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Abstract. A formal semantics is introduced for a Process Network
model, which combines streaming and reactive control processing with
task parallelism properties suitable to exploit multi-cores. Applications
that react to environment stimuli are implemented by communicating
sporadic and periodic tasks, programmed independently from an exe-
cution platform. Two functionally equivalent semantics are defined, one
for sequential execution and one real-time. The former ensures functional
determinism by implying precedence constraints between jobs (task exe-
cutions), hence, the program outputs are independent from the task
scheduling. The latter specifies concurrent execution on a real-time plat-
form, guaranteeing all model’s constraints; it has been implemented in
an executable formal specification language. The model’s implementation
runs on multi-core embedded systems, and supports integration of run-
time managers for shared HW/SW resources (e.g. for controlling QoS,
resource interference or power consumption). Finally, a model transfor-
mation approach has been developed, which allowed to port and stat-
ically schedule a real spacecraft on-board application on an industrial
multi-core platform.
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1 Introduction

The proliferation of multi-cores in timing-critical embedded systems requires a
programming paradigm that addresses the challenge of ensuring predictable tim-
ing. Two prominent paradigms and a variety of associated languages are widely
used today. For streaming signal processing, synchronous dataflow languages [18]
allow writing programs in the form of directed graphs with nodes for their func-
tions and arcs for the data flows between functions. Such programs can exploit
concurrency when they are deployed to multi-cores [15], while their functions
can be statically scheduled [17] to ensure a predictable timing behavior.

On the other hand, the reactive-control synchronous languages [12] are used
for reactive systems (e.g., flight control systems) expected to react to stimuli
from the environment within strict time bounds. The synchronicity abstraction
eliminates the non-determinism from the interleaving of concurrent behaviors.

The synchronous languages lack appropriate concepts for task parallelism
and timing-predictable scheduling on multiprocessors, whereas the streaming
models do not support reactive behavior. The Fixed Priority Process Network
(FPPN) model of computation has been proposed as a trade-off between stream-
ing and reactive control processing, for task parallel programs. In FPPNs, task
invocations depend on a combination of periodic data availability (similar to
streaming models) and sporadic control events. Static scheduling methods for
FPPNs [20] have demonstrated a predictable timing on multi-cores. A first imple-
mentation of the model [22] in an executable formal specification language called
BIP (Behavior, Interaction, Priority) exists, more specifically in its real-time
dialect [3] extended to tasks [10]. In [21], the FPPN scheduling was studied by
taking into account resource interference; an approach for incrementally plug-
ging online schedulers for HW/SW resource sharing (e.g., for QoS management)
was proposed.

This article presents the first comprehensive FPPN semantics definition, at
two levels: semantics for sequential execution, which ensures functional deter-
minism, and a real-time semantics for concurrent task execution while adhering
to the constraints of the former semantics. Our definition is related to a new
model transformation framework, which enables programming at a high level by
embedding FPPNs into the architecture description, and allows an incremental
refinement in terms of task interactions and scheduling1. Our approach is demon-
strated with a real spacecraft on-board application ported onto the European
Space Agency’s quad-core Next Generation Microprocessor (NGMP).

2 Related Work

Design frameworks for embedded applications, like Ptolemy II [6] and
PeaCE [11], allow designing systems through refining high-level models. They
are based on various models of computation (MoC), but we focus mainly on
those that support task scheduling with timing constraints. Dataflow MoCs that
1 The framework is online at [2].
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stem from the Kahn Process Networks [16] have been adapted for the timing
constraints of signal processing applications and design frameworks like Comp-
SoC [13] have been introduced; these MoCs do not support reactive behavior and
sporadic tasks as in the FPPN MoC that can be seen as an extension in that
direction. DOL Critical [10] ensures predictable timing, but its functional behav-
ior depends on scheduling. Another timing-aware reactive MoC that does not
guarantee functional determinism is the DPML [4]. The Prelude design frame-
work [5] specifies applications in a synchronous reactive MoC, but due to its
expressive power it is hard to derive scheduling analyses, unless restricting its
semantics. Last but not the least, though the reactive process networks (RPN) [8]
do not support scheduling with timing constraints, they lay an important foun-
dation for combining the streaming and reactive control behaviors. In the FPPN
semantics we reuse an important principle of RPN semantics, namely, perform-
ing the maximal execution run of a dataflow network in response to a control
event.

