
Chapter 35
Mathematical Morphology
in Geosciences and GISci:
An Illustrative Review

B. S. Daya Sagar

Abstract Georges Matheron and Jean Serra of the Centre of Mathematical
Morphology, Fontainebleau founded Mathematical Morphology (MM). Since the
birth of MM in the mid 1960s, its applications in a wide ranging disciplines have
illustrated that intuitive researchers can find varied application-domains to extend
the applications of MM. This chapter provides a concise review of application of
Mathematical Morphology in Geosciences and Geographical Information Science
(GISci). The motivation for this chapter stems from the fact that Mathematical
Morphology is one of the better choices to deal with highly intertwined topics such
as retrieval, analysis, reasoning, and simulation and modeling of terrestrial phe-
nomena and processes. This chapter provides an illustrative review of various
studies carried out by the author over a period of 25 years—related to applications
of Mathematical Morphology and Fractal Geometry—in the contexts of
Geosciences and Geographical Information Science (GISci). However, the reader is
encouraged to refer to the cited publications to gather more details on the review
provided in an abstract manner.

35.1 Introduction

A basic understanding of many geoscientific and geoengineering challenges across
multiple spatial and/or temporal scales of terrestrial phenomena and processes is
among the greatest of challenges facing contemporary sciences and engineering.
Many space-time models explaining phenomena and processes of terrestrial rele-
vance were descriptive in nature. Earlier, several toy models were developed via
classical mathematics to explain possible phases in dynamical behaviors of complex
systems. With the advent of computers with powerful graphics facilities, about three
decades ago the interplay between numerical methods (generated via classical
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equations explaining the behaviors of dynamical systems) and graphics was shown
to exist. That progress provided the initial impetus to visualize the systems’ spatial
and/or temporal behaviors that exhibit simple to complex patterns on graphical
screens. One of the efficient ways of understanding the dynamical behavior of many
complex systems of nature, society and science is possible through data acquired at
multiple spatial and temporal scales. Data related to terrestrial (geophysical) phe-
nomena at spatial and temporal intervals are available in numerous formats. The
utility and application of such data could be substantially enhanced through related
technologies documented in edited volumes and monographs of the recent past
(Sagar 2001a, b, c, d, 2005a, b, 2009, 2013; Sagar and Rao 2003; Sagar et al. 2004;
Sagar and Bruce 2005; Sagar and Serra 2010; Najman et al. 2012).

To understand the dynamical behavior of a phenomenon or a process, devel-
opment of a good spatiotemporal model is essential. To develop a good spa-
tiotemporal model, well-analyzed and well-reasoned information that could be
extracted/retrieved from spatial and/or temporal data are important ingredients.
Figure 35.1 shows a schematic illustrating the key links between the various phases
where the involvement of Mathematical Morphology becomes obvious from the
studies to be shown later in the chapter.

Mathematical Morphology—founded by Georges Matheron (1975) and Jean
Serra (1982) has shown great impact in various fields including Geosciences and
GISci—is one of the better choices to deal with all these key aspects mentioned.
Mathematical morphology was founded by Georges Matheron (Agterberg 2001,
2004; Serra 1982, 1988). There are numerous representative publications related to
mathematical morphology, to name a few: Serra (1982, 1988), Sternberg (1986),
Beucher (1990, 1999), Soille (2003), Najman and Talbot (2010), Sagar (2013).
Most notably, the comment on the issue of “What do Mathematical Geoscientists

Fig. 35.1 Mathematical morphology applications in several phases of studies of relevance to
geosciences and geographical information science
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Do?” made by Harbaugh (2014) includes the importance of mathematical mor-
phology of geological features in making predictions. In this chapter we outline the
successful applications of the most important concepts of mathematical morphology
(Table 35.1) in the context of geosciences and Geographical Information Science
(GISci).

While perceiving the terrestrial surfaces including geophysical and geomorphic
basins (e.g. using Digital Elevation Models, Digital Bathymetric Models, cloud
fields, microscale rock porous media etc.) as functions, planar forms (e.g. topo-
graphic depressions, water bodies, and threshold elevation regions, hillslopes) as
sets, and abstract structures (e.g. networks and watershed boundaries) as skeletons,

Table 35.1 Successful applications of MM transformations in geosciences, geomorphology,
GISci-major references

Morphological operator Application domain Major references

Binary and grayscale
morphological erosion,
dilation, opening, closing,
multiscale morphological
operations

Petrology, GISci,
geosciences, remote
sensing

Serra (1982), Sagar (2013),
Brunet and Sills (2017),
Beucher (1990, 1999)

Geodesic morphological
operations

Remote sensing, GISci,
geography, petrology

Lantuejoul (1978), Lantuejoul
and Beucher (1981), Sagar and
Lim (2008a, b), Challa et al.
(2016)

Hit-or-miss transformation Geomorphology,
hydrology

Serra (1982), Tay et al. (2005a,
b, c)

Morphological thinning,
thickening, pruning

Hydrology, cartography Soille (2003), Sagar (2013)

Morphological
skeletonization

Cartography, hydrology,
geomorphology

Sagar et al. (2000, 2003a, b),
Soille (2003)

Skeletonization by zones of
influence and weighted
skeletonization by zones of
Influence

Cartography, hydrology,
geomorphology

Beucher (1990), Rajashekara
et al. (2012), Sagar (2014a, b)

Granulometries and
anti-granulometries

Petrology,
geomorphology,
hydrology

Serra (1982), Maragos (1989),
Sagar (2013), Tay et al.
(2005a, b, c 2007), Vardhan
et al. (2013)

Morphological distances,
hausdorff dilation (erosion)
distances

GISci, limnology,
biogeography, spatial
planning

Serra (1988), Sagar (2010,
2013), Sagar and Lim (2015a,
b)

Morphological interpolations
and extrapolations

Geophysics, atmospheric
science, geology, remote
sensing, cartography

Sagar (2010) Brunet and Sills
(2017), Rajashekara et al.
(2012), Sagar (2014a, b), Sagar
and Lim (2015a, b)

Watershed transformation Hydrology, remote
sensing, mapping,
borehole studies, seismic
data processing

Meyer (1980), Beucher and
Meyer (1992), Rivest et al.
(1992), Sagar (2007)
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we make attempts to unravel key links for better understanding spatiotemporal
behaviors of several terrestrial and/or spatial phenomena and processes between the
following coherent aspects: (i) terrestrial pattern retrieval, (Sect. 35.2) (ii) terrestrial
pattern analysis, (Sect. 35.3) (iii) simulation and modeling, (Sect. 35.4) and
(iv) geocomputing, visualization, spatial reasoning and planning (Sect. 35.5).

