Chapter 37 )
Forward and Inverse Models Over Check for
70 Years

E. H. Timothy Whitten

Abstract The transition over 70 years from qualitative rock description to
attempted quantitative description of rocks and rock bodies (inverse modelling) and
testing of process models with observation data (forward models) are outlined.
Dramatic increases of readily measured variables, combined with almost unlimited
computing power, yielded a plethora of varied inverse models, but limited attention
has been given to critical sampling, variance, closure, ‘black swan’, and nonlinear
issues; recent approaches to closure problems hold promise. Especially for plutonic
rocks, paucity of quantitative process modelling left exciting forward-modelling
opportunities neglected. Resulting challenges ahead are anticipated.
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37.1 Birth of IAMG in 1968

In many different ways, 1968 was an extraordinary year that rocked the world
(cf., Kurlansky 2004). Some 20 enthusiasts gathered at the XXIII International
Geological Congress in Prague’s New Technical University, Czechoslovakia, to
create the International Association for Mathematical Geology in exciting, but
tragic, times. Soviet troops had occupied the city a couple of days previously; guns
of encircling Soviet tanks pointed at the university, which was the centre for
printing and disseminating news. Vistelius was elected first IAMG President and
Krumbein ‘Past President’ (a designation he appreciated and found amusing!); both
are fathers of geological models.
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At that meeting, dissimilar approaches came together, having evolved princi-
pally in the Soviet Union, Western Europe, and U.S.A. Vistelius championed the
concept that Mathematical Geology is a separate branch of science based on testing
geological hypotheses mathematically, and that this should be IAMG’s primary
focus (Whitten 2003; 2004, p. 384-5); for some years, he had contended it is not
particularly important merely to manipulate geological data statistically. Dech and
Henley (2003, p. 368) noted Vistelius (1991) considered that, if a science does not
use mathematical modelling in constructing conclusions, “... it can be considered
as belonging to the pre-Newtonian period, .... behind the present-day level of
research by approximately 300 years.”

37.2 In the Beginning (One Pre-1968 Experience)

Specializing in petrology in 1948, Hatch and Wells (1937) was my ‘bible’. That
descriptive, natural-history type, foundation meant it was thrilling in 1950 to visit
Jacupiranga, the Brazilian jacupirangite type locality. For a Ph.D. project in 1948, it
was recommended I look at 260 km? of coastal NW Ireland to see what is there;
seventy years later, an unlikely method of identifying a thesis project. The area is
red (granite) on the Geological Survey of Ireland 1:63,360 map (Hull et al. 1889).

A plan to record variability of granite across the area (including numerous
islands in the Atlantic Ocean) was needed. Immediate problems in 1949 were
devising (i) a scheme to collect representative samples, and (ii) realistic measure-
ments (measurable in the field or laboratory) to reflect variability.

Unscientifically, a one-mile grid was oriented to maximize (by eye) grid nodes
over outcrops (i.e., islands in the ocean and less peat-bog and drift-covered mainland
areas). It was planned to collect samples (with hammer and chisel) at all nodes if
possible. In the field, two compromises became necessary—using the nearest out-
crop to nodes and accepting any hand-sample that could be hammered off.

Wet chemical analysis of numerous samples was beyond available resources;
X-ray fluorescence analysis was then undeveloped. Point counting thin sections to
determine mineral volume percentages with a Dollar (1937) mechanical stage was
feasible, provided larger thin Sections. (3.3 X 2.3 cm) could be hand ground and
stained with sodium cobaltinitrite—both challenging in 1949; this staining tech-
nique was described by Chayes (1952). Using a Chayes (1949) electrically-
controlled stage improved point-counting accuracy. Studies of spacing and required
number of counts (Chayes and Fairbairn 1951; Chayes 1954) suggested sufficiently
large thin sections were being used. Manual contours for modal variables (e.g.,
K-feldspar volume percentage, colour index) at 44 grid nodes reflected considerable
areal variation (Whitten 1957). Such contours were very controversial because they
crossed ocean between islands and superficial deposits on land; also, no exposures
occur in numerous grid squares. A senior reviewer deemed it impossible to draw
contours across ocean (despite greater outcrop density with off-shore islands than
on land with peat bogs, farming, etc.).
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In 1958, I became a colleague at Northwestern University of W. C. Krumbein,
who was pioneering quantitative description of sedimentary rocks. The University
acquired an IBM360 mainframe computer; we used punch cards and wrote FOR-
TRAN programs for statistical descriptors and surface-fitting algorithms for
areally-distributed data (e.g., Whitten 1960, 1961). Analogous approaches began
thriving at Kansas Geological Survey, Pennsylvania State University, etc. Krum-
bein developed the concept of descriptive, conceptual, and predictive models
(Krumbein 1963; Krumbein and Graybill 1965, p. 13, et seq.; Whitten 1964).
Driving to Leningrad to spend time at Vistelius’ Institute for Mathematical Geology
was a privilege in 1971.