3 A PN Model for Streaming and Reactive Control

An FPPN model is composed of Processes, Data Channels and Event Generators.

struct SQ_Inititialize
SQ_index = 0; 
SQ_length = 200

}

void SQ_PeriodicJob
float x, y; float x, y; 
bool x_valid; 
if (SQ_index < 

XIF_Read
if(x_valid

y = x * x;
y_valid
YIF_Write

}
}   

SQ_index++;
}

SQ_Inititialize(){

200;

SQ_PeriodicJob() {

< SQ_length)  {
XIF_Read(&x, &x_valid);

x_valid == true)    {
y = x * x;
y_valid = true;                      
YIF_Write(&y); 

Fig. 1. Example code for “Square”
process

A Process represents a software subrou-
tine that operates with internal variables
and input/output channels connected to it
through ports. The functional code of the
application is defined in processes, whereas
the necessary middleware elements of the
FPPN are channels, event generators, and
functional priorities, which define a relation
between the processes to ensure deterministic
execution.

An example process is shown in Fig. 1.
This process performs a check on the internal
variables, if the check succeeds then it reads
from the input channel, and, if the value read
is valid (refer to the channel definition below)
its square is computed. The write operation
on an output channel is then performed. A
call to the process subroutine is referred to as
a job. Like the real-time jobs, the subroutine
should have a bounded execution time sub-
ject to WCET (worst-case execution time)
analysis.

An FPPN is defined by two directed graphs. The first is a (possibly cyclic)
graph (P,C), whose nodes P are processes and edges C are channels for pairs
of communicating processes with a dataflow direction, i.e., from the writer to
the reader (there are also external channels interacting with the environment).
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Fig. 2. Example Fixed Priority Process Network

A channel is denoted by a c ∈ C or a pair (p1, p2) of writer and reader. For p1 the
channel is said to be an output and for p2 an input. The second graph (P,FP)
is the functional priority directed acyclic graph (DAG) defining a functional
priority relation between processes. For any two communicating processes we
require,

(p1, p2) ∈ C =⇒ (p1, p2) ∈ FP ∨ (p2, p1) ∈ FP

i.e., a functional priority either follows the direction of dataflow or the opposite.
Given a (p1, p2) ∈ FP, p1 is said to have a higher priority than p2.

The FPPN in Fig. 2, represents an imaginary data processing application,
where the “X” sporadic process generates values, “Square” calculates the square
of the received value and the “Y” periodic process serves as sink for the squared
value. A sporadic event (command from the environment) invokes “X”, which is
annotated by its minimal inter-arrival time. The periodic processes are annotated
by their periods. The two types of non-blocking channels are also illustrated. The
FIFO (or mailbox) has a semantics of a queue. The blackboard remembers the
last written value that can be read multiple times. The arc depicted above the
channels indicates the functional priority relation FP. Additionally, the external
input/output channels are shown. In this example, the dataflow in the channels
go in the opposite direction of the functional priority order. Note that, by analogy
to the scheduling priorities, a convenient method to define priority is to assign
a unique priority index to every process, the smaller the index the higher the
priority. This method is demonstrated in Fig. 2. In this case the minimal required
FP relation would be defined by joining each pair of communicating processes
by an arc going from the higher-priority process to the lower-priority one.

Let us denote by Var the set of all variables. For a variable x or an ordered
set (vector) X of variables we denote by D(x) (resp. D(X)) its domain (or vector
of domains), i.e., the set(s) of values that the variable(s) may take. Valuations of
variables X are shown as X0,X1 . . ., or simply as X, dropping the superscript.
Each variable is assumed to have a unique initial valuation. From the software
point of view, this means that all variables are initialized by a default value.