35.2 Terrestrial Pattern Retrieval

Retrieving relevant information from precisely acquired spatial-temporal data of
varied types about a specific complex system is a basic prerequisite to understand
the spatial-temporal behavior of a system. Retrieval of information from a available
spatiotemporal data acquired from a wide range of sources and a variety of formats,
opens new horizons to the spatial statistical and geoscience communities. We have
developed original spatial algorithms based on non-linear morphological transfor-
mations for retrieval of unique geophysical networks, mountain objects, segmen-
tation of various geophysical objects, and pairing the geophysical spatial fields
based on certain similarities (Sagar et al. 2000, 2003a, b; Sagar and Chockalingam
2004; Sathymoorthy et al. 2007; Chockalingam and Sagar 2003; Lim and Sagar
2008a, b; Lim et al. 2009, 2011; Sagar and Lim 2015a, b; Danda et al. 2016).

35.2.1 Mathematical Morphology in Extraction of Unique
Topological Networks

In contrast to other recent works, which have focused on extraction of channel
networks via algorithms that fail to precisely extract networks from non-hilly
regions (e.g. tidal regions), the algorithms we proposed can be generalized for
application to both hilly (e.g. fluvial) and non-hilly (e.g. tidal) terrains, and also
pore connectivity networks. These algorithms concerning the framework to extract
multiscale geomorphologic networks via systematically decomposing elevation
surfaces and/or decomposed threshold elevation regions into their abstract struc-
tures lead to valley and ridge connectivity networks. We proposed a framework to
first decompose a binary fractal basin into fractal DEM from which two unique
topological connectivity networks are extracted. These networks facilitate to seg-
ment Fractal-DEM (Fig. 35.2a) into sub-basins ranging from first to highest order
(Fig. 35.2c). Results derived from a synthetic DEM (Fig. 35.2a) by applying one of
these algorithms include unique topological connectivity networks similar to valley
and ridge connectivity networks (Fig. 35.2b) and the hierarchically partitioned
watersheds (Fig. 35.2c). We demonstrated the superiority of these stable algorithms
which can be generalized to terrestrial surfaces of both fluvial and tidal types. This
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work helps to solve basic problems that algorithms meant for extraction of unique
terrestrial connectivity networks have faced for over three decades.

35.2.2 Retrieval of Morphologically Significant Regions

Algorithms meant for morphological segmentation were demonstrated on a DEM,
and mapped the physiographic features such as mountains, basins, and piedmont
slopes from DEM (Fig. 35.3a); and the results are compared with that of other
popular approaches (Fig. 35.3b).

Further, multiscale morphological opening was employed to segment binary
fractal basins (Fig. 35.4a–c) that mimic geophysical basins, and cloud fields

Fig. 35.2 a simulated fractal DEM achieved through morphological decomposition procedure,
b loop-like ridge connectivity and loopless channel connectivity networks, and c subbasins

Fig. 35.3 Mountain pixels are the pixels in white, the piedmont pixels are the pixels in gray, and
the basin pixels are the pixels in black. a The results obtained using the newly developed
algorithm. b The results obtained in Miliaresis and Argialas (1999). (From Sathymoorthy et al.
2007)
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isolated from MODIS data into topologically prominent regions (Fig. 35.4d–f). We
proposed granulometry-based segmentation of geophysical fields (e.g. DEMs,
clouds, etc.) with demonstration on binary fractals of deterministic and random
types (Fig. 35.4a–c), and on cloud fields (Fig. 35.4d–f) that have different com-
paction properties with varied cloud properties.

The approach based on computation of complexity measures of morphologically
significant zones decomposed from binary fractal sets via multiscale convexity
analysis—which can be implemented on several geophysical and geomorphologic
fields (e.g. DEMs, clouds, binary fractals etc.) to segment them into regions of
varied topological significance—has been demonstrated on cloud fields derived
from MODIS data to better segment the regions within the cloud fields that have
different compaction properties with varied cloud properties. This approach of
fundamental importance can be extended to several geophysical and geomorpho-
logic fields to segment them into regions of varied topological significance.

Fig. 35.4 Morphologically significant zones decomposed from a Koch triadic fractal island,
b Random Koch triadic fractal island, c Random Koch quadric fractal island, d Isolated Moderate
Resolution Imaging Spectroradiometer (MODIS) cloud (cloud-1), e Color-coded binarized (by
choosing threshold gray level value 128) cloud-1 images at three threshold-opening cycles
superimposed on binarized original cloud-1 color-coded with green, and f boundaries of 12th,
32nd, and 100th opened cloud-1 images and thresholded original cloud-1 superimposed on the
original cloud image
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35.2.3 Ranking of Best Pairs of Spatial Fields

A new metric to quantify the degree of similarity between any two given spatial
fields is proposed (Sagar and Lim 2015a, b). This metric based on morphological
operations can be used for image classification, in particular hyperspectral image
classification, to derive best pair(s) of spatial fields from among a large number of
spatial fields available in a database. In this proposed approach to compute the
ranks for every possible pair of spatial fields (grayscale images) in a database, the
two major computations involved include (i) estimation of grayscale morphological
distance between the source and target spatial fields, and (ii) the ratios between the
areas of infima and suprema of source and target spatial fields. Using this approach,
four spatial elevation fields (Fig. 35.5b–e), in other words four quadrants parti-
tioned from Fig. 35.5a could be paired into best pair (Fig. 35.6a), medium best pair
(Fig. 35.6b), and the least best pair (Fig. 35.6c).

