
Chapter 5
Properties of Sums of Geological
Random Variables

G. M. Kaufman

“All models are wrong. Some are useful” George E. P. Box.

Abstract In the absence of empirical data that allows resolution of the vexing
problem of how to address probabilistic dependencies among and between elements
of large sets of geologic random variables data we need methods that refocus and
streamline expert geological judgment inputs along with analytical methods for
modeling dependencies that go beyond pairwise correlation and its cousins. Some
possibilities are reviewed.

5.1 Introduction

Suppose that you are given the marginal distribution of each of a set of n random
variables but no other information. What can be said about the behavior of their
sum? This is an old problem, extensively studied by probability theorists and
statisticians (Hoeffding 1940; Frèchet 1951). There is a rich probabilistic finance
and actuarial risk analysis literature devoted to calculation of bounds on sums of
random variables. This question motivates our review of state of the art methods
designed to reduce geologists’ cognitive load when asked to assign judgmental
probabilities to uncertain geologic variables.

In a wide range of settings geologists are asked to provide personal probability
judgments about a collection of uncertain quantities and, in particular, about sums
of them. Probabilistic assessments of oil and gas in unexplored petroleum plays and
basins are recurring examples. In the absence of hard data they deal rather well with
the cognitive task of providing personal judgments about marginal distributions of
geologic attributes; i.e. their assessments are, in the large, reasonably well cali-
brated. Geologists’ personal judgments about dependencies among uncertain geo-
logic quantities are more problematic.
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It is worthwhile to distinguish micro-assessments—assessment of dependencies
among individual reservoir attributes for example—from macro-assessments—
assessment of dependencies among assessment units, each of which may be a
collection of anomalies, reservoirs and fields. Measurable data bearing directly on
probabilistic dependencies at the micro-assessment level is often available but
precise measurable data bearing on dependencies among elements in a
macro-assessment is seldom available. Chen et al. (2012) point out that

Although efforts have been made to address variable dependence in both methodology and
tool development, the greatest emphasis and attention have been given to resource
aggregation. Until now, the impact of interdependencies among variables in volumetric
resource calculations has been mostly ignored, and the implementation of variable
dependency remains a challenge to petroleum resource appraisal. In practice, inadequate
data commonly exist to either specify a standard multivariate distribution with an appro-
priate correlation structure or to quantify the resource aggregation correlation matrices.
However, variable correlations are so common among geologic variables that ignoring their
interdependence may lead to serious bias, affecting both the resulting resource potential
estimation.

Most geologists with some training and experience in probability assessment can
provide reasonable responses to questions about marginal distributions of indi-
vidual attributes of a target entity. Few if any are well equipped to provide sharp
coherent judgments about possible dependencies among them. Some progress has
been made in understanding how to elicit sensible, coherent judgements about
second order co-variability of petroleum assessment units—the recent USGS study
of CO2 sequestration in depleted oil and gas reservoirs is an example. However,
specification of marginal distributions along with second order moments is not
sufficient for identification of a joint distribution of a set of uncertain quantities.
This matters when interest centers on the right tail of a sum of magnitudes of
petroleum in assessment units. Excepting special cases—joint lognormality for
example—the right tail of a sum of jointly dependent uncertain quantities can, both
in principle and in practice differ meaningfully from the right tail of an approxi-
mation based on marginal distributions and second moment properties alone.
Lillestøl and Sinding-Larsen’s (2017) study of giant field probabilities based on 182
North Sea discoveries highlights the importance of accurate modeling of tail
probabilities. For economists, bureaucrats and politicians right tail probabilities are
often the most interesting feature of a probabilistic oil and gas assessment. What,
for example, is the probability of finding at least one more giant field in a given
mature petroleum province? Objectives here are first, to outline how methods
currently used by geologists to impute probabilistic dependencies among uncertain
geologic quantities fit (or don’t fit) into a conceptual framework developed by
probabilists to answer the question posed at the outset and second, to review how
the probability distribution of a sum of such quantities can be bounded given
knowledge of marginal distributions alone assuming they are governed by a type of
functional dependency called co-monotonicity. Co-monotonicity and cupolas are
conceptual twins.
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Section 5.2 lays out necessary theory and definitions and calls attention to
co-monotonic upper bounds on sums of random variables and lower bounds
expressed in terms of conditional expectations. Section 5.3 addresses geologic case
studies in two of which geologists compute a probability distribution of a sum of
random geologic magnitudes in three steps: first, specify marginal distributions of
each magnitude, second, elicit judgmental appraisals of pairwise correlations
among magnitudes and third, combine the two using Monte Carlo simulation to
arrive at a distribution of the sum. This approach might be labelled “incomplete
specification” (not to be confused with the econometric definitions of just-, over-
and under-specification.). Iman and Conover’s (1982) ingenious method for
imputing dependencies among a set of random variables requiring only pairwise
correlations among elements of that set and marginal distributions is deployed in
the CO2 sequestration study cited above (Sect. 5.3.2). Chen et al. (2012) use of
cupolas to capture probabilistic dependencies in geologic micro-assessments is
reviewed in Sect. 5.3.3. Brief concluding remarks appear in Sect. 5.4. Blondes et al.
(2013a, b) offer a sensible rationale for careful attention to dependencies:

In the Circum-Arctic aggregation of the 48 AUs, the 90-percent uncertainty interval for
recoverable gas is 1,471, 2,009, or 3,515 tcf for assumptions of independence, assessor
specified dependency (correlation), or total dependence respectively. Clearly, decision
makers who rely on assessment results need accurate interval projections. Too broad an
interval provides little information; too narrow an interval gives a false sense of precision.

Spatial modeling provides important insights into the structure of probabilistic
dependencies among petroleum play attributes and deserves careful attention in
parallel with methods and models discussed here. It is a topic for another day.

5.2 Preliminaries

Define FX to be the distribution function of a random vector X= ðX1, . . . ,XnÞt
with domain Rn and marginal distributions Fi, i=1, . . . , n. Set FXðxÞ=
ProbfX1 ≤ x1, . . . ,Xn ≤ xng. Assume that each Fi is continuous and possesses a one
to one inverse. Define the pth fractile of Xi as the value in the domain of Xi such that
ProbfXi ≤ xpg= p and its inverse as F − 1

i ðpÞ= xiðpÞ. In turn the pth fractile of the
sum Sn =X1 +⋯+Xn is sp such that ProbfSn ≤ spg= p or F − 1

Sn ðpÞ= sp.
What conditions guarantee that fractiles are strictly additive? That is that for all

p∈ ð0, 1Þsp = x1ðpÞ+⋯+ xnðpÞ? Imposition of functional dependencies among
X1, . . . ,Xn is one route to sufficient conditions for this to be true. To divide difficulties
suppose that X1, . . . ,Xn share a common domain DX and consider n continuous
invertible functions hi, each with domainDX . Suppose that xi = hiðx1Þ for all xi ∈DX ,
i=2, .., n. Then ProbfSn < sg=ProbfX1 + h2ðX1Þ+⋯+ hnðX1Þ< sg. The omnibus
function gðx1Þ= x1 + h2ðx1Þ+⋯+ hnðx1Þ , x1 ∈DX is continuous and invertible so
ProbfgðX1Þ< sg=ProbfX1 < g− 1ðsÞg. The pth fractile of Sn is sp such that
ProbfgðX1Þ< spg= p or ProbfX1 < g− 1ðspÞg= p leading to x1ðpÞ= g− 1ðspÞ.
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Equivalently gðx1ðpÞÞ= sp. Functional dependencies of this type are too strong to
survive the rigors of modeling most real world data. In the absence of complete
knowledge of a joint distribution co-monotonicity is a more flexible approach to
modeling joint behavior of dependent random variables.

Definition The random vector X= ðX1, . . . ,XnÞt is co-monotonic if and only if
ðX1, . . . ,XnÞ= dðF − 1

1 ðUÞ, . . . ,F − 1
n ðUÞÞ,U a uniform random variable with domain

(0, 1).
Here = d means agreement in distribution. Intuitively each element of a

co-monotonic random vector is a functional of a single random variable U so all
elements of X exhibit strong positive dependency. McNeil et al. (2005) provide a
more general definition: X is co-monotonic if and only if it agrees in distribution
with a random vector, each of whose components is a non-decreasing function of a
single random variable. If elements of X are co-monotonic increasing one element
of X increases all others. Goovaerts et al. (2000) provide a clear readable account of
properties of sums of co-monotonic random variables in an actuarial context.
Deelstra et al. (2009) offer a literature review of co-monotonicity in financial
economics.