Var includes all process state variables Xp and the channel state variables
γc. The current valuation of a state variable is often referred to simply as state.
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For a variable of channel c, an alphabet Σc and a type CT c are defined; a channel
type consists of write ‘operations’ (Wc) and read ‘operations’ (Rc) defined as
functions specifying the variable evolution. Function Wc : D(c) × Σc → D(c)
defines the update after writing a symbol s ∈ Σc to the channel, whereas Rc :
D(c) → D(c)×Σc maps the channel state to a pair (Rc1, Rc2), where Rc1 is the
new channel state and Rc2 is the symbol that is read from the channel. For a
FIFO channel, its state γc is a (initially empty) string and the write operation
left-concatenates symbol s to the string: Wc(γc, s) = s◦γc. For the same channel,
Rc(γc ◦ s) = (γc, s), i.e., we read and remove the last symbol from the string.
The write and read functions are defined for each possible channel state, thus
rendering the channels non-blocking. This is implemented by including ⊥ in
the alphabet, in order to define the read operation when the channel does not
contain any ‘meaningful’ data. Thus, reading from an empty FIFO is defined
by: Rc(ε) = (ε,⊥), where ε denotes an empty string. For blackboard channel, its
state is a (initially empty) string that contains at most one symbol – the last
symbol written to the channel: Wc(γc, s) = s, Rc(γc) = (γc, γc), Rc(ε) = (ε,⊥).

An external channel ’s state is an infinite sequence of samples, i.e., variables
c[1], c[2], c[3], . . . with the same domain. For a sample c[k], k is the sample index.
Though the sequence is infinite, no infinite memory is required, because each
sample can be accessed (as will be shown) within a limited time interval. If c is an
external output, the channel type defines the sample write operation in the form
W ′

c : D′(c) × N+ × Σc → D′(c), where D′(c) is the sample domain, the second
argument is the sample index and the result is the new sample value. For an
external input, we have the sample read operation Rc : D′(c)×N+ → D′(c)×Σc.
The set of outputs is denoted by O and the set of inputs by I.

The program expressions involve variables. Let us call Act the set of all
possible actions that represent operations on variables. An assignment is an
action written as Y := f(X). For the channels, two types of actions are defined,
x!c for writing a variable x, and x?c for reading from the channel, where D(x) =
Σc. For external channels, we have x![k]c, c ∈ O and y?[k]c, c ∈ I, where [k] is
the sample index. Actions are defined by a function Effect : Act × D(Var) →
D(Var), which for every action a states how the new values of all variables
are calculated from their previous values. The actions are assumed to have zero
delay. The physical time is modeled by a special action for waiting until time
stamp τ , w(τ).

An execution trace α ∈ Act∗ is a sequence of actions, e.g.,

α = w(0), x?[1]I1, x := x2, x!c1,w(100), y?c1, O1![2]y

The time stamps in the execution are non-decreasing, and denote the time
until the next time stamp, at which the following actions occur. In the example,
at time 0 we read sample [1] from I1 and we compute its square. Then we write
to channel c1. At time 100, we read from c1 and write the sample [2] to O1.

A process models a subroutine with a set of locations (code line numbers),
variables (data) and operators that define a guard on variables (‘if’ condition),
the action (operator body) and the transfer of control to the next location.
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Definition 1 (Process). Each process p is associated with a deterministic
transition system (�p

0, Lp, Xp, Xp
0, Ip, Op, Ap, Tp), with Lp a set of locations,

�p
0 ∈ Lp an initial location, and Xp the set of state variables with initial val-

ues Xp
0. Ip,Op are (internal and external) input/output channels. Ap is a set

actions with variable assignments for Xp, reads from Ip, and writes to Op. Tp

is transition relation Tp : Lp × Gp × Ap × Lp, where Gp is the set of predicates
(guarding conditions) defined on the variables from Xp.

One execution step (�1,X1, γ1)
g:a→ (�2,X2, γ2) for the valuations X1,X2 of

variables in Xp and the valuations γ1, γ2 of channels in Ip ∪ Op, implies that
there is transition (�1, g, a, �2) ∈ Tp, such that X1 satisfies guarding condition g
(i.e., g(X1) = True) and (X2, γ2) = Effect(a, (X1, γ1)).

