
Chapter 4
Modelling Compositional Data.
The Sample Space Approach

Juan José Egozcue and Vera Pawlowsky-Glahn

Abstract Compositions describe parts of a whole and carry relative information.

Compositional data appear in all fields of science, and their analysis requires pay-

ing attention to the appropriate sample space. The log-ratio approach proposes the

simplex, endowed with the Aitchison geometry, as an appropriate representation of

the sample space. The main characteristics of the Aitchison geometry are presented,

which open the door to statistical analysis addressed to extract the relative, not abso-

lute, information. As a consequence, compositions can be represented in Cartesian

coordinates by using an isometric log-ratio transformation. Standard statistical tech-

niques can be used with these coordinates.
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Simplex ⋅ Variation matrix ⋅ Biplot ⋅ Balance dendrogram ⋅ ilr ⋅ clr
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4.1 Introduction

The difficulties when dealing with compositional data have been known for more

than a century. Indirectly, Pearson (1897) described some of these problems and

coined the term spurious correlation. They are easily illustrated using the early

characterizations of compositional data, which relay on the constant sum constraint

(CSC). For instance, Chayes (1960, 1962) and Connor and Mosimann (1969) based
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their analysis on the fact that a vector of proportions 𝐱 = (x1, x2,… , xD) satisfies the

CSC,
D∑

i=1
xi = 𝜅 > 0 , xi > 0 , i = 1, 2,… ,D . (4.1)

It defines the 𝜅-simplex of D components or parts. Here the simplex is denoted 𝕊D
,

with no reference to the positive constant 𝜅. Data fulfilling the CSC were called

constrained or closed data. In the eighties, promoted by J. Aitchison, this kind of

data were recognized as compositional data (Aitchison and Shen 1980; Aitchison

1982, 1986). In the last reference, additional conditions were added to the original

CSC characterisation, leading to the formulation of some principles for composi-

tional data analysis. They were the starting point on which the log-ratio approach

to compositional data is based. These principles have been reformulated several

times in order to depurate and to clarify them for users (Aitchison and Egozcue

2005; Egozcue 2009; Egozcue and Pawlowsky-Glahn 2011a; Pawlowsky-Glahn

et al. 2015). Nonetheless, they have been contested from different points of view (e.g.

Scealy and Welsh 2014), arguing that they match the conditions for the application

of log-ratio methods. But not all data satisfying the CSC (4.1), for instance admitting

that some parts can be zero, are automatically adequate for a log-ratio analysis. In the

last decade, in which the log-ratio approach has shown to be useful in a large number

of applications, it also became clear that it can be rigorously applied to problems in

which the CSC is not fulfilled, or where the components do not represent propor-

tions. The key point for this change of the paradigm represented by the CSC, is the

conception of compositions as equivalence classes of vectors which positive com-

ponents are proportional (Barceló-Vidal et al. 2001; Martín-Fernández et al. 2003;

Pawlowsky-Glahn et al. 2015; Barceló-Vidal and Martín-Fernández 2016), and the

related idea that the simplex is just a representation of the sample space of com-

positions. This fact is a direct consequence of the scale invariance of compositions

(Aitchison 1986) but, up to now, its implications have not been completely recog-

nised.

This contribution aims at a reformulation of the principles of compositional data

analysis in their log-ratio version, presenting them as a practical and natural need in

many situations of data analysis. Section 4.2 discusses scale invariance and composi-

tional equivalence and Sect. 4.3 presents the simplex as an appropriate sample space

for compositional data. Perturbation, the group operation between compositions, is

shown to be a natural operation in Sect. 4.4. The Aitchison distance and the require-

ments on it are discussed in Sect. 4.5. The consequence of the previous sections is the

Euclidean space structure of the simplex, which has been termed Aitchison geometry

(Pawlowsky-Glahn and Egozcue 2001). The Aichison geometry has been shown to

be useful for the modelling and analysis of compositions, centring the interest in the

relative information contained in the data. Some of these elements are commented

in Sect. 4.6.
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4.2 Scale Invariance, Key Principle of Compositions

When somebody records the composition of a product, material, shares of a market,

species in an ecosystem or a kitchen recipe, he or she implicitly recognizes that the

total amount is irrelevant for the description of the product, material, shares, species

or recipe. This does not mean that the size or the amount is not informative, it only

tells us that, whichever is the size, the elements of the total are distributed accord-

ing to the specified composition. Essential are the ratios between the components of

the described system. One can say that for any system that can be decomposed into

parts its description has, at least, two types of information: one that is referred to as

size, and another one that concerns the relations between the parts irrespective of

the size. This latter one is called compositional information and, when the system

is a geometric object, it is called shape. Beyond size (total amount) and composi-

tion (shape), there may be other properties of the system which can be quantified

(color, sound, complexity, strength, . . . ) and again these additional properties may

be decomposed into size and composition. Here, attention is paid to systems which

are formed by parts, while their size or total amount is either analysed in another way

or is irrelevant. For a discussion of a possible approach to a problem where interest

lies in the relative information and in the total, see Pawlowsky-Glahn et al. (2015),

Olea et al. (2016), Ferrer-Rossell et al. (2016).

Think about the map of a region; even changing the scale of the map, the same

region is identified. If the distance between two mountain peaks was 12 cm, and a

lake between the two was 4 cm broad, halving the scale new lengths of 6 and 2 cm

will be obtained. The distance between the two peaks and the width of the lake can

be identified as equal in the two maps, as the ratio is in both cases 12∕4 = 6∕2 = 3.

Only when the maps are to be transformed into an actual region, the size becomes

relevant and it is revealed taking into account the scale of the maps. Note that in

the case of the peaks and the lake, the considered parts, the distance between peaks

and the width of the lake, are not disjoint, as the first includes the second. In fact,

the previous comments did not imply that the parts of the system had to be non-

overlapping or disjoint.

The irrelevance of the total led J. Aitchison (1986) to introduce the principle of

scale invariance for compositions. A composition is assumed to be represented by

an array of positive numbers which quantitatively represent the parts of the system.