37.3 Inverse and Forward Geology Problems

Vistelius (e.g., Vistelius 1977) differentiated inverse from forward problems. The
objective with the former was describing the nature and variability of specified
rocks, etc.; that is, with statistical or other techniques, formulating descriptive and/
or genetic models for essentially arbitrary data for arbitrary variables. With forward
problems, the objective was testing validity of genetic models (based on currently
available information) for rocks, fold belts, etc. That is, testing whether a genetic
model is supported or rejected by data for variables dictated by that model; many
commonly measured variables are likely to be irrelevant for such testing (cf.,
Whitten 2005).

For sedimentary and metamorphic rocks inverse and forward problems present
fewer difficulties. Thus, ‘marine beach’ can be defined descriptively by physical,
chemical, and biological features that commonly enable marine-beach deposits to
be recognised (e.g., in the stratigraphic column), or genetically by environmental
conditions that result in beach formation (waves, currents, sediment transport, etc.).
Similarly, as Bayly (1968) pointed out, metamorphic facies can be defined by
presumed temperature and pressure during genesis (Eskola 1915, p. 114; Turner
and Verhoogen 1951) or descriptively by diagnostic mineral assemblages (Fyfe
et al. 1958). With igneous rocks (especially plutonic assemblages), geotectonics,
etc., inter-relationships between the descriptive and genetic are commonly very
debateable (Whitten et al. 1987a, p. 334).

37.4 Forward Models in Earth Sciences

Forward modelling is in its infancy and rare because, in most cases, little objective
quantitative information is available about genetic factors, especially for plutonic
rocks. Unlike many scientific fields, most earth-science domains do not permit
reproducible experiment and testing. Vistelius (1972) used Tuttle and Bowen’s
(1958) experimental petrology to illustrate forward modelling of ‘ideal granite’,



768 E. H. T. Whitten

extending his method' to Omsukchan Granite, SE Asia (Vistelius and Romanova
1972), Malsburg Granite, Germany (Choubert and Vistelius 1972), etc.

Over the past decade, numerous “forward models” appeared in geophysical
studies (petroleum, mining, water, volcanic activity) for prediction and extrapola-
tion based on measured variables (e.g., Geol Soc Amer Symposium 2002; Sui et al.
2012; Butler and Zhang 2016). Butler and Sinha (2012, p. 168) stated such forward
modelling is useful for interpreting data. McInerney et al. (2007) compared gravity
data computed for a 3D geological model with new Bouguer data to iteratively
improve their geological model, calling this forward modelling. Comparable usage
occurs in biology (e.g., Tolwinski-Ward 2012). In such studies, inverse models
have been honed with new data for sundry variables, producing improved inverse
models (cf., iterative forward modelling, Schlumberger Limited 2016). However,
such “forward modelling”, albeit useful, is wholly different from testing genetic
models with new variables prescribed by those models. Different distinctive ter-
minology would prevent confusion.

Vistelius’ forward-model definition is retained in this paper.