Fig. 35.5 a Digital Elevation Model of size 256 × 256 pixels depicting Mount St Helens,
b–e four quadrants of size 128 × 128 pixels partitioned from DEM (Fig. 35.5a) include top-left
f 1ð Þ, top-right f 2ð Þ, bottom-left f 3ð Þ, and bottom-right f 4ð Þ portions

Fig. 35.6 Three best ranked pairs of spatial elevation fields shown in Fig. 35.5b–e a f 1, f 2ð Þ,
b f 1, f 3ð Þ, and c f 3, f 4ð Þ
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35.3 Terrestrial Pattern Analysis

Quantitative analyses of terrestrial phenomena and processes is one of the inno-
vative new directions of geoscientific research. Analysis of terrestrial patterns—that
include water bodies, valley and ridge connectivity networks, watersheds, hill-
slopes, mountain objects, elevation fields—at various spatial and temporal scales is
an important aspect to better understand the dynamical behaviors of various ter-
restrial processes and surfaces. Over the decades, various quantitative approaches
have been developed and successfully demonstrated. Some of these approaches
include morphometric analysis of river networks, hypsometry, allometry, and
granulometric analyses, and geodesic spectrum based analysis. In this section, we
show some results through illustrations arrived at via applications of mathematical
morphology in (i) morphometric and allometric analyses of river networks and
water bodies and their corresponding zones of influence, (ii) deriving
scale-invariant but shape-dependant power laws, (iii) deriving basin-specific geo-
desic spectrum, and (iv) DEM analysis.

35.3.1 Morphometry and Allometry of Networks

Towards analyzing terrestrial surfaces we have shown unique ways to quantitatively
characterize the spatiotemporal terrestrial complexity via scale-invariant measures
that explain the commonly sharing physical mechanisms involved in terrestrial
phenomena and processes. These contributions (Sagar and Rao 1995a, b, c, d; Sagar
1996, 1999a 2000a, b, 2001a, b, c, d 2007; Sagar et al. 1998a, b, 1999; Sagar and
Tien 2004; Chockalingam and Sagar 2005; Tay et al. 2005a, b, c) highlighted the
evidence of self-organization via scaling laws—in networks, hierarchically
decomposed subwatersheds, and water bodies and their zones of influence, which
evidently belong to different universality classes—which possess excellent agree-
ment with geomorphologic laws such as Horton’s Laws, Hurst exponents, Hack’s
exponent, and other power-laws given in non-geoscientific contexts. A host of
allometric power-law relationships were derived that were in good accord with
other established network models and real networks (Figs. 35.7, 35.8 and 35.9).

35.3.2 Allometry of Water Bodies and Their Zones
of Influence

Topologically, water bodies (Fig. 35.10a) are the first level topographic regions that
get flooded, and as the flood level gets higher, adjacent water bodies merge. The
looplike network that forms along all these merging points represents zones of
influence (Fig. 35.10b) of each water body. The geometric organizations of these
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two phenomena are respectively sensitive and insensitive to perturbation due to
exogenic processes. To demonstrate the allometric relationships of water bodies and
their zones of influence, a large number of surface water bodies (irrigation tanks),
situated in the floodplain region of certain rivers of India, which are retrieved from
multi-date remotely sensed data were analyzed in 2-D space (Sagar et al. 1995a, b).
Basic measures of these water bodies obtained by morphological analysis were
employed to show fractal-length-area-perimeter relationships.

We found that these phenomena follow the universal scaling laws (Sagar et al.
2002; Sagar 2005a, b) found in other geophysical and biological contexts. In this
work, universal scaling relationships among basic measures such as area, length,
diameter, volume, and information about networks are exhibited by several natural
phenomena to further retrieve and understand the common principles underlying
organization of these phenomena. Some of the recent findings on universal scaling
relations include relationships between brain and body, length and area (or volume),

Fig. 35.7 a An example of fourth-order channel network (nonconvex set) and b its convex hull.
A stationary outlet is shown as a round dot in Fig 35.7a. c color-coded traveltime network pruned
iteratively until it reaches the outlet and d color-coded union of convex hulls of networks pruned to
different degrees
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Fig. 35.8 Networks in a three-sided fractal basin, b four-sided fractal basin, c five-sided fractal
basin, d six-sided fractal basin, e seven-sided fractal basin, f eight-sided fractal basin, and
g Nizamsagar reservoir. (From Sagar et al. 1998a, b, 1999, 2001)

Fig. 35.9 a sub-basins decomposed from a Hortonian F-DEM areas, and b corresponding main
lengths
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size and number, size and metabolic rate. In this study, we have shown a host of
universal scaling laws in surface water bodies (Fig. 35.10a) and their zones of
influence (Fig. 35.10b) that have similarities with several of these relationships
encountered in various fields are shown.

35.3.3 Morphometry of Non-network Space: Scale Invariant
but Shape-Dependent Dimension

In sequel works on terrestrial analysis, we argued that the universal scaling laws
shown as examples in earlier section possess limited utility in exploring possibilities
to relate them with geomorphologic processes. These arguments formed the basis
for alternative methods (Radhakrishna et al. 2004; Teo et al. 2004; Sagar and
Chockalingam 2004; Chockalingam and Sagar 2005; Tay et al. 2005a, b, 2007).
Shape and scale based indexes provided to analyze and classify non-network space
(hillslopes) (Sagar and Chockalingam 2004; Chockalingam and Sagar 2005), and
terrestrial surfaces (Tay et al. 2005a, b, 2007) received wide attention. These
methods that preserve the spatial and morphological variability yield quantitative
results that are scale invariant but shape dependent, and are sensitive to terrestrial
surface variations. “Fractal dimension of non-network space of a catchment basin”,

Fig. 35.10 a A section consisting of a large number of small water bodies traced from the
floodplain region of Gosthani River and b zones of influence of water bodies shown in
Fig. 35.10a. Different colors are used to distinguish the adjacent influence zones
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provides an approach to show basic distinction between the topologically invariant
geomorphologic basins. It introduced morphological technique for hillslope
decomposition that yields a scale invariant, but shape dependent, power-laws
(Fig. 35.11a, b).

