1{η1}{δ1},
M2{η2}{δ2}) ∈ R[[θ]]δ. Using Lemma 27, we take ((N̂1

1 , N̂1
2 ), . . . , (N̂n

1 , N̂n
2 ), R) ∈

R[[ext(θ)]]δ, and prove that (M1{η1}{δ1}N̂1
1 · · · N̂n

1 ,M2{η2}{δ2}N̂1
2 · · · N̂n

2 ) ∈ R.
For each i ∈ {1, 2}, there exists a value vi s.t. Mi{ηi}{δi}N̂1

i · · · N̂n
i →∗

vi. Using the closure of R w.r.t. =βη, it suffices to show that (v1, v2) ∈
R. Suppose Δ = X1, . . . , Xk and Γ = x1 : θ1, . . . , xm : θm. We write
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CPi
for the configuration 〈Δ;Γ � Mi : θ〉, and CO,i for the configura-

tion 〈cinδi(X1) · · · δi(Xk)ηi(x1) · · · ηi(xm)N̂1
i · · · N̂n

i , ε, [cin �→ ˜θ]〉, where ˜θ =
∀X1. . . . ∀Xn.θ1 → · · · → θm → θ.

From Theorem 23, for each i ∈ {1, 2} there is a trace Ti such that
CP,i ∧∧ CO,i ⇓Ti,vi

. M1,M2 being trace equivalent, we have that Tr(CP,1) =
Tr(CP,2). So from Theorem 26, we get that CP,2 ∧∧ CO,1 ⇓T1,v1 , and from
Theorem 23 that M2{η1}{δ1}N̂1

1 · · · N̂n
1 →∗ v1. Finally, from Theorem 2, we

get that (M2{η1}{δ1}N̂1
1 · · · N̂n

1 ,M2{η2}{δ2}N̂1
2 · · · N̂n

2 ) ∈ R. Thus, using the
closure of R w.r.t. =βη, we have that (v1, v2) ∈ R. ��

5 Related and Future Work

The literature on parametric polymorphism is vast; here we look at the works
closest to ours, which come from the game semantics area. The first game model
for System F was introduced by Hughes [9,10]. The model is intentional, in the
sense that it is fully complete for βη-equivalence. Starting from that model, de
Lataillade [5,6] characterised parametricity categorically via the notion of dinat-
urality [4]. In [2], Abramsky and Jagadeesan developed a model for System F
to characterise genericity, as introduced by Longo et al. [17]. A type θ is said to
be generic when two terms M1,M2 of type ∀X.θ′ are equivalent just if M1θ and
M2θ are equivalent. Their model contains several generic types. More recently,
Laird [15] has introduced a game model for System F augmented with mutable
variables. His model is closer to ours than the previous ones, and in particular
his notion of copycat links can be seen as connected to the use of names for
parametricity.

In all of the above models the denotation of terms is built compositionally by
induction on the structure of the term. In a different line of work, closer in spirit
to our model, Lassen and Levy [16] have introduced normal form bisimulations
for a language with parametric polymorphism. These bisimulations are defined
on LTSs whose definition has similarities with ours. However, the model is for
a CPS-style language which has not only polymorphic but also recursive types.
Finally, our own model for a higher-order polymorphic language with general
references [13] can be seen as a direct precursor to this work, albeit in a very
different setting (call-by-value, with references).

Further on, we would like to study the existence of generic types in our model,
as well as its dinaturality properties. We would moreover like to examine coarser
notions of trace equivalence that bring us closer to Reynolds polymorphism.
Finally, we would like to see if the trace model can be used to prove the original
conjecture of [1,20]. While this seems plausible in principle, proving equivalences
using definable logical relations requires additional tools, such as restrictions on
the LTS, to avoid circular reasoning.
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