37.5 Inverse Models in Earth Sciences

Inverse-models reach into many earth-science domains. Manual contours for
variability of Donegal granite modes (Whitten 1957) represented an
inverse-problem approach; more-sophisticated inverse models followed as com-
puting power facilitated trend-surface map preparation (e.g., Whitten 1960).
Computing power soon resulted in every available data set being processed by
every available statistical artifice, to explore whether anything interesting (and
publishable) emerged. Such research provoked Vistelius’ strident remarks at the
IAMG founding meeting.
Inverse problems fall into two categories:

(a) analysis and description of available (or readily measured) data for geological
entities (e.g., colour index in granite plutons; grain-size skewness in silt sam-
ples), and

(b) use of data to predict

(i) useful features (e.g., gold content and location; subsurface sedimentary
rock permeability variation) as with kriging and so-called ‘geostatistics’

"Numerous papers by Vistelius and coworkers used the important and challenging discovery that
grain transitions along linear traverses of many granitic rocks possess the Markov property, to
suggest testing or erecting genetic crystallization models can be based on grain-transition proba-
bilities. However, Whitten and Dacey (1975) and Whitten et al. (1975) demonstrated Markov
chains in actual mineral sequences in varied rocks (including a calc-silicate granulite) is insuffi-
cient for establishing validity of the granite crystallization model.
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(cf., Krige 1964; David 1977; Journel and Huijbregts 1978), or flooding or
other risks (e.g., Burke et al. 2016), or

(ii) petrogenetic processes (e.g., infra-crustal origins of /- and S-type granites
within orogenic belts (e.g., White and Chappell 1983; Chappell 1984;
Chappell and Stephens 1988).

Speculation about petrogenetic processes that produced described rock assem-
blages has always been common. Over a thousand high-quality chemical analyses
of major and many trace elements for southeast Australian granites led to parti-
tioning samples into /-type or S-type granitoids with dissimilar sub-crustal origins,
and to the restite genetic model (e.g., Chappell et al. 1988, 1987; Chappell and
Stephens 1988). Analogous methods were used elsewhere (e.g., North American
Peninsula Ranges, Silver and Chappell 1987). Such inverse models could afford
excellent forward-modelling bases, if prescribing new variables with which to
support or negate the supposed genetic model/s.

However, such inverse models are fraught with difficulties (Whitten 1991,
p- 121). Use of different variable sets from Chappell and colleagues’ chemical
analyses can partition samples into an almost infinite set of descriptive suites. It is
unrealistic to enunciate genetic scenarios for one set of descriptive suites, without
concomitantly embracing all other coexisting sets defined by using different vari-
ables, sets of variables, variable weightings, etc. (Whitten et al. 1987a, p. 341;
1987b). Again, if techniques like cluster analysis were used to partition hundreds of
samples on the basis of 36 chemical variables, normalization (to give each variable
equal weight) would commonly be used, despite no a priori reason for each element
being equally important. Different clusters emerge if one (or more) variable receives
different weighting, and when more or less variables are included (Whitten et al.
1987b, p. 69; Whitten 1991, p. 121). Also, standard cluster analysis (and similar
partitioning techniques) yield questionable results when percentage and/or
parts-per-million data are used (cf., Aitchison 1986, p. 300).

However, where components are conserved throughout crystallisation within certain
basic igneous rocks, molar ratios with a common constant denominator were shown to
display, accurately and unequivocally, the actual chemical variability (e.g., Nicholls
1988; Stanley and Russell 1989). Molar-ratio diagrams for some Australian /- and S-
suites seem to show chemical variations accurately, permitting quantitative objective
testing of, say, the restite model (Whitten 1996). This technique for avoiding daunting
closed-data problems deserves further examination, although, for many granites, lack of
component conservation during crystallization may introduce difficulties.

37.6 The Samples Analysed

Statistical or mathematical analyses of available data are the relatively easy
part. Statistical manipulation (inverse modelling) describes characteristics and
variation of particular data, but not necessarily characteristics and variation of those
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variables in the rock samples from which the data were derived (or necessarily of
variables of petrogenetic significance for forward modelling, or of direct economic
importance).