Foreshadowing a possible critique by geologists that in their setting, some ele-
ments of X may be independent or possibly negatively dependent (rather rare),
co-monotonicity and its consequences provide upper and lower bounds on a sum of
random variables with specified marginal distributions that embrace a wide range of
dependence structures. When these bounds are judged to be tight enough, reasonable
projections of probability distributions of aggregates can be made using marginal
distributions along with specification of certain conditional expectations. (See 5.1,
5.5). They provide useful information about projections made based on information
elicited from geologists about dependencies and police reasonableness of geologic
probabilistic projections of uncertain geologic resources made using other methods.

5.2.1 Bounds

A random variable X precedes a random variable Y in convex order, denoted by
X ≥ cxY if and only if EðgðXÞÞ≥EðgðYÞÞ for all real convex functions g for which
expectations are finite. Kaas et al. (2009) use convex order to show that fractiles of
co-monotonic random variables can be added in the following sense: for any ran-
dom vector X= ðX1, . . . ,XnÞ possessing marginal cumulative distribution functions
F1, . . . ,Fn and U a uniform (0, 1) random variable

ðX1 +⋯+XnÞ≤ cxSu ≡F − 1
1 ðUÞ+⋯+F − 1

n ðUÞ. ð5:1Þ
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If Su = dF − 1
1 ðUÞ+⋯+F − 1

n ðUÞ it follows immediately that the pth fractile of Su
is F − 1

Su ðpÞ=F − 1
1 ðpÞ+⋯+F − 1

n ðpÞ, for all p∈ ð0, 1Þ. They point out that (5.1) is a
supremum in terms of convex order and is a best bound for marginal distributions in
a Fréchet space. It is well known that if a random vector X with marginal distri-
butions F1, . . . ,Fn belong to a Fréchet space 𝖥n the joint cumulative distribution
function ProbfX1 ≤ x1, . . . ,Xn ≤ xng of X is bounded from above by
Mn ≡minfF1ðx1Þ, . . . ,FnðxnÞg. Goovarts et al. note that Mn is reachable in 𝖥n.

For sums of elements of X introduction of a random variable Z such that dis-
tribution functions of each Xi given Z are known with certainty leads to refined
upper and lower bounds. In a geologic context Z is interpretable as a latent
(background) variable describing gross geologic characteristics of, for example, a
petroleum assessment unit. The conditioning variable Z might be regression
dependent on geologic attributes of an assessment unit and need not be scalar.
These authors define F − 1

Xi Zj ðUÞ to be a random variable fiðU, ZÞ that for

ðU, ZÞ= ðu, zÞ assumes value F − 1
Xi zj ðuÞ and prove that for U uniform ð0, 1Þ and Z

independent of U

ðX1 +⋯+XnÞ≤ cxS*u ≡F − 1
X1 Zj ðUÞ+⋯+F − 1

Xn Zj ðUÞ. ð5:2Þ

Jensen’s inequality leads to a lower bound

EðX1 ZÞ+⋯+EðXn ZÞjj ≤ cxðX1 +⋯+XnÞ. ð5:3Þ

Kaas et al. (2009) point out that (a) the random vector EðX1 ZÞ+⋯+EðXn ZÞjj
will not in general have marginal distributions F1, ..,Fn (b) If EðX1 ZÞ, . . . ,EðXn ZÞjj
are either jointly non-increasing or non-decreasing functions of Z the LHS in (5.3)
is a sum of co-monotonous random variables and (c) VarðEðXi Zj ÞÞ<VarðXiÞ
unless VarðEðXi Zj ÞÞ=0. In order to create a path to direct computation of the cdf of
the LHS of (5.4) suppose that (b) obtains and that each of the random variables
EðX1 ZÞ, . . . ,EðXn ZÞjj are non-decreasing functions of increasing Z = z. Write
the lower bound as EðX1 ZÞ+⋯+EðXn ZÞjj =EðS ZÞj and define FEðXi ZÞj ðxÞ=
ProbfEðXi ZÞ≤ xgj . They show that, provided that the cdf of EðXi ZÞj is continuous
and increasing

F − 1
EðX1 ZÞj ðFEðS ZÞj ðxÞÞ+⋯+F − 1

EðXn ZÞj ðFEðS ZÞj ðxÞÞ= x, ð5:4Þ

a prescription for calculating a lower bound. The quality of the lower bound (5.3)
depends of course on the choice of a model for Z. Kaas et al. (2002) and Goovarts
et al. (2000) demonstrate that upper and lower bounds (5.1) and (5.3) provide
reasonable bounds on the cumulative distribution function of certain sums of dis-
counted cash flows as well as for the cumulative distribution function of sums of
dependent lognormal random variables. Lux and Papantoleon (2017) show that
upper and lower Fréchet–Hoeffding bounds such as those described above can be
tightened. They demonstrate that other types of information, knowledge of

5 Properties of Sums of Geological Random Variables 109



functionals of lower dimensional marginals of an n-dimensional cupola for exam-
ple, also lead to improvements. The tradeoff is that the improved bounds are
quasi-cupolas but not cupolas.