Definition 1 prescribes a deterministic transition system: for each location �1
the guarding conditions enable for each possible valuation Xi a single execution
step.

Definition 2 (Process job execution). A job execution (X1, γ1) α−→p

(X2, γ2) is a non-empty sequence of process p execution steps starting and ending
in p’s initial location �0, without intermediate occurrences of �0:

(�0,X1, γ1)
g1:α1→ (�1,X1, γ1) . . .

gn:αn→ (�0,X2, γ2), for n ≥ 1, �i 
= �0

From a software point of view, a job execution is seen as a subroutine run
from a caller location that returns control back to the caller. We assume that at
k-th job execution, external channels Ip, Op are read/written at sample index [k].

In an FPPN, there is a one-to-one mapping between every process p and
the respective event generator e that defines the constraints of interaction with
the environment. Every e is associated with (possibly empty) subsets Ie, Oe of
the external input/output (I/O) channels. Those are the external channels that
the process p can access: Ie ⊆ Ip, Oe ⊆ Op. The I/O sets of different event
generators are disjoint, so different processes cannot share external channels.

Every e defines the set of possible sequences of time stamps τk for the ‘event’
of k-th invocation of process p and a relative deadline de ∈ Q+. The intervals
[τk, τk + de] determine when the k-th job execution can occur. This timing con-
straint has two important reasons. First, if the subsets Ie or Oe are not empty
then these intervals should indicate the timing windows when the environment
opens the k-th sample in the external I/O channels for read or write access at the
k-th job execution. Secondly, τk defines the order in which the k-th job should
execute, the earlier it is invoked the earlier it should execute. Concerning the τk

sequences, two event generator types are considered, namely multi-periodic and
sporadic. Both are parameterized by a burst size me and a period Te. Bursts
of me periodic events occur at 0, Te, 2Te, etc. For sporadic events, at most
me events can occur in any half-closed interval of length Te. In the sequel we
associate the attributes of an event generator with the corresponding process,
e.g., Tp and dp.
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Definition 3 (FPPN). An FPPN is a tuple PN = (P,C,FP, ep, Ie, Oe,
de, Σc,CT c), where P is a set of processes and C ⊆ P × P is a set of inter-
nal channels, with (P,C) defining a (possibly cyclic) directed graph. An acyclic
directed graph (P,FP) is also defined, with FP ⊂ P × P a functional prior-
ity relation (if (p1, p2) ∈ FP, we also write p1 → p2). This relation should be
defined at least for processes accessing the same channel, i.e., (p1, p2) ∈ C⇒p1 →
p2∨p2 → p1. ep maps every process p to a unique event generator, whereas Ie

and Oe map each event generator to (possibly empty) partitions of the global set
of external input channels I and output channels O, resp. de defines the relative
deadline for accessing the I/O channels of generator e, Σc defines alphabets for
internal and external I/O channels and CT c specifies the channel types.

The priority FP defines the order in which two processes are executed when
invoked at the same time. It is not necessarily a transitive relation. For example,
if (p1, p2) ∈ FP, (p2, p3) ∈ FP, and both p1 and p3 get invoked simultaneously
then FP does not imply any execution-order constraint between them unless
p2 is also invoked at the same time. The functional priorities differ from the
scheduling priorities. The former disambiguate the order of read/write accesses
to internal channels, whereas the latter ensure satisfaction of timing constraints.

4 Zero-Delay Semantics for the FPPN Model

The functional determinism requirement prescribes that the data sequences and
time stamps at the outputs are a well-defined function of the data sequences and
time stamps at the inputs. This is ensured by the so-called functional priorities.
In essence, functional priorities control the process job execution order, which
is equivalent to the effect of fixed priorities on a set of tasks under uniprocessor
fixed-priority scheduling with zero task execution times. A distinct feature of the
FPPN model is that priorities are not used directly in scheduling, but rather in
the definition of model’s semantics. From now on, the term ‘task’ will refer to
an FPPN process. Following the usual real-time systems terminology, invoking
a task implies generation of a job which has to be executed before the task’s
deadline. The so-called precedence constraints, i.e., the semantical restrictions
of FPPN job execution order are implied firstly from the time stamps when the
tasks are invoked and secondly from the functional priorities. In this section, we
define these constraints in terms of a sequential order (an execution trace).