Data come from samples (or geophysically-sampled rocks, etc.). It is important
to assess how well available samples represent the sampled population of interest,
and whether that sampled population permits realistic extrapolation to the target
population of primary interest (cf. Whitten 1961). For example, where the objective
is determining compositional variation of a pluton, the exposed surface is an
arbitrary 2D section (or modestly 3D in mountainous terrain) through the original
3D mass, much of which is eroded away. Soil, vegetation, etc. always obscure
major parts of 2D exposures; actual outcrops are disposed arbitrarily or preferen-
tially, but not randomly. Analyses of those samples actually examined (samples
collected from sampled outcrops) are necessarily used to estimate composition and
variability of the sampled population, and subsequently the target population.

The significance of actual observed dependent data was reviewed by Whitten
(2000, pp. 4 et seq.) who asserted that, in favourable circumstances, rigorous sta-
tistical inferences can be drawn about the sampled population on the basis of
samples examined, and subsequently geologists can only use such inferences to
make subject-matter inferences about the target population on the basis of previous
geological experience (cf., Cochran et al. 1954, p. 19).

Unusually, such issues can be obvious. For example, road cuttings might expose
significantly banded or layered rocks, but only some of those bands may be exposed
in outcrops across neighbouring areas.

Serial thin sections from coarse-grained granite samples commonly yield modal
values with considerable variance. Exposed igneous rocks may be porphyritic
making collectable, representative, samples difficult to obtain. Commonly, samples
of dissimilar size are required to estimate composition and variability of each
variable. For variables measurable only by laboratory analyses (e.g., modal zircon
percentage, trace-element weight percentages), an adequate sampling plan can be
devised only following estimating the level of variance of each variable from
analytical results. The classical example is Krumbein and Slack’s (1956) determi-
nation that variance of their variable of interest within a black shale over many
square kilometres of Illinois, USA, is greatest at their smallest level of sampling
(thin-section level). Different rock types require dissimilar strategies (e.g., deter-
mining calcite volume percentage throughout a cratonic limestone requires a
less-dense sampling plan than, say, assaying gold weight percentage within sub-
surface Witwatersrand conglomerates or apatite volume percentage in a granite).

For Rattlesnake Mountain Pluton, California (USA), Baird and Welday (1967)
showed that, when variance of attributes is large at their smallest sampling level
(hand-specimen level), adjacent samples yield dissimilar values and thus dissimilar
areal-variability maps. For their monumental studies of Lachlan fold belt granitoids,
Australia, Chappell and colleagues powdered very large samples (over a kilogram)
from the mainly visually-homogeneous outcrops, with the intention of minimising
major and trace-element variance at the sample level (e.g., White et al. 1977;
Chappell 1978). Their sample size and reproducibility of their chemical analyses
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yielded reliable data. In many regions, they collected a sample from virtually every
outcrop protruding through arid rolling pasture. Areas between widely scattered
outcrops (sometimes a kilometre apart) were necessarily un-sampled and unknown;
it is appropriate to question whether extant outcrops exist because composed of
rocks less susceptible to weathering (compositionally dissimilar to the majority).

Generalising, each variable commonly has dissimilar variance in samples of a
specified size. Variance tends to be large between small samples, especially when
grain size is large, and, as sample size increases, variance between samples
decreases to a minimum, before increasing again for extremely large samples (cf,
Whitten 1968; 2000, p. 6).

Such issues have long been recognized in mining exploration. Moving-average
methods, developed by Krige (e.g., 1964) for South African gold-bearing con-
glomerates were extended and explicitly controlled (in what is known as ‘geo-
statistics”) by levels of variance of variable/s, as expressed by semi-variograms
(e.g., David 1977; Journel and Huijbregts 1978); observed large outlier values are
accommodated within the ‘nugget’ effect. ‘Nugget’ aptly reflects very sparse, larger
gold particles within the conglomerates, which affect predicted profitability of
subsequent mining; nuggets are represented only occasionally in actual samples and
resulting assay values (Whitten 2010, p. 250).

It is not uncommon for it to be assumed that, provided sampling has been
‘adequate’, variables of interest follow standard frequency distributions (normal,
lognormal, etc.). Many common statistical algorithms assume input data are nor-
mally distributed; frequently, packaged computer programs normalise input data
automatically (often with unspecified algorithms) prior to effecting statistical
analyses. However, different normalisation algorithms can produce dissimilar
resulting analyses.