Let 𝐱 = (x1, x2,… , xD), xi > 0 for i = 1, 2,… ,D, be such a composition. Consider

any positive constant c > 0. The scale invariance principle can be stated as: 𝐱 and c𝐱
contain the same compositional information. From this point of view, compositional
equivalence can be defined (Aitchison 1997; Barceló-Vidal et al. 2001; Barceló-Vidal

and Martín-Fernández 2016; Pawlowsky-Glahn et al. 2015).

Definition 4.2.1 (Compositional equivalence) Let 𝐱 = (x1, x2,… , xD) and

𝐲 = (y1, y2,… , yD) be two arrays of D positive components. They are composition-

ally equivalent if there exists a positive constant c such that, for i = 1, 2,… ,D,

yi = cxi.
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Two equivalent arrays 𝐱, 𝐲 represent the same composition. Both the equivalence

class generated and its representative are called compositions.

Figure 4.1 shows some artificial, arbitrary data of Ca and Mg in mg/l from a ficti-

tious water analysis (circles). Each pair (Ca,Mg) can be considered as a two part com-

position. A line from the origin through each data point consists of compositionally

equivalent points, thus visualising a composition, strictly speaking an equivalence

class. Any point on these rays can be chosen as a representative of the composition.

Particularly, they can be selected so that the sums of the two components add to 100,

which correspond to the triangles on the 2-part simplex (full line). This means that

compositions are equivalence classes of compositionally equivalent arrays. Equiva-

lence classes are handled by selecting a representative of each class and operating

with these representatives. The selection of representative of a class is arbitrary, but

imposes a condition on any further analysis. This condition is the principle of scale

invariance formulated in Aitchison (1986).

Principle 4.2.1 (Scale invariant analysis) Any analysis or operation with composi-
tions must be expressed by scale invariant functions of the components. Scale invari-
ant functions are identified with real, 0-degree homogeneous functions, that is, satis-
fying the condition f (𝐱) = f (c𝐱) for any positive constant c and for any composition
𝐱.

Consequently, for any composition given by the array 𝐱 it is possible to choose

another compositionally equivalent array, denoted 𝐱, such that it is in the simplex,

that is, it fulfills the CSC (4.1). To this end, the constant in CSC (4.1) 𝜅 = 1 is chosen,

thus yielding

𝐱 =

(
x1

∑D
i=1 xi

,

x2
∑D

i=1 xi
,… ,

xD
∑D

i=1 xi

)
.

Fig. 4.1 Some

two-component data points

with positive components

(circles), are compositionally

equivalent to all points on

the dashed lines from the

origin through the data

points. Triangles are the

representatives of each

equivalence class on the

2-part simplex in which

components add to 100
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The symbol  is called closure operator. It assigns a representative in the simplex

(closed form of 𝐱, satisfying the CSC) to the equivalence class where 𝐱 is included.

Due to the scale invariance analysis principle, any analysis on the elements in the

simplex (closed) must lead to identical results as that performed using the non-closed

representatives.

The scale invariance principle is familiar to any scientist. For instance, an array

of probabilities as (0.1, 0.3, 0.2), originally expressed as values between 0 and 1, can

be expressed in percentages as (10, 30, 20) without any confusion; a set of concen-

trations given in percentages of mass can be translated into ppm (parts per million of

mass) just multiplying by 10, 000 and the geologist does not get confused provided

that he/she is informed about which units are in use.

Despite the intuitive character of the scale invariance principle, in practice it is

frequently violated. For instance, when performing a cluster analysis of geochemical

samples given in ppm using the Euclidean distance between the samples. In fact,

assume that we have two samples 𝐱 and 𝐲, and the square distance between them

is taken as the square-Euclidean distance d2(𝐱, 𝐲) = ∑D
i=1(xi − yi)2. Imagine that 𝐲

is now expressed in ppb (parts per billion). This is a valid operation as 𝐲 in ppm

and in ppb are compositionally equivalent, but d2(𝐱, 𝐲) changes dramatically as the

square-differences (xi − yi)2 become (xi − 1000 ⋅ yi)2 which constitutes a violation

of the scale invariance principle.

Similarly, given a set of geochemical samples in ppm, 𝐱1, 𝐱2, . . . , 𝐱n, the Pearson

correlation coefficient between two components also violates the principle of scale

invariance. This coefficient between x⋅1 and x⋅2 is

r12 =
∑n

j=1(xj1 − x̄1)(xj2 − x̄2)
√∑n

j=1(xj1 − x̄1)2
∑n

j=1(xj2 − x̄2)2
, (4.2)

where x̄k is the average of the k-th component along the sample. Now suppose that the

first sample 𝐱1 is expressed in ppb. This should not change the analysis as preconized

by the scale invariance principle. However, everything changes: the average values

x̄k = (1∕n)
∑n

j=1 xjk are now dominated by the first term 1000 ⋅ x1k which replaced

the initial term x1k. The global effect is evident after a simple inspection of Eq. (4.2).

When the change of closure affects all the samples, the effect is the spurious correla-
tion studied by Chayes (1960), although without any successful solution. Nowadays,

after J. Aitchison’s work, spurious correlation just corresponds to a violation of the

scale invariance principle. Or, in other words, if a data set is assumed scale invariant,

covariance or Pearson correlation are meaningless and spurious, and should not be

used.
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4.3 The Simplex as Sample Space of Compositions

In any data analysis, the first modeling step is to establish an appropriate sample

space. In general, this step conditions all subsequent steps, and may affect dramati-

cally the conclusions. Dealing with compositional data is not an exception. However,

the choice and structure of the sample space is usually not explicit, and its conse-

quences remain hidden in practice. Even the analyst is frequently not aware of the

choice he or she has made when taking a decision on which methodology to apply.

The sample space of an observation (variable, vector, function or, in general,

object) is a set where all the possible outcomes can be represented. However, the

sample space may contain elements which do not correspond to any possible obser-

vation. When the considered object is a random one, the sample space must con-

tain subsets, called events, which can be assigned a probability. Technically, if  is

the sample space, a 𝜎-field in  (e.g. Ash 1972; Feller 1968) needs to be defined.