The FPPN model requires that all simultaneous process invocations should
be signaled synchronously. This can be realized by introducing a periodic clock
with sufficiently small period (the gcd of all Tp), such that invocations events
can only occur at clock ticks, synchronously. Two variant semantics are then
defined, namely the zero-delay and the real-time semantics.

The zero-delay semantics imposes an ordering of the job executions assuming
that they have zero delay and that they are never postponed to the future. Since
in this case the deadlines are always met even without exploiting parallelism, a
sequential execution of processes is considered for simplicity. The semantics is
defined in terms of the rules for constructing the execution trace of the FPPN for



A PN Model for Reactive Streaming Software 101

a given sequence (t1,P1), (t2,P2) . . . , where t1 < t2 < . . . are time stamps and
Pi is the multiset of processes invoked at time ti. For convenience, we associate
each ‘invoked process’ p in Pi with respective invocation event, ep. The execution
trace has the form:

Trace(PN ) = w(t1) ◦ α1 ◦ w(t2) ◦ α2 . . .

where αi is a concatenation of job executions of processes in Pi included in an
order, such that if p1 → p2 then the job(s) of p1 execute earlier than those of p2.

Definition 4 (Configuration). An FPPN configuration (π, γ,P) consists of:

– a process configuration π, a function that assigns to every process a state
π(p) ∈ D(Xp)

– a channel configuration γ, i.e., the states of internal and external channels
– a set of pending events P

Executing one job in a process network:

(π(p), γ) α−→p (X ′, γ′) ∧ ep ∈ P
∧

�p′ : ep′ ∈ P ∧ (p′, p) ∈ FP
(π, γ,P) α−→PN (π{X ′/p}, γ′,P \ {ep})

where π{X ′/p} is obtained from π by replacing the state of p by X ′.
Given a non-empty set of events P invoked at time t, a maximal execution

run of a process network is defined by a sequence of job executions that continues
until the set of pending events is empty.

(π0, γ0,P) α1−→PN (π1, γ1,P \ {ep1}) α2−→PN . . . (π1, γ1, ∅)

(π0, γ0)
w(t)◦α1◦α2◦...�−→ PN (P) (π1, γ1)

Given an initial configuration (π0, γ0) and a sequence (t1,P1), (t2,P2) . . . of
events invoked at times t1 < t2 < . . ., the run of process network is defined by a
sequence of maximal runs that occur at the specified time stamps.

Run(PN ) = (π0, γ0) α1

�−→PN (P1) (π1, γ1) α2

�−→PN (P2) . . .

The execution trace of a process network is a projection of the process network
run to actions:

Trace(PN ) = α1 ◦ α2 . . .

This trace represents the time stamps (w(t1),w(t2) . . .) and the data process-
ing actions executed at every time stamp. From the effect of these actions it is
possible to determine the sequence of values written to the internal and exter-
nal channels. These values depend on the states of the processes and internal
channels. The concurrent activities – the job executions – that modify each pro-
cess/channel states are deterministic themselves and are ordered relatively to
each other in a way which is completely determined by the time stamps and the
FP relation. Therefore we can make the following claim.
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Proposition 1 (Functional determinism). The sequences of values written
at all external and internal channels are functionally dependent on the time
stamps of the event generators and on the data samples at the external inputs.

Basically, this property means that the outputs calculated by FPPN depend
only on the event invocation times and the input data sequences, but not on the
scheduling. To exploit task parallelism, in the real-time semantics of Sect. 5 the
sequential order of execution and the zero-delay assumption are relaxed.