Comparison of predictive distributions of undiscovered mineral resources
derived by conventional methods currently in use with co-monotonic bounds on
them is a promising avenue of research.

5.3 Thumbnail Case Studies

Thumbnail sketches of three case studies serve as a template for discussion of
probabilistic dependence issues discussed above: examples of the USGS approach
to probabilistic dependencies among oil and gas assessment units, the USGS
probabilistic assessment of CO2 sequestration in mature oil and gas reservoirs in the
United States and a Canadian Geological Survey study of use of cupolas to capture
probabilistic dependencies among accumulations in individual oil and gas plays.

5.3.1 USGS Oil and Gas Resource Projections

The USGS developed an assessment system in the 1980s with the acronym FASP
(fast appraisal system for petroleum resources). FASP incorporated perfect positive
correlation between micro-level reservoir attributes but allowed specification of any
positive correlation in the course of aggregating play resources. However, the
USGS 2000 World Petroleum Assessment aggregates undiscovered resource vol-
umes from assessment unit level to regional level using perfect correlation as the
argument for adding assessment unit fractiles to arrive at regional level aggregates.
Recognizing that at the global level dependencies among large regional aggregates
of resources are unlikely to be perfectly correlated they adopt pairwise correlation
of 0.5 between pairs of eight regions (Klett et al. 2000). No sensitivity analysis of
how aggregate projections vary with these particular choices is provided.

Many USGS assessment studies present tables of fractiles of individual assess-
ment units and then add them to arrive at a fractile assessment of total resources.
Addition is qualified by the statement that “Fractiles are additive under assumption
of perfect positive correlation” allowing avoidance of direct assessment of depen-
dencies among units. Table 2 in “Assessment of Undiscovered Continuous Oil and
Gas Resources in the Monterey Formation, San Joaquin Basin Province, California”
USGS Fact Sheet 2015-3058 September 2015 and Table 2 in USGS Fact Sheet
2014–3082 “Assessment of Potential Shale-Oil and Shale-Gas Resources in
Silurian shales of Jordan” September 2014 are examples. Chen et al. (2012) cite
additional examples (Klett et al. 2000, 2005; Klett 2004). It is easy to show that
“perfect correlation” is not robust to variations in specification of the functional
form of marginal distributions elicited from geologists. Worse, addition of fractiles
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without careful attention to properties of the joint distribution of a set of uncertain
quantities can lead to incoherence. On the other hand mutual independence allows
specification of arbitrary marginal probability distributions without doing violence
to coherence but often leads to an unacceptably narrow probability projection of
sums of oil and gas magnitudes.

A salient feature of Pearson’s correlation coefficient is that random variables
X and Y possess correlation 1.0 or − 1.0 only if X and Y are linearly dependent. As
Denuit and Dehaene (2003) point out, a limiting case is a bivariate normal pair of
random variables for which the variance of one member of the pair is zero. If
X and Y are jointly lognormal and logX is a linear function of log Y the Pearson
correlation of logX and log Y is either 1.0 or −1.0. However, the Pearson corre-
lation of X and Y is then less than 1.0. Denuit and Dehaene provide a more nuanced
treatment. Suppose F1 andF2 are marginal cumulative distribution functions of
X and Y respectively, each concentrated on ð0,∞Þ and U is a uniform random
variable independent of X and Y . Using super-modularity these authors prove that if
F1 andF2 lie in a Fréchet space the Pearson correlation coefficient rðX,YÞ of
X and Y is bounded by

CovðF − 1
1 ðUÞ,F − 1

2 ð1−UÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðYÞp ≤ rðX, YÞ≤ CovðF − 1
1 ðUÞ,F − 1

2 ðUÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðYÞp . ð5:5Þ

In this setting perfect correlation is not achievable. They also prove that it is
possible for a pair of co-monotonic lognormal random variables to have pairwise
correlation close to zero, contradicting the intuitive notion that small correlation
implies weak dependence. Denuit and Dehane call attention to Shih and Huang
(1992) and Schechtman and Yitzhaki’s (1999) observation that, for any two random
variables, the achievable range of Pearson’s correlation coefficient is (−1, 1) only if
the functional form of the two marginal distributions differ solely in values of
location and/or scale parameters. If not, the range of Pearson’s r is narrower than
(−1, 1) and depends on the shape of the two marginal distributions.