This is the minimum structure of a sample space for a random object. There are

many qualitatively different random objects in practice. Multivariate real random d-

vectors may be thought of as taking values in real space ℝd
; a discrete time, real

valued stochastic process, can be represented in the space 𝓁∞
of all real, bilaterally

bounded sequences; if the observation is a random set on a plane, like paint stains on

the floor, the sample space can be the set of compact sets in the plane; there are many

more examples. It should be noted that the sample space is a choice of the analyst and

it must be selected according to the stated questions from the beginning of the anal-

ysis. Commonly, beyond probability statements, the data analysis requires perform-

ing operations (sums, differences, averages, scaling), metric computations (distances

or divergences, projections, approximations), or computing functionals (averages of

components, extraction of extremes). All these procedures must be defined on the

sample space. Consequently, the structure of the sample space is richer than that

provided by the 𝜎-field of events.

When dealing withD-part compositional data, the simplex𝕊D
as the sample space

is a valid choice, given that any composition can be assigned a representative in it.

However, there are many alternatives. Figure 4.1 suggests that any curve intersecting

once, and only once, all rays from the origin in the positive orthant might be taken

as sample space. For instance, for two dimensional data points like those shown in

Fig. 4.1, a possible choice is a quarter of a circumference, or two segments complet-

ing a square with the axes, as shown in Fig. 4.2. In the case of compositional data,

the analyst is mainly interested in proportions and ratios, thus suggesting the choice

of the simplex as an appropriate and intuitive representation. However, a key point

for the choice of an adequate sample space is the decision on which is a translation

or shift relevant for the analysis.
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Fig. 4.2 Some

two-component data points

with positive components

(blue circles), are

compositionally equivalent

to all points on the dashed

lines from the origin through

the data points. Red triangles

are the representatives of

each equivalence class on the

2-part simplex in which

components add to 100.

Violet circles are

representatives of these data

points on a quarter of

circumference. Green

squares are representatives

on the 100-square

4.4 Perturbation, a Natural Shift Operation
on Compositions

Perturbation, as operation in the simplex, was introduced by Aitchison (1986) on an

intuitive basis. It can be stated as follows.

Definition 4.4.1 (perturbation) Let 𝐱, 𝐲 be two elements in the D-part simplex 𝕊D
,

𝐱 = (x1, x2,… , xD), 𝐲 = (y1, y2,… , yD). The perturbation between them is

𝐱⊕ 𝐲 = (x1y1, x2y2,… , xDyD) . (4.3)

Some properties of perturbation are quite immediate. They can be summarized

as that perturbation is a commutative group operation in 𝕊D
(Aitchison 1997). The

neutral element is the composition with equal components 𝐧 = (1, 1,… , 1). The

opposite to 𝐱 is

⊖𝐱 = ((1∕x1), (1∕x2),… , (1∕xD)),

where each component is inverted.

Repeated perturbation, like 𝐱⊕ 𝐱⊕ 𝐱, suggests the definition of a multiplication

by a real scalar, so that 𝐱⊕ 𝐱⊕ 𝐱 = 3⊙ 𝐱. Following this idea, multiplication by

real scalars, called powering, is defined as follows.

Definition 4.4.2 (powering) Let 𝐱 = (x1, x2,… , xD) be an element in the D-part

simplex 𝕊D
and let 𝛼 be a real scalar. The powering of 𝐱 by 𝛼 is

𝛼 ⊙ 𝐱 = (x𝛼1 , x
𝛼

2 ,… , x𝛼D) . (4.4)
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These definitions present perturbation and powering as operations on elements of

the simplex. However, as the simplex can be taken as the sample space of compo-

sitions and its elements are representatives of compositions, perturbation and pow-

ering are also operations on compositions. The simplex, endowed with perturbation

and powering is a (D − 1)-dimensional vector space. Perturbation plays the role of

the sum in real space, and powering is multiplication by a real scalar. Perturbing a

composition 𝐱 by another composition 𝐲 is thus a shift of 𝐱 in the direction of 𝐲.

Despite the mathematical aspect of Definition 4.4.1, perturbation is a common

place in real life and scientific activity. To begin with, imagine a water filtering

device which is fed with an inflow with disolved matter characterised by the con-

centrations (mg/l) of the major ions specified in Table 4.1, first row. Suppose that the

filtering device has been designed to filter out sulphur, SO4, iron, Fe, and phospho-

rus, P; SO4 is ideally reduced by 75%, Fe by 10%, and P by 5%, meanwhile other

ions remain unaltered. In order to compute the outflow concentrations, the filter fac-

tor or transfer function (4th row) is computed as 1 − (10∕100) = 0.9 in the case of

Fe. Then, the filter factor multiplies the inflow concentrations to obtain the outflow

concentrations in mg/l. Notably, when the inflow concentrations are represented in

closed form, as percentages (second row), then, once multiplied by the filter factor,

the same outflow concentrations in percent are obtained. In fact, the outflow concen-

trations in mg/l, when closed to 100, are those in the last row of the table. The closed

form of the filter factor, labelled filter perturbation, can be used to obtain the same

outflow concentrations. That is the filter factor is a composition. Although elemen-

tary, this example shows that inflow and outflow concentrations and the filter factor

can be represented by different, but compositionally equivalent, arrays; and that the

traditional form of expressing change of concentrations by percentages is nothing

else than a way of expressing a perturbation. Also, one may be confronted with the

estimation of the filter factor (perturbation) from the inflow and outflow concentra-

tions. From the example, it is clear that a ratio of outflow over inflow concentrations

gives a factor compositionally equivalent to the filter perturbation. This suggests the

Table 4.1 Inflow concentrations of some ions disolved in water are filtered reducing Fe, SO4 and P

by a given percentage. Outflow concentrations are obtained by multiplication of inflow concentra-

tion by the filter factor (closed or not). Inflow, outflow concentrations and filter factor are presented

also in closed form as they are treated as compositions

Ca Fe K Mg Na P SO4

Inflow (mg/l) 0.760 0.225 5.30 1.54 2.00 0.079 2.40

Inflow (closed to 100) 6.177 1.829 43.08 12.52 16.25 0.642 19.51

Filter effect (%) 0 −10 0 0 0 −5 −75

Filter factor 1 0.9 1 1 1 0.95 0.25

Filter perturbation 0.164 0.148 0.164 0.164 0.164 0.156 0.041

Outflow (mg/l) 0.760 0.203 5.30 1.54 2.00 0.075 0.60

Outflow (closed to 100) 7.254 1.933 50.58 14.70 19.09 0.716 5.73



4 Modelling Compositional Data. The Sample Space Approach 89

definition of the difference-perturbation, the opposite operation to perturbation, as

𝐲⊖ 𝐱 = 

(
y1
x1
,

y2
x2
,… ,

yD
xD

)
,

which is the natural difference for perturbation as a group operation.