Varied degrees of topographically convex regions within a catchment basin
represent varied degrees of hill-slopes. The non-network space, the characterization
of which we focused on in our investigations, is akin to the space that is achieved
by subtracting channelized portions contributed due to concave regions from the
watershed space. This non-network space is akin to non-channelized convex region
within a catchment basin. We proposed an alternative shape-dependent quantity
akin to fractal dimension to characterize this non-network space (e.g.: Fig. 35.12a).
Towards this goal, non-network space is decomposed, in two- dimensional discrete
space, into simple non-overlapping disks (NODs) of various sizes by employing
mathematical morphological transformations and certain logical operations
(Fig. 35.12b). Furthermore, number of NODs of lesser than threshold radius is
plotted against the radius, and computed the shape-dependent fractal dimension of
non-network space. This study was extended to derive shape dependent scaling
laws as the laws derived from network measurements are shape independent for
realistic basins (Fig. 35.12). The relationship between number of NODs and the
radius of the disk provides an alternative fractal-like dimension that is shape
dependent. This was done with the aim to relate shape dependent power laws with
geomorphic processes such as hill-slope processes and erosion.

Applications of mathematical morphology transformations are shown to
decompose fractal basins (e.g.: Fig. 35.11a) into non-overlapping disks of various
sizes (Fig. 35.11b) further to derive fractal power-laws based on number-radius
relationships.

Fig. 35.11 a Apollonian space, and b after decomposition by means of octagon
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35.3.4 Geodesic Spectrum

We have provided a novel geomorphologic indicator by simulating geodesic flow
fields (Fig. 35.13d–f) within basins (Fig. 35.13a–c) consisting of spatially dis-
tributed elevation regions (Lim and Sagar 2008a, b), further to compute a geodesic
spectrum that provides a unique one-dimensional geometric support.

This one-dimensional geometric support, in other words geodesic spectrum,
outperforms the conventional width–function based approach which is usually
derived from planar forms of basin and its networks–construction involves basin as

Fig. 35.12 a 5th order channel network c of Durian Tungal catchment basin, basin X is
reconstructed from this channel network via multiscale morphological closing transformation,
b M = X\C

Fig. 35.13 a a flat circular basin, b a basin with three spatially distributed elevation regions, c a
fractal basin with channelised and non-channeled regions d flow fields with isotropic propagation
in a, e isotropic flow fields within b, and f flow fields within c and orthogonality between the flow
fields of channelized and non-channelized zones is obvious. (From Lim and Sagar 2008a, b.)

35 Mathematical Morphology in Geosciences and GISci … 715



a random elevation field (e.g. Digital Elevation Model, DEM) and all threshold
elevation regions decomposed from DEM for understanding the shape-function
relationship much better than that of width function.

35.3.5 Granulometric and Anti-granulometric Analysis
of Basin-DEMs

Granulometric indexes derived for spatial elevation fields also yield scale invariant
but shape-dependent measures (Tay et al. 2005a, b, c, 2007). DEMs are analyzed by
following granulometries via multiscale opening (Fig. 35.14 upper panel), and
antigranulometries (Fig. 35.14 lower panel) to derive shape-size complexity mea-
sures of foreground and background respectively that provide new indices to
understand the terrestrial surfaces further to relate with several geomorphic
processes.

35.4 Geomorphologic Modeling and Simulation

Simulations allow us to gain a significantly good understanding of complex geo-
morphologic systems in a way that is not possible with lab experiments. Effectively
attaining these goals presents many computational challenges, which include the
development of frameworks. The robustness of mathematical morphological
operators combined with concepts of fractal geometry (Mandelbrot 1982) in

Fig. 35.14 Basin 1 of Cameron Highlands is taken as an example to show the basin images at
multiple scales generated via closing and opening. Basin 1 is located at the northern part of
Cameron Highlands region, with a size of 3.1 km (east to west) 63.4 km (north to south). (Upper
sequence) DEM at multiple scales generated via opening, and (Lower Panel) multiscale DEMs
generated via closing
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modeling and simulations of certain geoscientific phenomena and processes is
shown briefly with illustrative examples in this section. The phenomena and pro-
cesses given emphasis in this section include geomorphologic features, basins and
channel networks, landscapes, water bodies, symmetrical folds and ideal sand
dunes. Besides providing approaches to simulate fractal-skeletal based channel
network model and fractal landscapes, we have shown via the discrete simulations
the varied dynamical behavioral phases of certain geoscientific processes (e.g. water
bodies, ductile symmetric folds, sand dunes, landscapes) under nonlinear pertur-
bations due to endogenic and exogenic nature of forces. For these simulations we
employed nonlinear first order difference equations, bifurcation theory, fractal
geometry, and nonlinear morphological transformations as the bases. The three
complex systems that we focus on include the channelization process, surface water
bodies, and elevation structures.

35.4.1 Geomorphologic Modeling: Concept of Discrete
Force

Concept of discrete force was proposed from theoretical standpoint to model certain
geomorphic phenomena, where geomorphologically realistic expansion and con-
tractions, and cascades of these two transformations were proposed, and five laws
of geomorphologic structures are proposed (Sagar et al. 1998a, b). A possibility to
derive a discrete rule from a geomorphic feature (e.g. lake) undergoing morpho-
logical changes that can be retrieved from temporal satellite data was also proposed
in this work, and explained (Fig. 35.15). Laws of geomorphic structures under the
perturbations are provided and shown, through interplay between numerical sim-
ulations and graphic analysis as to how systems traverse through various behavioral
phases.

Fig. 35.15 a Hypothetical geomorphic feature at time t, b geomorphic feature at time t + 1, and
c difference in geomorphic feature from time t to t + 1
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35.4.2 Fractal-Skeletal Based Channel Network Model

Our work on channel network modelling Gastner and Newman (2004) and Sagar
(2001c) represents unique contributions to the literature, which until recently were
dominated by the classic random model. Fractal-skeletal based channel network
model (F-SCN) was proposed by following certain postulates. We developed the
Fractal-Skeletal Channel Network (F-SCN) model by employing morphological
skeletonization to construct other classes of network models, which can exhibit
various empirical features that the random model cannot. In the F-SCN model that
gives rise to Horton laws, the generating mechanism plays an important role.
Homogeneous and heterogeneous channel networks can be constructed by sym-
metric generator with non-random rules, and symmetric or asymmetric generators
with random rules. Subsequently, F-SCNs (Fig. 35.16d–f) in different shapes of
fractal basins (Fig. 35.16a–c) are generated and their generalized Hortonian laws
(Fig. 35.16g, h) are computed which are found to be in good accord with other
established network models such as Optimal Channel Networks (OCNs), and
realistic rivers. F-SCN model is extended to generate more realistic dendritic
branched networks.