5 Real-Time Semantics for the FPPN Model

In the real-time semantics, job executions last for some physical time and can
start concurrently with each other at any time after their invocation. Certain
precedence constraints are respected which for certain jobs impose the same rel-
ative order of execution as in the zero-delay semantics, so that non-deterministic
updates of the states of processes and channels are excluded. To ensure time-
liness, the jobs should complete their execution within the deadline after their
invocation. The semantics specifies the entities for communication, synchroniza-
tion, scheduling and is defined by compilation to an executable formal specifica-
tion language.

Our approach is based on (real-time) ‘BIP’ [3] for modeling networks of
connected timed automata components [24]. We adopt the extension in [10],
which introduces the concept of continuous (asynchronous) automata transi-
tions, which, unlike the default (discrete) transitions take a certain physical
time. Next to support of tasks (via continuous transitions), BIP supports the
urgency in timing constraints, and those are timed-automata features required
for adequate modeling and timing verification of dataflow languages [9]. An
important BIP language feature for implementing the functional code of tasks
is the possibility to specify data actions in imperative programming language
(C/C++).

Figure 3 illustrates how an FPPN process is compiled to a BIP component.
The source code is parsed, searching for primitives that are relevant for the inter-
actions of the process with other components. The relevant primitives are the
reads and writes from/to the data channels. For those primitives the generated
BIP component gets ports, e.g., ‘XIF Read(IN x,IN valid)’, through which the
respective transitions inside the component synchronize and exchange data with
other components. In line with Definition 1, every job execution corresponds
to a sequence of transitions that starts and ends in an initial location. The first
transition in this sequence, ‘Start’, is synchronized with the event generator com-
ponent, which enables this transition only after the process has been invoked.
The event generator shown in Fig. 3 is a simplified variant for periodic tasks
whose deadline is equal to the period. In [22] it is also described how we model
internal channels and give more details on event generator modelling.

To ensure a functional behavior equivalent to zero-delay semantics, the job
executions have to satisfy precedence constraints between subsequent jobs of
the same process, and the jobs of process pairs connected by a channel. In both



A PN Model for Reactive Streaming Software 103

Fig. 3. Compilation of functional code to BIP

cases, the relative execution order of these subsets of jobs is dictated by zero-
delay semantics, whereby the jobs are executed in the invocation order and the
simultaneously invoked jobs follow the functional priority order. In this way, we
ensure deterministic updates in both cases: (i) for the states of processes by
excluding auto-concurrency, and (ii) for the data shared between the processes
by excluding data races on the channels. The precedence constraints for (i) are
satisfied by construction, because BIP components for processes never start a
new job execution until the previous job of the same process has finished. For the
precedence constraints in (ii), an appropriate component is generated for each
pair of communicating processes and plugged incrementally into the network of
BIP components.

Figure 4 shows such a component generated a given pair of processes “A”
and “B”, assuming (A, B) ∈ FP. We saw in Fig. 3 that the evolution of a job
execution goes through three steps: ‘invoke’, ‘start’ and ‘finish’. The component
handles the three steps of both processes in almost symmetrical way, except in
the method that determines whether the job is ready to start: if two jobs are
simultaneously invoked, then first the job of process “A” gets ready and then,
after it has executed, the job of “B” becomes ready. The “Functional Priority”
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Fig. 4. Imposing precedence order between “A”, “B” (“A”has higher functional priority)

component maintains two job queues2 denoted Qα where α ∈ {A,B} indicates
a process selection. In our notation, α means ‘other than α’, i.e., if α = A then
α = B and if α = B then α = A.

The component receives from the event generator of process ‘α’ at regular
intervals with period δα either ‘Invoke α’ or ‘FalseInvoke α’. In the latter case
(i.e., no invocation), the job in the tail of the queue is ‘pulled’ away3.

2 Queues are implemented by a circular buffer with the following operations:

– Allocate() picks an available (statically allocated) cell and gives reference to it
– Push() push the last allocated cell into the tail
– Pull() undo the push
– Pop() retrieve the data from the head of the queue.