In the context of probability theory, arrays of probabilities can be considered

as compositions. Consider a family of non overlapping events Ai, i = 1, 2,… ,D,
which are assigned probabilities pi = P[Ai]. Observing the result R of an experi-

ment, the conditional probabilities qi = P[R|Ai] allow to update the probabilities pi
—according to the information obtained from the observation R— using Bayes’ for-

mula

P[Ai|R] =
P[Ai] ⋅ P[R|Ai]

∑D
j=1 P[Aj] ⋅ P[R|Aj]

=  (𝐩⊕ 𝐪) ,

where 𝐩 = (p1, p2,… , pD) and 𝐪 = (q1, q2,… , qD). Bayes’ formula states that the

final probabilities, conditioned to the result R, are the perturbation of the initial or

prior probabilities 𝐩 and the probabilities of the result given the events Ai, denoted qi,
also known as the likelihood of R. In this way perturbation becomes a very natural

way of operating vectors of probabilities and likelihood, as it is the paradigm of

incorporating information from observations. This interpretation of perturbation was

proposed in Aitchison (1986, 1997) and developed in other contexts (Egozcue and

Pawlowsky-Glahn 2011b; Egozcue et al. 2013).

Perturbation also appears as a natural operation on compositions when changing

units. For instance, consider a grain size distribution for different sieve diameters. It

may be expressed as proportions of volume corresponding to each sieve or as pro-

portions of mass assigned to the same sieves. Both distributions can be considered as

compositions. Transforming volume to mass consists of multiplication by the den-

sity of the material in each sieve, possibly different from one sieve to the other. This

componentwise multiplication is a perturbation (Parent et al. 2012). Also, changing

the concentrations of chemical elements from mg/kg to molar concentration consists

of dividing each component by its molar mass, thus performing a perturbation. In all

these examples, the secondary role of the closure and the CSC is remarkable: closure

might only be necessary to facilitate interpretation.

Exponential decay of mass is frequent in nature. The typical example is the

decay of mass of radioactive isotopes in time. These type of processes describe

straight lines in the simplex (Egozcue et al. 2003; Pawlowsky-Glahn et al. 2015;

Tolosana-Delgado 2012). This supports that perturbation is a natural operation in

the simplex and between compositions. To sketch the argument, consider the masses

ofD = 3 fictitious radioactive isotopes 𝐱(t) = (x1(t), x2(t), x3(t)), which decay rates in

time are 𝜆1 = 3, 𝜆2 = 0.5, 𝜆3 = 0.1, respectively. Initially, at t = 0, there are masses

𝐱(0) = (0.9, 0.04, 0.01) which disintegrate into other non considered isotopes. The

total mass decreases in time, and the mass of each isotope changes as
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Fig. 4.3 Evolution of masses (left panel) and proportions (right panel) of three isotopes which

disintegrate at rates 3, 0.5, 0.1 in time, respectively. Initial masses are 0.9, 0.04, 0.01

Fig. 4.4 Evolution of

proportions in time of three

isotopes which disintegrate

at rates 3, 0.5, 0.1,

respectively, represented in a

ternary diagram. The initial

masses are 0.9, 0.04, 0.01,

and they change as a

function of time

xi(t) = xi(0) ⋅ exp[−𝜆i t] , i = 1, 2, 3 . (4.5)

This evolution of mass is shown in Fig. 4.3, left panel, where the decreasing mass is

clearly observed. Figure 4.3, right panel, shows the evolution of proportions of the

isotopes after the closure, which corresponds to

𝐱(t) =  (𝐱(0)⊕ (−t ⊙ exp[𝝀])) , (4.6)

where exp[𝝀] = (exp(𝜆1), exp(𝜆2), exp(𝜆3)). Figure 4.4 shows the evolution of the

isotopes in a ternary diagram. The main fact on this exponential decay of isotopes

is that it is naturally expressed using perturbation and powering, as in Eq. (4.6). In

the simplex, this compositional evolution is a linear one. If proportions are thought

as real variables, as they are shown in Fig. 4.3 (right panel), or in Fig. 4.4, then they

are taken as non-linear thus ignoring their simplicity as compositional evolution.
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The fact that perturbation is easily interpreted on vectors of proportions supports

the idea that the simplex is a suitable sample space for compositions. Think, for

instance, how perturbation could be interpreted when taking representatives of com-

positions as projections on the positive orthant of a hypersphere, or on the surface of

a unit hypercube. It is not intuitive at all. Obviously, if the operation that is considered

relevant for the stated problem is a rotation, the representation on the hypersphere

may be a sensible choice of sample space.

4.5 Conditions on Metrics for Compositions

In many applications a distance between data points is a central issue. Cluster anal-

ysis is a typical example of this. Other metric concepts are crucial, like the size of a

vector, the norm, or the possibility of performing orthogonal projections. Note that

all these metric concepts are used in the omnipresent regression analysis. Compo-

sitional data analysis has the same need of introducing metrics, distances, norms

and orthogonality. From the early developments by J. Aitchison (1983), a distance

between compositions was introduced and developed (Aitchison 1992; Aitchison

et al. 2000). Nowadays, that distance between compositions is called Aitchison dis-

tance, and the corresponding Euclidean geometry is named Aitchison geometry

(Pawlowsky-Glahn and Egozcue 2001).