37.7 The Black Swan Effect

Throughout the earth sciences, sporadic sample measurements are wholly dissimilar
to those for the majority of samples. Not infrequently, analyses lying on the extreme
wings of distribution curves (normal, lognormal, etc.), or beyond the tails, are
discarded; although such analyses might be attributable to analytical error, many are
likely to be real and very meaningful. In studying the influence of the improbable in
the earth sciences, Whitten (2010) demonstrated that real, localised, anomalous data
can reflect features of significant genetic and/or economic importance; the ‘black
swan’ effect (cf., Taleb 2007). That is, such data can reflect important factors not
previously considered in models and theories—factors that, after recognition, are
likely to be found highly significant.

Throughout geological time, all manner of events occurred that appear to be
wholly arbitrary with respect to formation of lithology, structure, palacontology,
etc., of rock units. Impact of a meteor with the Earth is a good example, because it
can apparently affect substantially both current organic evolutionary patterns and
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ongoing physical processes (e.g., sedimentation). Consequently, some, but not
necessarily all, dependent variables (with respect to space and time) might show
anomalies reflected as outliers on a distribution curve (a nugget-like effect). Such
phenomena reflect the operation of customary physico-chemical laws and the
effects of irreducible elements of chance and indeterminism (Whitten 2010,
pp- 250-1).

The traditional search for order and simplified description commonly deflects
attention from important real black swans that require inclusion for realistic
understanding of geological phenomena and natural hazards. Mandelbrot (1982)
provided a beautiful introduction to fractal geometry in nature; more recently,
fractal, chaos, and nonlinear approaches have helped expose basic characteristics of
the physical world, whose fundamental significance throughout the earth sciences is
rapidly becoming more clear. A report (Lovejoy et al. 2009) on ‘geocomplexity’
summarized the importance of nonlinear geophysical methods in elucidating
rational bases for statistics and models of natural systems (including hazards),
which previously were treated by ad hoc methods. That report reflected 15 authors’
research ranging from earthquake dynamics, river-flood prediction, basalt
columnar-joint formation, coastline topography, meteorological cloud models, and
interaction of greenhouse gases and global warming. It concluded with a warning
against (a) reliance on traditional state-of-the-art statistical techniques (and theories
based on them) and (b) ignoring nonlinear methods which are often helpful for
more-complete understanding of the natural world.

37.8 Concluding Thoughts

Throughout most geological domains, the qualitative-to-quantitative revolution via
mathematical geology over the past half century has been awesome, made possible
by numerical models and readily available data for greatly increased numbers of
variables; all facilitated by hugely increased computing power. Investigations
extend to variables whose variance cannot be estimated by eye (e.g., isotope ratios;
electrical resistivity). The research is manifest in both IAMG Journals and other
new approaches (e.g., 3-D visual digital models and virtual presentation of rocks
and geological formations, De Paor 2016). Cataloguing, classifying, description,
and presentation are often the useful goals, especially for economic geologists (e.g.,
oil-field research; kriging and ‘geostatistics’).

Pragmatic review emphasises that many basic (but apparently unexciting)
problems enumerated five decades ago (e.g, variance; sampling), critical in inverse
models for correctly portraying rock formations (rather than merely assembling data
obtained from the rocks), have continued to receive little attention (Whitten 2003).

Birth, maturity, and old age characterise phases of all human endeavour. The
past 50 years witnessed birth of IAMG and spreading of its influence throughout
the earth sciences using inverse methods, but only initial recognition of the com-
pelling importance of modelling forward problems (in Vistelius’ meaning).
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Inverse-problem studies will move into maturity as variance, sampling, and
non-linear models underpin on-going research.

The challenging needs and goals of forward problems are reasonably obvious,
but the complex issues involved have been addressed only occasionally (e.g.,
Vistelius and Romanova 1972; Maslov 2003). Commonly, forward problems will
require non-linear process models (i.e., quantitative genetic models) that specify
those variables required to test the hypothesis. The next 50 years await research
towards that maturity in forward modelling. So-called forward models of recent
geophysical studies must not obscure this challenge.
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statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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