35.4.3 Fractal Landscape via Morphological Decomposition

By applying morphological transformations on fractals of varied types are
decomposed into topologically prominent regions (TPRs) (Fig. 35.17a) and each
TPR is coded and a fractal landscape organization that is geomorphologically
realistic is simulated (Fig. 35.17b) (Sagar and Murthy 2000).

Fig. 35.16 a, b and c Fractal basins after respective iterations. d, e and f An evolutionary
sequence of F-SCNs after respective iterations, g Horton’s law of number, and h Horton’s law of
mean length
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35.4.4 Discrete Simulations and Modeling the Dynamics
of Small Water Bodies, Symmetrical Folds, and Sand
Dunes

In this subsection we show the fusion of computer simulations and modeling
techniques in order to better understand certain terrestrial phenomena and processes
with the ultimate goal of developing cogent models in discrete space further to gain
a significantly good understanding of complex terrestrial systems in a way that is
not possible with lab experiments. The three synthetic phenomena that are
explained by generating attractors considered include water bodies (Sagar and Rao
1995a, b, c), symmetrical folds (Sagar 1998), and sand dunes (Sagar 1999b, 2000a,
b, 2001a, 2005a, b; Sagar and Venu 2001; Sagar et al. 2003a, b).

35.4.4.1 Discrete Simulations and Modeling the Dynamics of Small
Water Bodies

Spatio-temporal patterns of small water bodies (SWBs) under the influence of
temporally varied streamflow discharge behaviors are simulated in discrete space by
employing geomorphologically realistic expansion and contraction transformations
(Fig. 35.18). Expansions and contractions of SWBs to various degrees (e.g.
Fig. 35.18B g–l), which are obvious due to fluctuations in streamflow discharge
pattern (Fig. 35.18A, a–f), simulate the effects respectively owing to streamflow
discharge that is greater or less than mean streamflow discharge. The cascades of
expansion-contraction are systematically performed by synchronizing the stream-
flow discharge (Fig. 35.18A, a–f), which is represented as a template with definite

Fig. 35.17 a A binary fractal basin after decomposition into TPRs b A fractal landscape
generated from Fig. 35.17a. Light and dark regions of DEM are visualized as high and low
elevations (vertical exaggeration: 7)

35 Mathematical Morphology in Geosciences and GISci … 719



characteristic information, as the basis to model the spatio-temporal organization of
randomly situated surface water bodies of various sizes and shapes.

We have shown the varied dynamical behavioral phases of certain geoscientific
processes (e.g. water bodies) under nonlinear perturbations via the discrete
simulations.

35.4.4.2 Ductile Symmetrical Fold Dynamics

Under various possible time-dependent and time-independent strength of control
parameter, in other words nonlinear perturbations, the three-limb symmetrical folds
are transformed in a time sequential mode to simulate various possible fold dynamical
behaviors (Fig. 35.19a, b) synchronizing trajectory behavior simulated via logistic
equation with strength nonlinearity parameters 3.9 and 2.8 (Fig. 35.20a, b). We
employed normalized fractal dimension values, and interlimb angles (IAs) as
parameters along with strength of nonlinear parameters in this study. Bifurcation

Fig. 35.18 A Streamflow discharge behavioral pattern at different environmental parameters.
a–f λ = 1, 2, 3, 3.46, 3.57 and 3.99, and B Spatio-temporal organization of the surface water
bodies under the influence of various streamflow discharge behavioral patterns at the
environmental parameters at a–f λ = 1, 2, 3, 3.46, 3.57, and 3.99 are shown up to 20 time
steps. In all the cases, the considered initial MSD, A0 = 0.5 (in normalized scale) is considered
under the assumption that the water bodies attain their full capacity. It is illustrated only for the
overlaid outlines of water bodies at respective time-steps with various λs
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diagrams are constructed for both time-dependent and time-independent fold
dynamical behaviors, and the equations to compute metric universality by consid-
ering the interlimb angles computed at threshold strengths of nonlinearity parameters
are proposed (Sagar 1998).

35.4.4.3 Symmetrical Sand Dune Dynamics

Certain possible morphological behaviors with respective critical states represented
by inter-slip face angles of a sand dune under the influence of non systematic
processes are qualitatively illustrated by considering the first order difference
equation that has the physical relevance to model the morphological dynamics of
the sand dune evolution as the basis. It is deduced that the critical state of a sand
dune under dynamics depends on the regulatory parameter that encompasses
exodyanmic processes of random nature and the morphological configuration of
sand dune. With the aid of the regulatory parameter, and the specifications of initial
state of sand dune, morphological history of the sand dune evolution can be
investigated. As an attempt to furnish the interplay between numerical experiments
and theory of morphological evolution, the process of dynamical changes
(Fig. 35.21) in the sand dune with a change in threshold regulatory parameter (e.g.
Fig. 35.22) is modeled qualitatively for a better understanding. An equation to
compute metric universality by considering attracting interslipface angles is also
proposed. Avalanche size distribution in such a numerically simulated sand dune
dynamics have also been studied.

Fig. 35.19 Evolution of a fold type with the strength of nonlinearities: a λ = 3.9 and b λ = 2.8.
The numbers represent the discrete times. (From Sagar 1998)
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35.5 Geospatial Computing and Visualization

Mathematical morphology not only provides robust solutions in terrestrial pattern
retrieval, analysis, and modeling and simulations but also provides numerous
insights worth exploring to find solutions for the challenges encountered in GISci. In
recent works—that include (i) binary and grayscale morphological interpolations,

Fig. 35.20 Logistic maps for the qualitative dynamical behavior of symmetric folds under
evolution shown in Fig. 35.19a, b. It may be seen that the values mentioned on the abscissa are
IAs in degrees for the symmetric fold with three limbs. (From Sagar 1998)

Fig. 35.21 a Initial sand dune profile with α = 0.00001 or θ = 179.57334. The attractor sand
dune profiles at various threshold regulatory parameters: b λ = 3, fixed point attractor sand dune;
c λ = 3.46, period 2 attractor sand dunes; d λ = 3.569, period 4 attractor sand dunes; and
e λ = 3.57, period 8 attractor sand dunes. The attractor sand dune profiles shown in b–e are by
iterating 3 × 104 time steps. (From Sagar 1999a, b)
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SKIZ, WSKIZ and applications in spatiaotemporal visualizations, conversion of
point-specific variable data into contiguous zonal maps (Rajashekara et al. 2012),
morphing (Sagar and Lim 2015a, b) and variable-specific cartogram generation
(Sagar 2014a, b), (ii) volumetric visualization of topologically significant compo-
nents such as pore-bodies, pore-throats, and pore-channels (Teo and Sagar 2005,
2006), and (iii) spatial reasoning, planning, and interactions (Sagar et al. 2013;
Vardhan et al. 2013; Sagar 2018)—one can realize on how robust approaches could
be developed by considering mathematical morphological transformations.