The need of a distance between compositions can be motivated from the most

basic statistics. For instance, concepts as elementary as mean and variance are based

on a choice of a distance in the sample space. Following Fréchet (1948) (see also

Pawlowsky-Glahn et al. 2015, Chap. 6), mean and variance of a sample can be intro-

duced in a metric space (sample space endowed with a distance). Consider a com-

positional sample 𝐱i, i = 1, 2,… , n, represented in the D-part simplex 𝕊D
. The data

matrix 𝐗 has the compositions 𝐱i as rows. Suppose that a distance in 𝕊D
is da(⋅, ⋅)

(this notation corresponds to the Aitchison distance, although here it is used in a

generic sense). A first step is to define variability of the sample with respect to a

given composition 𝐳 as

Var[𝐗, 𝐳] = 1
n

n∑

i=1
d2a(𝐱i, 𝐳) , 𝐳 ∈ 𝕊D

. (4.7)

The sample mean, called center for compositions, and the total variance are then

defined as

Cen[𝐗] = argmin
𝐳∈𝕊D

{Var[𝐗, 𝐳]} , (4.8)

totVar[𝐗] = min
𝐳∈𝕊D

{Var[𝐗, 𝐳]} = Var[𝐗,Cen[𝐗]] . (4.9)
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Equations (4.7), (4.8) and (4.9) show that elementary statistics like mean and vari-

ance depend critically on the distance used in the sample space.

The Aitchison distance can be defined in different ways (see Pawlowsky-Glahn

et al. 2015). One of them is

d2a(𝐱, 𝐲) =
1
2D

D∑

j=1

D∑

k=1

(
ln

xj
xk

− ln
yj
yk

)2

, (4.10)

where it is worth to realize that ln(xk∕xk) = 0. The distance has been subscripted as da
to emphasize that it is the Aitchison distance. The first observation on the Aitchison

distance is that it is scale invariant, as required by Principle 4.2.1. In fact, any multi-

plicative constant in 𝐱 or 𝐲 cancels out in the log-ratios in Eq. (4.10). After accepting

the Aitchison distance as a proper one for compositions, a simple but tedious com-

putation drives us to the expression of the sample center

Cen[𝐗] = 1
n
⊙

n⨁

i=1
𝐱i ,

where
⨁

stands for repeated perturbation, similar to a summation for real addition.

At a first glance, just dropping the circles in the signs ⊕ and ⊙, this expression is

an average where the traditional sum has been changed to perturbation. Thus, the

computation of Cen[𝐗] consists of computing the geometric mean of the columns

of 𝐗 and closing the resulting vector if a representation on the simplex is desired.

An interesting question is which are desirable and intuitive properties of a met-

ric (distance, norm, inner product) for compositions. Our geometric intuition comes

from our experience in the Euclidean space ℝ3
and we try to translate these obser-

vations to a geometry of the simplex. In this way, if we have a rigid object on the

table and we move this to another position, for instance on the floor, we expect that

distances between points of the object are equal to those observed previous to the

movement. Also, we observe that projecting a segment on the floor (ℝ2
), perhaps the

edge of a roof, produces a segment with length shorter than the original one. If the

points delimiting the segment are expressed in Cartesian coordinates, x and y, on the

floor, and z vertical or orthogonal to the floor, the projection of the points consists in

suppressing the z-coordinate. That is, our experience tells us that suppressing coor-

dinates makes the resulting projected distances shorter than or equal to the original

ones. Being a little bit more subtle, we realize that suppressing the z-coordinate is a

special projection (orthogonal projection), but there are other kinds of projections.

For instance, the shadow projected by the edge of the roof on the floor may be larger

than the length of the edge depending on the position of the sun. This is because the

shadow is not an orthogonal projection unless the floor is tilted orthogonal to the

sun rays. These daily experiences with Euclidean geometry may inspire the follow-

ing properties of the geometry in the simplex that we take as requirements.
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A. Equidistance on shift: The distance between two compositions 𝐱1 and 𝐱2 in 𝕊D

is equal to their distance after a shift 𝐳, that is

da(𝐱1 ⊕ 𝐳, 𝐱2 ⊕ 𝐳) = da(𝐱1, 𝐱2) ; (4.11)

B. Dominance on subcompositions: From the composition 𝐱k = (xk1, xk2,… ,

xkD), a subcomposition 𝐱subk is extracted by suppressing some components, for

instance, 𝐱subk = (xk1, xk2,… , xkd), with D > d > 1. Then, for k = 1, 2, composi-

tional distance should satisfy da(𝐱1, 𝐱2) ≥ da(𝐱sub1 , 𝐱sub2 );
C. Subcomposition as orthogonal projection: The geometry on the simplex is an

Euclidean geometry, that is, there is an inner product from which the norm and

distance derive. Particularly, geometry on subcompositions in 𝕊d
, D > d > 1, is

equivalent to that of the orthogonal projection of 𝕊D
onto 𝕊d

.

Point A is essential for defining sensible elementary statistics as shown in Eqs. (4.8)

and (4.9). To show the importance of this property a subset of water analyses in

Bangladesh has been selected. It comes from a survey conducted in the 1990s

as a joint effort by the British Geological Survey and the Department of Public

Health Engineering of Bangladesh (British Geological Survey 2001a, b). The sub-

set, called hereafter Northern Bangladesh data, includes 13 disolved ions in Northern

Bangladesh (latitude greater than 26
◦
N) and has been selected with the only purpose

to serve as illustration. This data set was also used in several studies (see Pawlowsky-

Glahn et al. 2015 and references therein). Concentrations of As, Fe and P (mg/l) are

shown in a ternary diagram (Fig. 4.5). In the left panel they appear close to the bor-

der Fe-P due to the small concentrations of As relative to Fe and P. Right panel of

Fig. 4.5 shows the same data set after centering it, that is 𝐗⊖ Cen[𝐗]. Now details

are made visible; for instance, the rounding of As to 1 𝜇g/l is now visible in form of

straight bands extending from the Fe vertex. Although the aspect of the data points

is more disperse in the left panel than the right one, the total variance is equal in

the two representations, as perturbation does not change the total variance; that is,

totVar[𝐗] = totVar[(𝐗⊖ Cen[𝐗])]. This points out the inconvenience of using the

visual distance (Euclidean distance) in the ternary diagram.