These authors document several important features of Kendall’s τ and Spear-
man’s ρ. (Spearman’s ρ is at the center of the Iman and Conover method deployed
in the USGS (2013) study of CO2 sequestration to compute predictive probability
distributions of aggregates). First, both are invariant with respect to strictly
monotone transformations. Second, when one variable is a non-decreasing
(non-increasing) transformation of the other they equal 1 (or −1) at the Fréchet
upper (resp. lower) bound. They note that at a value of 1.0 or −1.0 Kendall’s τ and
Spearman’s ρ achieve Fréchet bounds. According to them Kendall’s τ and Spear-
man’s ρ are more desirable measures of association for non-normal multivariate
distributions than Pearson’s r because the latter does not share Kendall and
Spearman’s correlation invariance properties. These invariance properties come
into play in Iman and Conover’s method discussed below. Denuit and Dehane
prove the non-obvious fact that if positively or negatively quadrant dependent
random couples are jointly uncorrelated they are mutually independent.
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All of this emphasizes that “perfect correlation” as an omnibus argument for
adding fractiles has many pitfalls. Co-monotonic bounds on random sums are a
conceptually satisfactory alternative that deserves much future study.

5.3.2 USGS Probabilistic Assessment of CO2 Storage
Capacity

A recent USGS probabilistic assessment of CO2 sequestration in mature petroleum
reservoirs (Blondes et al. 2013a, b) is based on both micro- and macro-assessments
by geologists. Their macro-assessment aggregates storage assessment units (SAUs)
at basin, regional and national levels. An objective was to provide probabilistic
assessments that take into account dependencies among assessment units arising
from “overlap of geologic analogs, assessment methods and assessors” using
individual SAU marginal probability distributions and “…a correlation matrix
obtained by expert elicitation describing interdependencies between pairs of
SAUs”. The correlation matrix dimension is 192× 192. Because a menagerie of
marginal distributions—Beta-PERT, lognormal, truncated lognormal—were
deployed at the micro-level use of standard multivariate distribution theory is not
appropriate. Dependencies among storage capacity magnitudes are induced using
an innovative distribution free method developed by Iman and Conover (1982) that
allows marginal distribution shapes to be estimated from data sets distinct from data
sets used to estimate dependency structure. Their method is designed to provide
rank correlations that match assessed correlations and to translate the match into a
predictive probability distributions for individual assessment units and larger
aggregates. (See Blondes et al. 2013a for informative examples).

How to aggregate from basin, to region and then to a national scale is an issue.
Should this be done in a single stage using the correlation matrix for all SAUs in the
study or successively aggregate subsets of SAUs in multiple stages? Blondes et al.
(2013b) conclude that

Although the single-stage approach requires determination of significantly more correlation
coefficients, it captures geologic dependencies among similar units in different basins and it
is less sensitive to fluctuations in low correlation coefficients than the multiple stage
approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to
basin, regional, and national scales.

Successive aggregation in multiple stages drastically reduces the number of
pairwise correlations that must be elicited from geologists at the expense of
requiring each assessor to appraise pairwise correlations of sums of assessment unit
magnitudes. Although there are no studies comparing how well geologists’
assessments calibrate when asked to appraise dependencies among sums of SAU
magnitudes relative to appraisal of dependencies among individual SAUs it is
reasonable to conjecture that individual SAU appraisals are much more likely to be
well calibrated. Properties of single and multi-stage appraisal methods are studied in
Kaufman et al. (2018).
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5.3.3 Cupolas and Oil and Gas Resource Assessment

Chen et al. (2012) emphasize that at an assessment micro-level, reservoir attributes
such as porosity, permeability, pressure and temperature are often decisively
dependent and that empirical data suggest dependencies are present among more
aggregate assessment units in mature provinces—among fields in a mature play or
basin for example. Their argument is that a basin’s tectonic framework exerts
“strong geographic control” over many geological features and leads to geographic
and spatial dependencies and that because plays in a given basin share “…petro-
leum system elements, such as source rocks, regional top seal, migration fairways,
timing, regional tectonics for trap formation, and accumulation preservation fac-
tors” a probabilistic model of pools or fields in a play in a given basin should
incorporate probabilistic dependencies among these attributes as well as between
plays. They are the first to use copulas in this setting.