Fig. 35.22 a A 1-D map plotted between θt+1 versus θt for sand dune case λ = 4 and b return
map plotted between θt+1 − θt versus θt+2 − θt+1 for sand dune case with λ = 4. (From Sagar
et al. 2003a, b; Sagar and Venu 2001)
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35.5.1 Morphological Interpolations

This subsection provides the applications of binary and grayscale morphological
interpolations in hierarchical computation of morphological medians and in mor-
phing, and the applications of SKIZ and WSKIZ in conversion of point-specific
variable data into contiguous zonal map, and generation of variable-specific con-
tiguous cartograms.

35.5.1.1 Computation of Hierarchical Morphological Medians

Hausdorff-distance based (i) spatial relationships between the maps possessing
bijection for categorization and (ii) nonlinear spatial interpolation in visualization of
spatiotemporal behavior are proposed and demonstrated. This work (Sagar 2010,
2014a, b; Challa et al. 2016) concerns the development of frameworks with a goal
to understand spatial and/or temporal behaviors of certain evolving and dynamic
geomorphic phenomena. In (Sagar 2010), we have shown (i) how
Hausdorff-Dilation and Hausdorff-Erosion metrics could be employed to categorize
the time-varying spatial phenomena, and (ii) how thematic maps in time-sequential
mode (Fig. 35.23a) can be used to visualize the spatiotemporal behaviour of a
phenomenon, by recursive generation of median elements (Fig. 35.23b). Spatial
interpolation, that was earlier seen as a global transform, is extended in Lim and
Sagar (2008) by introducing bijection to deal with even connected components.
This aspect solves problems of global nature in spatial-temporal GIS. Spatial
Interpolation technique is found useful for spatial-temporal GIS and is demon-
strated with validation on epidemic spread maps collected for eleven years between
1896 and 1906 (Fig. 35.23a–k, upper left panel). Morphological medians are
computed between the epidemic spread maps staggered at two-year interval
(Fig. 35.23a–k, upper right panel). Further morphological medians are computed in
a hierarchical manner between every two epidemic spread maps of successive years
(Fig. 35.23a, b in the lower panel).

35.5.1.2 Grayscale Morphological Interpolation and Morphing

The computation of morphological medians between the thematic maps (binary
images) demonstrated in the earlier subsection could be extended to the spatial
fields (functions, e.g.: DEMs). This extended version is termed as grayscale mor-
phological interpolation. We have demonstrated the application of grayscale mor-
phological interpolations, computed hierarchically between the spatial fields
(Fig. 35.24), to metamorphose a source-spatial field into a target-spatial field.
Grayscale morphological interpolations are computed in a hierarchical manner
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(Fig. 35.25) with respect to non-flat structuring element, and found that the mor-
phing, shown for transform source-spatial field into target-spatial field, created with
respect to non-flat structuring element is more appropriate as the transition of
source-spatial field into the target-spatial field across discrete time steps is smoother
than that of the morphing shown with respect to flat structuring element (Sagar and
Lim 2015a, b). This morphing shown via nonlinear grayscale morphological
interpolations is of immense value in geographical information science, and in
particular spatiotemporal geo-visualization.

Fig. 35.23 (Upper-Left Panel) a–k Spatial temporal maps that represent the geographic spread of
bubonic plague in India between 1896 and 1906 at intervals of one year Maragos and Schafer
(1986). The 11 spatial maps depicting the spread of plague were sequentially used to generate the
maximum possible number of interpolated maps; (Upper right panel) a Original spatial map of the
bubonic plague during 1896. b–j The first level median sets computed for M(Xt, Xt+2) for all “t”
ranging from 1896 to 1905. k Original spatial map during 1906. For validation, the maps of
Fig. b–j of upper left panel obtained as first-level median sets are, M(Xt, Xt+2) respectively,
compared for all “t” with those t of Fig. 35.23b–j of upper left panel. These first-level median sets
show a reasonable matching with the actual sets (Fig. 35.23b–j of upper left panel); (Lower Panel)
Superimposed gray-coded a original spatial maps and b spatial maps generated via median set
computations
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Fig. 35.24 Smaller regions of DEMs: a Cameron Highlands, and b Petaling region

Fig. 35.25 Generation of morphological medians generated by non-flat structuring element,
between the DEMs shown in (a) and (i), at b zeroth level, c, d first level, and e–h second level
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35.5.1.3 Point-to-Polygon Conversion via WSKIZ

Data about many variables are available as numerical values at specific geo-
graphical locations in a noncontiguous form. We develop a methodology based on
mathematical morphology to convert point-specific data into polygonal data. This
methodology relies on weighted skeletonization by zone of influence (WSKIZ).
This WSKIZ determines the points of contact of multiple frontlines propagating,
from various points (e.g.: gauge stations) spread over the space, at the travelling
rates depending upon the variable’s strength. We demonstrate this approach for
converting rainfall data available at specific rain gauge locations (points)
(Fig. 35.26a) into a polygonal map (Fig. 35.26b) that shows spatially distributed
zones of equal rainfall in a contiguous form (Rajashekara et al. 2012).

35.5.1.4 Cartograms via WSKIZ

Visualization of geographic variables as spatial objects of size proportional to
variable strength is possible via generating variable-specific cartograms. We
developed a methodology based on mathematical morphology to generate con-
tiguous cartograms. This approach determines the points of contact of multiple
frontlines propagating, from centroids of various planar sets (states), at the travel-
ling rates depending upon the variable’s strength (Fig. 35.27a–d).