Requirement B is a consequence of point C, and is to be discussed at the end

of this section. Requirement C is a bit technical but is again inspired by the real

multivariate geometry. Suppose that a sample of d real variables has been observed

and the corresponding data set is arranged in an (n, d) matrix. One may be interested

in a multiple scatter-plot of each couple of variables, similar to that shown in Fig. 4.6.

The fact that the axes of such plots are perpendicular does not surprise anybody. The

assumption is that adding a real variable to a previous set is naturally represented by

adding a new coordinate on an axis orthogonal to the previous ones.

Requirement C is implicitly claiming for an orthogonality relation, usually given

by an inner product between compositions, namely ⟨𝐱, 𝐲⟩a, where 𝐱 and 𝐲 are

compositions represented in the same simplex, say 𝕊D
. From this inner product two



94 J. J. Egozcue and V. Pawlowsky-Glahn

Fig. 4.5 Disolved As, Fe, P data set. Left panel, data expressed in mg/l. Right panel, same data

after centering

Fig. 4.6 Disolved As, Fe, P

data set represented in

orthonormal coordinates.

Triangles: original data;

Circles: centered data. The

arrow indicates the centering

perturbation and it is

anchored in the sample mean

of coordinates

compositions are orthogonal if they satisfy ⟨𝐱, 𝐲⟩a = 0. All metric elements can be

derived from the inner product. The square-norm (square size) is ‖𝐱‖2a = ⟨𝐱, 𝐱⟩a;

and square-distance is d2a(𝐱, 𝐲) = ‖𝐱⊖ 𝐲‖2a. A general property of Euclidean spaces

(Queysanne 1973) is that there exists an orthonormal basis constituted byD − 1 com-

positions 𝐞1, 𝐞2,… , 𝐞D−1. Orthonormal coordinates are then computed as

𝜙k(x1, x2,… , xD) = ⟨𝐱, 𝐞k⟩a , k = 1, 2,… ,D − 1 ,

and, consequently,

‖𝐱‖2a =
D−1∑

k=1
𝜙

2
k(x1, x2,… , xD) .

The question is which form can the coordinates 𝜙k take, so that they satisfy require-

ments A, B, C, and so that they are compatible with perturbation and powering.

These latter conditions lead to the following additional requirement.
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D. The coordinates in 𝕊D
, 𝜙k, k = 1, 2,… ,D − 1 satisfy

𝜙k(𝐱⊕ (𝛼 ⊙ 𝐲)) = 𝜙k(𝐱) + 𝛼 ⋅ 𝜙k(𝐲) , (4.12)

for any compositions 𝐱, 𝐲, and any real constant 𝛼.

From requirements A and D, the 𝜙k can be deduced. Consider first a two part

subcomposition of 𝐱, denoted 𝐱(2). These subcompositions constitute a Euclidean

space of dimension 1, and two part compositions can be represented by a single

coordinate 𝜙1 = 𝜙1(x
(2)
1 , x(2)2 ). This function must be scale invariant and such that

it can take all real values. A simple log-ratio, 𝜙1 = a1 ln(x
(2)
1 ∕x(2)2 ), where a1 is a

real constant to be determined, is a possible choice. The ratio argument within the

logarithm guarantees scale invariance, and the logarithm allows 𝜙1 to range over

all real numbers. The superscripts denoting the number of parts of the subcompo-

sition are superfluous due to the scale invariance property and, from now on, it is

assumed that x(k)i = xi, being the latter the value of the i-th component in the large

composition 𝐱.

Consider now a 3-part subcomposition 𝐱(3) = (x1, x2, x3) in a 2-dimensional sub-

space which includes subcompositions 𝐱(2), that is (x(3)1 , x(3)2 ) = (x1, x2). The addi-

tional dimension corresponds to a new coordinate 𝜙2 in an orthogonal direction to

that 𝜙1 as proposed by requirement C. Again this coordinate needs to be scale invari-

ant and taking any real value. A simple choice can be 𝜙2 = a2 ln(x3∕gm(𝐱(2))) where

gm denotes geometric mean of the arguments. Iterating the reasoning for increasing

number of parts of the subcomposition the k-th coordinate takes the form

𝜙k = ak ln
xk+1

gm(𝐱(k))
, k = 1, 2,… ,D − 1 .

These expressions for the coordinates fulfill conditions A–D.

The inner product in a Euclidean space can be expressed using Cartesian coordi-

nates as

⟨𝐱, 𝐲⟩a =
D−1∑

k=1
𝜙k𝜓k , (4.13)

where 𝜙k and 𝜓k are the coordinates of the D-part compositions 𝐱, 𝐲 respectively.

A tedious exercise consists of substituting the expression of the coordinates in

Eq. (4.13) and carrying out the sum for values of ak such that all components of

𝐱, 𝐲 appear in a symmetric way. Up to a multiplicative constant, the result is

⟨𝐱, 𝐲⟩a =
D∑

j=1
ln

xj
gm(𝐱)

ln
yj

gm(𝐲)
, aj =

√
j

j + 1
,
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where the ajs appear as normalizing constants homogenizing the scale of the different

axes. The inner product ⟨𝐱, 𝐲⟩a is the ordinary inner product of the ℝD
vectors clr(𝐱)

and clr(𝐲), which are

clr(𝐱) =
(
ln

x1
gm(𝐱)

, ln
x2

gm(𝐱)
,… , ln

xD
gm(𝐱)

)
,

and analogously for clr(𝐲).
The square Aitchison distance expressed in coordinates is the ordinary Euclidean

distance in ℝD−1
, which can be compared to the expression using the clr coefficients

in ℝD
:

d2a(𝐱, 𝐲) =
D−1∑

k=1
(𝜙k − 𝜓k)2 =

D∑

j=1
(clr j(𝐱) − clr j(𝐲))2 . (4.14)

Requirement B on dominance of distance of a subcomposition is now evident. From

the expression of the distance in coordinates (Eq. 4.14, central term), computing dis-

tances within a subcomposition consists of removing some positive terms from the

sum.