3 Thanks to ‘init α’ and ‘advance α’, the queue tail always contains the next antici-
pated job, which is conservatively marked as non-active until ‘Invoke α’ transition.
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6 Model Transformation Framework

The model-based design philosophy for embedded systems which we follow [14]
is grounded on the evolutionary design using models, which support the gradual
refinement (refined models are more accurate than those refined) and the setting
of real-time attributes that ensure predictable timing. Such a process allows
considering various design scenarios and promotes the late binding to design
decisions. Our approach to refinement is based on incremental component-based
models, where the system is evolved by incrementally plugging new components
and transforming existing ones.

Fig. 5. Evolutionary design of time-critical systems using FPPNs

We propose such a design approach (Fig. 5), in which we take as a starting
point a set of tasks defined by their functional code and real-time attributes
(e.g., periods, deadlines, WCET, job queue capacity). We assume that these
tasks are encapsulated into software-architecture functional blocks, correspond-
ing to FPPN processes. Before being integrated into a single architectural model
they can be compiled and tested separately by functional simulation or by run-
ning on embedded platform.

The high-level architecture description framework of our choice is the TASTE
toolset [14,19], whose front-end tools are based on the AADL (Architecture Anal-
ysis & Design Language) syntax [7]. An architecture model in TASTE consists of
functional blocks – so-called ‘functions’ – which interact with each other via pairs
of interfaces (IF) ‘required IF’/‘provided IF’, where the first performs a proce-
dure call in the second one. In TASTE, the provided interfaces can be explicitly
used for task invocations, i.e., they may get attributes like ‘periodic’/‘sporadic’,
‘deadline’ and ‘period’. The FPPN processes are represented by TASTE ‘func-
tions’ that ‘provide’ such interfaces, implementing job execution of the respective
task in C/C++. Our TASTE-to-BIP framework is available for download at [2].

The first refinement step is plugging the data channels for explicit commu-
nication between the processes. The data channels are also modeled as TASTE
functions, whereas reads and writes are implemented via interfaces. We have
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Fig. 6. Model and graph transformations for the FPPN semantics

amended the attributes of TASTE functions to reflect the priority index of pro-
cesses and the parameters of FPPN channels, such as capacity of FIFO channels.
The resulting model can be compiled and simulated in TASTE.

The second and final refinement step is scheduling. To schedule on multi-
cores while respecting the real-time semantics of FPPN this step is preceded by
transformation from TASTE architectural model into BIP FPPN model. The
transformation process implements the FPPN-to-BIP ‘compilation’ sketched in
the previous section, and we believe it could be formalized by a set of trans-
formation rules. For example, as illustrated in Fig. 6, one of the rules could say
that if there are two tasks τ1 and τ2 related by FP relation then their respective
BIP components B1 and B2 are connected (via ‘Start’ and ‘Finish’ ports) to a
functional priority component.

The scheduling is done offline, by first deriving a task graph from the archi-
tectural model, taking into account the periods, functional priorities and WCET
of processes. The task graph represents a maximal set of jobs invoked in a hyper-
period and their precedence constraints; it defines the invocation and the dead-
line of jobs relatively to the hyperperiod start time. The task graph derivation
algorithm is detailed in [20].

Definition 5 (Task Graph). A directed acyclic graph T G(J , E) whose nodes
J = {Ji} are jobs defined by tuples Ji = (pi, ki, Ai,Di,Wi), where pi is the
job’s process, ki is the job’s invocation count, Ai ∈ Q≥0 is the invocation time,
Di ∈ Q+ is the absolute deadline and Wi ∈ Q+ is the WCET. The k-th job of
process p is denoted by p[k]. The edges E represent the precedence constraints.
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The task graph is given as input to a static scheduler. The schedule obtained
from the static scheduler is translated into parameters for the online-scheduler
(cf. Fig. 6), which, on top of the functional priority components, further con-
straints the job execution order and timing, with the purpose of ensuring dead-
line satisfaction. The joint application/scheduler BIP model is called System
Model. This model is eventually compiled and linked with the BIP-RTE, which
ensures correct BIP semantics of all components online [23].