The contiguous cartogram generated via this algorithm preserves the global
shape, and local shapes, and yields minimal area-errors. It is inferred from the
comparative error analysis that this approach could be further extended by

Fig. 35.26 a 34 points (locations) of rain-gauge stations spread over India indexed (A1–A34),
b Rainfall zonal map generated by having various possible propagation speeds, and the variable
strengths in terms of propagation speeds
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exploring the applicability of additional characteristics of structuring element,
which controls the dilation propagation speed and direction of dilation while
generating variable-specific cartograms, to minimize the local shape errors, and
area-errors. This algorithm addresses a decade-long problem of preservation of
global and local shapes of cartograms. This approach was extended to generate a
cartogram for a variable population to demonstrate the proposed approach. Further,
the population cartograms for the USA generated via four other approaches
(Kocmoud 1997; Keim et al. 2004; Gastner and Newman 2004; Gusein-Zade and
Tikunov 1993) are compared with the morphology-based cartogram (Fig. 35.28a–f)
in terms of errors with respect to area, local shape, and global shape. This approach
for generating cartograms preserves the global shape at the expense of compro-
mising with area-errors. It is inferred from the comparative error analysis that the
proposed morphology-based approach could be further extended by exploring the
applicability of additional characteristics of probing rule, which controls the dilation
propagation speed and direction of dilation while performing WSKIZ, to minimize
the local shape errors, and area-errors.

35.5.2 Visualization of Topological Components
in a Volumetric Space

Heterogeneous material is one that is composed of domains of different materials
(phases). The aim of this module is to show how geometric descriptors derived via
mathematical morphology and fractal analysis vary between the porous phases
isolated from varied types of rocks at various spatial and spectral scales. It is
evident from the recent works on Fontainebleau sandstone that the characteristics
derived through computer assisted mapping and computer tomographic analysis
were well correlated with the physical properties such as porosity, permeability, and
conductance. Whatever the physical processes involved in altering the porous phase
of material, we propose to emphasise quantifying the complexity of porous phase in
both 2-D and 3-D domains. From a petrologic study perspective, such a quantitative
characterization in both two- and three-dimensional spaces is of current interest.

Fig. 35.27 The variable strengths (in terms of propagation speeds are given as a A2 >A4 >A1 >A3,
b A2 >A1 >A3 >A4, c A1 >A3 >A2 >A4, and d A1 >A4 >A2 >A3

728 B. S. Daya Sagar



Just like how CT scanning mechanism is employed to scan the brain to study
several neurophysiologic processes, one can also employ such a CT-scanning
mechanism, besides already existing scanning methods, to scan the rock bodies and
store the scanned information in layered forms. Each layer depicts rock’s cross
sectional information at specific depth. Retrieval of three significant geometric and/
or topologic components, describing organisation of porous medium, that include
(a) pore channel, (b) pore throat, and (c) pore body in both 2-D and 3-D spaces is an
important task. A 3-D fractal pore (Fig. 35.29a, b) simulated in such a way that it
mimics the stacked layers of pore sections is converted into 3-D pore channel

Fig. 35.28 a Equal-area-projection map of USA. b–e Population cartograms generated for USA
based on b Continuous cartogram (Kocmoud 1997), c cartodraw (Keim et al. 2004),
d Gastner-Newman cartogram (Gastner and Newman 2004), e Area cartogram of the United
States, with each county rescaled in proportion to its population (Gusein-Zade and Tikunov 1993),
and f morphology-based cartogram (Sagar 2014a, b). U.S. population cartogram by Gusein-Zade
and Tikunov (e: Reproduced with permission from Gusein-Zade and Tikunov 1993, page 172,
Fig. 35.1, © 1993 American Congress on Surveying and Mapping). The color coding given in
Fig. 35.28a is similar to that of Fig. 35.28f
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network (Fig. 35.29c, d), 3-D pore throats (Fig. 35.29e, f) and 3-D pore bodies
(Fig. 35.29g, h). These decomposed pore features that are of topological impor-
tance would shed the light to derive geometric relations which further can be related
with that of physical properties of porous structure.

Fig. 35.29 Top and side views of a, b model 3D fractal binary pore, c, d pore-channel,
e, f pore-throat, and g, h pore-body. (Source Teo and Sagar 2006)
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35.5.3 Spatial Reasoning and Planning

Mathematical morphology based algorithms developed and demonstrated shown in
this subsection include to determine (i) strategically significant set(s) for spatial
reasoning and planning, (ii) directional spatial relationship between areal objects
(e.g.: lakes, states, sets) via origin-specific dilations, and (iii) spatial interactions via
modified gravity model.

35.5.3.1 Strategically Significant State (S)

Identification of a strategically significant set from a cluster of adjacent and/or
non-adjacent sets depends upon the parameters that include size, shape, degrees of
adjacency and contextuality, and distance between the sets. An example of cluster
of sets includes continents, countries, states, cities, etc. The spatial relationships,
deciphered via the parameters cited above, between such sets possess varied spatial
complexities. Hausdorff dilation distance between such sets is considered to derive
automatically the strategic set among the cluster of sets. The (i) dilation distances,
(ii) length of boundary being shared, and (iii) degrees of contextuality and adja-
cency between origin-set and destination sets, which together provide solutions to
derive strategically significant sets with respect to distance, degree of contextuality,
degree of adjacency and length of boundary being shared. Simple mathematical
morphologic operators and certain logical operations are employed in this study.
Results drawn (Fig. 35.30)—by applying the proposed framework on a case study
that involves spatial sets (states) decomposed from a spatial map depicting the
country of India—are shown in Fig. 35.30.

This approach has been applied on data depicting randomly spread surface water
bodies (Fig. 35.31a, b) and their corresponding zones of influence (Fig. 35.31c, d)
within a subbasin to detect the strategically significant water body and zone of
influence (Fig. 35.32a, b).