Apparently, there are many possible choices for the form of coordinates 𝜙k, but

most of them are discarded by requirements A and D on compatibility with pertur-

bation (Eqs. 4.11, 4.14). For instance, 𝜙k = ln(xk+1∕(x1 + x2 + · · · + xk)), implicitly

proposed in Aitchison (1986), Sect. 10.3, does not lead to a distance and coordinate

expressions satisfying A and D. The critical point is that amalgamation or sum of

compositional parts is not a linear operation for compositions.

Figure 4.6 shows the sample of disolved As, Fe, P previously represented in

Fig. 4.5 in ilr-coordinates. These coordinates are the balances

𝜙1 =
√

2
3
ln As

(Fe ⋅ P)(1∕2)
, 𝜙2 =

√
1
2
ln Fe

P
.

The visual distances between the data points are now the Aitchison distances. The

triangles correspond to the original data set. Its center, expressed in coordinates, is

the point where the arrow is anchored. A shift (perturbation) is applied in order to

center the data set (circles), so that the new center is the origin of coordinates (end of

the arrow). Importantly, the distances between data points after shifting (requirement

A) are equal to the previous ones. The fact that the axes are drawn orthogonally,

exactly corresponds to the fact that these coordinates are orthogonal in the Aitchison

geometry for compositional data.

The historical way of defining the centered log-ratio transformation of 𝐱 and the

whole structure was the reverse of the one here presented. The definitions of pertur-

bation, powering and clr can be found in Aitchison (1986), although the Aitchison

distance was already introduced in Aitchison (1983) and discussed in Aitchison et al.

(2000). The inner product as such, and the corresponding Euclidean space struc-

ture (Aitchison geometry), was introduced independently in Pawlowsky-Glahn and
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Egozcue (2001), and in Billheimer et al. (2001), although there is a previous defini-

tion of orthogonal log-contrasts in Aitchison (1986). Orthogonal coordinates were

introduced in Egozcue et al. (2003), and in Egozcue and Pawlowsky-Glahn (2005).

4.6 Consequences of the Aitchison Geometry in the Sample
Space of Compositional Data

The consequences of the Euclidean character of the Aitchison geometry for com-

positional data are multiple and relevant. Once the principles and requirements on

the sample space are assumed, they appear as a guidance in most, if not all, sta-

tistical models. The main idea is that compositions are advantageously represented

as vectors in coordinates, better than as proportions. Standard operations, sum and

multiplication, on appropriate coordinates are equivalent to perturbation and pow-

ering on compositions in the simplex. The fact that Aitchison distances, norms and

orthogonal projections are transformed into the ordinary Euclidean distances, norms

and orthogonal projections opens the door to use on ilr coordinates all mathematical

and statistical methods designed for real variables. The recommendation of work-

ing on coordinates has been formulated as the principle of working on coordinates
(Mateu-Figueras et al. 2011). The specific exploratory tools for compositional data

are examples of the usefulness of ilr coordinates.

Principal component analysis for compositional data (CoDa-PCA) and its graph-

ical representation, the CoDa-biplot, were studied before ilr-coordinates were avail-

able (Aitchison 1983; Aitchison and Greenacre 2002), but they are a wonderful

example of their usefulness. A D-part compositional data set, 𝐗 in a (n,D)-matrix, is

clr-transformed and centered; then, the singular value decomposition is carried out.

This can be summarized as

clr(𝐗c) = clr(𝐗⊖ 𝟏nCen[𝐗]) = 𝐔𝚲𝐕⊤

, (4.15)

where clr is applied to each composition (row) of the centered matrix, and 𝟏n is a col-

umn vector of n ones. The diagonal matrix 𝚲 contains D − 1 singular values ordered

from the largest one to the smallest. The D-th singular value is always null, since the

rows of clr(𝐗c) add to zero, and can be removed. The (D,D − 1)-matrix 𝐕 (loadings

matrix), once the last column corresponding to the null singular value is removed,

is orthogonal and satisfies 𝐕⊤𝐕 = 𝐈D−1, 𝐕𝐕⊤ = 𝐈D − (1∕D)𝟏D𝟏D⊤

. Therefore, it is a

contrast matrix like that used to compute ilr-coordinates of a composition 𝐱 (column

vector) (Egozcue et al. 2011)

𝐳 = ilr(𝐱) = 𝐕⊤clr(𝐱) , 𝐱 = c ⋅ exp[𝐕𝐳] .

This means that the rows of the (n,D − 1)-matrix 𝐔𝚲 are ilr-coordinates of the cen-

tered compositional data set. A form biplot represents simultaneously the rows of
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Fig. 4.7 Biplots of Northern Bangladesh data set, representing 13 disolved ions. Left: form biplot

showing that the projection is mainly dominated by the clr coefficients of As, Mn, and SO4; up to

the projection (65.2% of total variance), Aitchison distances between data points are approximately

those visualized. Right: covariance biplot adequate for interpretation. Up to the projection, length

of links between vertices of rays are proportional to the standard deviation of the corresponding

logratio. The length of the rays are approximately proportional to the standard deviation of the

corresponding clr-coefficients. Variability is largely dominated by the log ratios of SO4 over As,

Fe and Mn

𝐔𝚲 (coordinates of the compositions) and the columns of 𝐕 (clrunitary vectors of

the ilr-basis) in an optimal bi-dimensional projection for visualization.

Figure 4.7 shows the form biplot of the Northern Bangladesh data set. Form

biplots (Fig. 4.7, left) and scatter-plots of coordinates (Fig. 4.6) can replace plots on

ternary diagrams, as distances between compositions are not distorted in an uncon-

troled manner. They are only affected by the orthogonal projections.