Sklar (1959) proved that, subject to mild restrictions a multivariate cumulative
distribution can be mapped into a joint cumulative distribution of uniform random
variables called a cupola. As with Iman and Conover’s method, adoption of a
cupola model allows marginal distribution shapes to be estimated from data sets
distinct from those used to estimate dependency structure.

Suppose as in Sect. 5.2 above that FX is the distribution function of a random
vector X= ðX1, . . . ,XnÞt with domain Rn and marginal cumulative distributions
Fi, i=1, . . . , n. Let Un = ðU1, . . . ,UnÞ be a vector of independent uniform ð0, 1Þ
random variables and un = ðu1, . . . , unÞ be a realization of Un. Then with
ui =FiðxiÞ , i=1, . . . n ProbfX1 ≤ x1, . . . ,Xn ≤ xng=ProbfU1 ≤ u1, . . . ,Un ≤ ung.
Definition Cðu1, . . . , unÞ=ProbfU1 ≤ u1, . . . ,Un ≤ unÞg is the cupola of FX .

Set dFi = fi , i=1, . . . , n and dCðu1, . . . , unÞ= cðu1, . . . , unÞdu1 . . . dun. The
joint density of X can be written as cðu1, . . . , unÞ× f1ðx1Þ× . . . × fnðxnÞ. The term c
in the joint density captures the dependency structure of elements of X. Because
ProbfX1 ≤ x1, . . . ,Xn ≤ xng=ProbfU1 ≤ u1, . . . ,Un ≤ ung a procedure for gener-
ating samples from C produces samples of X by inversion of ui =FiðxiÞ , i=1, . . . n.

Computation requires choice of a cupola functional form. Among a variety of
choices Chen et al. chose the bivariate normal cupola, a popular choice closely tied
to standard multivariate normal distribution theory.

Their regional resource assessment of the Canadian Arctic’s Beaufort-McKenzie
Basin is based on analysis of 48 “significant” oil and gas discoveries containing 53
distinct accumulations. Empirical data is sufficiently detailed to allow study and
estimation of pairwise correlations among reservoir attributes—area, porosity, oil
saturation, net pay—for plays in the three major petroleum systems. The authors
treat geologic risk factors as probabilistically independent because the data is not
sufficient to allow empirical estimation of them and restrict their study of depen-
dencies to reservoir volume attributes within each play and through them to the
impact of probabilistic dependencies on the distribution of total resource volumes.
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Four plays, Ivik, Taglu, Kugmallit (East) and Kugmallit (West) are used to
illustrate how to incorporate dependencies among individual play resources.
Although no systematic method for eliciting geologists’ judgments about between
play dependencies are discussed the authors motivate their choice of a rather large
correlations between plays (0.6) and perfect correlation (1.0) by noting that all four
plays share the same source rock and petroleum system: “The resource richness of
each play is basically a function of both the oil charge and the preservation of
accumulations that are mostly controlled by common petroleum system elements…
we infer that the resources in the four plays are highly correlated, although the pool
size distributions among the four plays vary considerably.” Pairwise correlations
between area, net pay, porosity and oil saturation vary from a low of 0.20 to a high
of 0.86. The authors call attention to the substantial difference between total ulti-
mate oil resource medians under the assumption of independence and under the
assumption of within and between play correlations: the latter is 1.6 times the
former.

Principal messages are that to be realistic, probabilistic appraisal of oil and gas
resources in unexplored and partially explored regions must account for multiple
sources of dependencies and that cupolas are useful for doing so.

5.4 Concluding Remarks

In the absence of empirical data that allows resolution of the vexing problem of how
to address probabilistic dependencies among and between elements of large sets of
geologic random variables we need methods that refocus and streamline expert
geological judgment inputs as well as analytical methods for modeling dependen-
cies that go beyond pairwise correlation and its cousins. One promising avenue is
the theory of vines proposed by Bradford and (2002). Their theory broadens the
range of allowable dependency structures beyond Bayesian belief networks and
exploits properties of rank correlations in a fashion that leads to efficient
computation.
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