35.5.3.2 Directional Spatial Relationship

We provide an approach to compute origin-specific morphological dilation dis-
tances between planar sets (e.g.: areal objects, spatially represented countries,
states, cities, lakes) to further determine the directional spatial relationship between
sets. Origin chosen for a structuring element that yields shorter dilation distance
than that of the other possible origins of structuring element determines the
directional spatial relationship between Ai (origin-set) and Aj (destination set). We
demonstrate this approach on a cluster of spatial sets (states) decomposed from a
spatial map depicting country India (Fig. 35.33a). This approach has potential to
extend to any number (type) of sets on Euclidean space.
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35.5.3.3 Spatial Interactions

Hierarchical structures include spatial system (e.g. river basin), clusters of a spatial
system (e.g. watersheds of a river basin), zones of a cluster (e.g. subwatersheds of a
watershed), and so on. Variable-specific classification of the zones of a cluster of
zones within a spatial system is the main focus of this work on spatial interactions.
Variable-specific (e.g. resources) classification of zones is done by computing the
levels of interaction between the ith and jth zones. Based on a heuristic argument,

Fig. 35.30 A Map of India (spatial system) with its constituent 28 states (subsets)—indexed
according to alphabetical order are shown—Andhra Pradesh (A1), Arunachal Pradesh (A2), Assam
(A3), Bihar (A4), Chhattisgarh (A5), Goa (A6), Gujarat (A7), Haryana (A8), Himachal Pradesh
(A9), Jammu & Kashmir (A10), Jharkhand (A11), Karnataka (A12), Kerala (A13), Madhya Pradesh
(A14), Maharashtra (A15), Manipur (A16), Meghalaya (A17), Mizoram (A18), Nagaland (A19),
Orissa (A20), Punjab (A21), Rajasthan (A22), Sikkim (A23), Tamilnadu (A24), Tripura (A25),
Uttarapradesh (A26), Uttarakhand (A27), West Bengal (A28), Union territories and Himalayan hill
range that are parts Indian peninsular are not included in the figure. B Spatial representation of
strategically important states in the order from 1 to 10 are shown in terms of twelve different
parameters shown in Fig. 35.7. In each panel of this Figure, first 10 strategically significant states
(please refer to the legend on each panel) are shown in different colors. These strategically
significant sets with respect to a boundary being shared, b shortest distance from origin to
destination states, c shortest total distance from destination states to origin state, d contextuality,
e Hausdorff dilation distance, f spatial complexity involved in length of the boundary being shared,
g spatial complexity in terms of contextuality, h spatial complexity in terms of distance from origin
to destination states, i spatial complexity in terms of distance from destination states to origin state,
j spatial complexity in terms of Hausdorff dilation distance from origin state to destination states.
States with color-codes denote first ten strategically significant states, and the region with white
space represents the states that are strategically non-significant with ranks starting from eleven to
twenty eight
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Fig. 35.31 a Indian Remote Sensing satellite (IRS LISS-III) multispectral image of the study
area, and the blue objects are water bodies traced from IRS LISS-III image with topographic map
reference superposed on IRS LISS-III image, and white dots indicate the boundary of the
considered cluster, b small water bodies, c zones of influence of corresponding water bodies, and
d water bodies and zones of influence with labeling

Fig. 35.32 Spatially significant a water body with label 35 (Red Color), and b zone of water body
influence labeled with 35 (Red Color)
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we proposed a modified gravity model for the computations of levels of interaction
between the zones. This argument is based on the following two facts: (i) the level
of interaction between the ith and jth zones, with masses mi and mj is
direction-dependent, and (ii) the level of interactions between the ith and jth zones
with corresponding masses, situated at strategically insignificant locations would be
much different (lesser) from that of the ith and jth zones with similar masses but
situated at strategically highly significant locations. With the support of this
argument, we provide a modified gravity model by incorporating the asymmetrical
distances, and the product of location significance indexes of the corresponding
zones. This modified gravity model yields level of interaction between the two
zones that satisfies the realistic characteristic that is level of interaction between the
zones is direction-dependent.

Each state of India is designated with ranks in terms of its (i) location signifi-
cance index, (ii) strengths of interaction of all states with a specific state,
(iii) strengths of interaction with other states, and (iv) strength out of (ii) and
(iii) (Fig. 35.34a–d). Further by employing a modified gravity model, 28 states (X1

to X28) of India (Fig. 35.30A) are paired into best interacting to least interacting
pairs with respect to areal extents of states as a variable (Fig. 35.35a–j).

Fig. 35.33 a Twenty nine sets (states of India) indexed according to alphabetical order are shown
—Gujarat (A1), Rajasthan (A2), Maharashtra (A3), Goa (A4), Karnataka (A5), Kerala (A6), Madhya
Pradesh (A7), Jammu and Kashmir (A8), Punjab (A9), Haryana (A10), Tamilnadu (A11), Andhra
Pradesh (A12), Himachal Pradesh (A13), Delhi (A14), Uttar Pradesh (A15), Uttaranchal (A16),
Chhattisgarh (A17), Orissa (A18), Bihar (A19), Jharkhand (A20), West Bengal (A21), Sikkim (A22),
Assam (A23), Meghalaya (A24), Tripura (A25), Arunachal Pradesh (A26), Mizoram (A27), Manipur
(A28), Nagaland (A29). Union Territories are not considered. b Directional spatial relationship
shown in colored matrix form in which there are 29 rows and 29 columns and a color in each grid
cell explaining directional relationship between each state to other 28 states
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Fig. 35.34 India map with each state designated with a rank with respect to four different

parameters. a φXi, b max
i

∑j FXij

� �
, c max

j
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Fig. 35.35 Five best pairs exhibited the high levels of interactions a X20, 5, b X14, 26, c X26, 27,
d X14, 5, and e X1, 20. Five pairs exhibited the least levels of interactions f X6, 25, g X25, 6, h X6, 19,
i X6, 23, and j X23, 6
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35.6 Conclusions

From our attempts since early 1990s, we could clearly see a great potential for
mathematical morphological transformations in the three aspects (retrieval, analysis
and reasoning, and modeling) of relevance to geosciences and GISci. This chapter
provided a brief illustrative review on how mathematical morphology could be
applied to deal with varied topics of relevance to mathematical geosciences and
geographical information science communities. Reader is encouraged to dig cited
references for more details. Our studies show that there exist several open problems
of relevance to the mathematical geosciences community. These open problems
could be well-handled by mathematical morphology. Some of the recent advances
of mathematical morphology and their applications in spatial data segmentation and
morphological clustering were discussed. Applications of both classical and modern
mathematical morphological transformations in geosciences and GISci are yet to be
seen in full-length. It is our hope that most visible and highly distinguished sci-
entists who are active in the IAMG activities would spread a word wide across and
would spur the interest of young researchers to take the strides forward.
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