The ilr coordinates are real variables and their exploratory analysis relies on

standard exploratory analysis tools (mean, standard deviation, quantiles, correla-

tions). However, interpretable coordinates are desirable. They can be designed by

the analyst to get insight in some aspects of the data he/she may be interested in.

Other times a data driven technique may be used to design suitable coordinates

(Pawlowsky-Glahn et al. 2011; Martín-Fernández et al. 2017). In these cases, the

CoDa-dendrogram (Pawlowsky-Glahn and Egozcue 2011) can be useful to sum-

marize properties of the coordinate sample jointly with an interpretable description

of the coordinates used. The definition of the coordinates is based on a sequential

binary partition (SBP) of the parts of the composition (Egozcue and Pawlowsky-

Glahn 2005, 2006). Each coordinate is associated with a partition of a group of

parts into two new groups. For instance, Table 4.2 shows this kind of partitions for

the Northern Bangladesh data set. The second row of Table 4.2, indicates the sepa-

ration of As (+1) from the group constituted by Fe, Mn and P (−1). This separation

is associated with the second ilr coordinate
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Table 4.2 Sign code for a SBP of the 13 disolved ions, obtained by clustering variables of the

Northern Bangladesh data set

As Ba Ca Fe K Mg Mn Na P Si SO4 Sr Zn

+1 −1 −1 +1 −1 −1 +1 −1 +1 −1 −1 −1 −1
+1 0 0 −1 0 0 −1 0 −1 0 0 0 0
0 0 0 −1 0 0 +1 0 −1 0 0 0 0
0 0 0 +1 0 0 0 0 −1 0 0 0 0
0 −1 −1 0 −1 −1 0 −1 0 −1 +1 −1 −1
0 0 0 0 0 0 0 +1 0 −1 0 +1 −1
0 0 0 0 0 0 0 +1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 +1 0 0 −1
0 −1 −1 0 −1 −1 0 +1 0 +1 0 +1 +1
0 −1 −1 0 +1 −1 0 0 0 0 0 0 0
0 +1 −1 0 0 −1 0 0 0 0 0 0 0
0 0 +1 0 0 −1 0 0 0 0 0 0 0

z2 =
√

3
4
ln As

(Fe ⋅Mn ⋅ P)1∕3
.

These kinds of coordinates are called balances between two groups of parts (Egozcue

and Pawlowsky-Glahn 2005) as they are logratios of the geometric mean of the ele-

ments in each group; the coefficient in front of the logarithm is a normalization

coefficient which takes into account the number of elements in each group of parts.

Figure 4.8 shows the CoDa-dendrogram for the Northern Bangladesh data set. The

tree-dendrogram itself follows the partition in Table 4.2. The length of the lines per-

pendicular to the labels, say vertical lines, are proportional to the variance of the

balance separating the groups of elements at left and right hand sides. These verti-

cal lines are anchored to horizontal segments joining the two groups of parts. All

these segments are scaled in such a way that the zero value is placed in the center

of the segment, and the length represents the same length in all cases. The fulcrum

of the vertical line is placed at the average value of the balance; it can be compared

to the median indicated in the box-plot under the horizontal line. In this way, the

CoDa-dendrogram combines the interpretation of the balance-coordinates given by

the SBP and their mean, variance and quantiles (box-plots).

In Fig. 4.8, the variances within the subcomposition (Zn, Si, Sr, Na, SO4) are small

compared to other variances, thus pointing out a possible compositional association

between these elements; it suggests that these elements change proportionally along

the considered sample. At the same time, most of the total variance is driven by As,

Fe, Mn and P, as indicated by longer vertical lines.

The explanatory power of the CoDa-biplot and the CoDa-dendrogram relies on

the fact that they are based on Cartesian coordinates for plotting data-points and that

the represented variables are orthonormal in a geometric sense. The key in interpret-
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Fig. 4.8 CoDa-dendrogram following the sign code in Table 4.2 obtained by clustering variables

of the Northern Bangladesh data set. Vertical bars describe the decomposition of the total variance

given in Eq. (4.16). Anchoring points of vertical bars indicate the mean value of the corresponding

coordinate

ing the results is the decomposition of the total variance of the data set into variances

of the ilr-coordinates (Egozcue and Pawlowsky-Glahn 2011a)

totVar[𝐗] =
D−1∑

k=1
Var[𝜙k] . (4.16)

4.7 Conclusions

The first step in any data modelling is to establish a sample space able to give answers

to the questions stated by the analyst. If these questions involve probabilistic state-

ments, the sample space needs a sigma field of events for which probabilities can

be defined. However, most analysts search for statements implying operations, dis-

tances, projections between data points or variables. All these concepts need to be

defined in the sample space for useful computations and interpretations. These def-

initions are not intrinsic, but are adapted to the questions stated by the analyst in

a subjective way. Therefore, the choice of a sample space has always a subjective

character, which is only validated by the ability in giving useful answers to sound

questions.

Compositional data require defining a sample space with a rich structure. The

log-ratio approach to the analysis of compositional data is based on a set of princi-

ples and conditions. The approach here presented is a modification of the standard



4 Modelling Compositional Data. The Sample Space Approach 101

principles introduced by J. Aitchison in the eighties and reformulated afterwards.

Scale invariance and compositional equivalence are maintained exactly as they were

introduced, but additional conditions are to be discussed in relation to perturbation,

which is assumed to be the main operation between compositions. The Euclidean

structure of compositional data represented in the simplex, called Aitchison geom-

etry, is here motivated using the idea that reduction to a subcomposition should be

an orthogonal projection.

The Aitchison geometry is thought as a powerful mathematical tool which con-

sistently completes the previous Aitchisonian ideas on the log-ratio approach. The

main points are the conception of compositions as equivalence classes (Barceló-

Vidal and Martín-Fernández 2016) thus overcoming the early definitions based on

the constant sum constraint; and the introduction of coordinates in the Aitchison

geometry (Pawlowsky-Glahn and Egozcue 2001; Egozcue et al. 2003; Egozcue and

Pawlowsky-Glahn 2005) thus overcoming the idea that taking log-ratios is just a

transformation which circumvents the constant sum constraint.
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