7 Case Study: Guidance, Navigation and Control
Application

Our design flow was applied to a Guidance Navigation & Control (GNC) on-
board spacecraft application that was ported onto ESA’s NGMP, more specifi-
cally the quad-core LEON4FT processor [1]. In the space industry, multi-cores
provide a means for integrating more software functions onto a single platform,
which contributes to reducing size, weight, cost, and power consumption. On-
board software has to efficiently utilize the processor resources, while retaining
predictability.

A GNC application affects the movement of the vehicle by reading the
sensors and controlling the actuators. We estimated the WCETs of all tasks,
Wp, by measurements. There are four tasks: the Guidance Navigation Task
(Tp = 500 ms, dp = 500 ms, Wp = 22 ms), the Control Output Task (Tp = 50 ms,
dp = 50 ms, Wp = 3ms) that sends the outputs to the appropriate spacecraft unit,
the Control FM Task (Tp = 50 ms, dp = 50 ms, Wp = 8 ms) which runs the con-
trol and flight management algorithms, and the Data Input Dispatcher Task
(Tp = 50 ms, dp = 50 ms, Wp = 6 ms), which reads, decodes and dispatches data
to the right destination whenever new data from the spacecraft’s sensors are
available. The hyperperiod of the system was therefore 500 ms, and it includes
one execution of the Guidance Navigation Task and ten executions of each other
task, which results in 31 jobs. The Guidance Navigation and Control Output
tasks were invoked with relative time offsets 450 ms and 30 ms, respectively.
Fig. 7 shows the GNC FPPN, where the functional priorities impose precedence
from the numerically smaller FP index (i.e., higher-priority) to the numerically
larger ones, we defined them based on analysis of the specification documents
and the original implementation of task interactions by inter-thread signalling.

The architectural model in TASTE format was automatically transformed
into a BIP model and the task-graph model of the hyperperiod was derived. The
task graph was passed to the static scheduler, which calculated the system load
to be 112% (i.e., at least two cores required, taking into account precedences [20]
and interference [21]) and generated the static schedule.

The BIP model was compiled and linked with the BIP RTE and the executa-
bles were loaded and ran on the LEON4FT board. Figure 8 shows the measured
Gantt chart of a hyper-period (500 ms) plus 100 ms. We label the process execu-
tions as ‘P<id>’, where ‘<id>’ is a numeric process identifier. Label ‘P20’ is an
exception, it indicates the execution of the BIP RTE engine and all discrete-event
controllers – event generators, functional priority controllers, and the online
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Fig. 7. The GNC FPPN model

Fig. 8. Execution of the GNC application on LEON4FT (in microseconds).

scheduler. Since there are four discrete transitions per one job execution and
31 jobs per hyperperiod, 31 × 4 = 124 discrete transitions are executed by BIP
RTE per hyperperiod. The P20 activities were mapped to Core 0, whereas the
jobs of tasks (P1, P2, P3, P4) were mapped to Core 1 and Core 2. P1 stands
for the Data Input Dispatcher, P2 for the Control FM, P3 for the Control Out-
put and P4 for the Guidance Navigation task. Right after 10 consecutive jobs
of P1, P2, P3 the job on P4 is executed. The job of P4 is delayed due to the
450 ms invocation offset and the least functional priority. Since P3 and P4 do
not communicate via the channels, in our framework (P3, P4) /∈ FP and they
can execute in parallel, which was actually programmed in our static schedule.
Due to more than 100% system load this was necessary for deadline satisfaction.
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8 Conclusion

We presented the formal semantics of the FPPN model, at two levels: zero-delay
semantics with precedence constraints on the job execution order to ensure func-
tional determinism, and real-time semantics for scheduling. The semantics was
implemented by a model transformational framework. Our approach was val-
idated through a spacecraft on-board application running on a multi-core. In
future work we consider it important to improve the efficiency of code gener-
ation, formal proofs of equivalence of the scheduling constraints (like the task
graph) and the generated BIP model. The offline and online schedulers need to
be enhanced to a wider spectrum of online policies and a better awareness of
resource interference.
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