Chapter 34 M)
Data Science for Geoscience: Leveraging e
Mathematical Geosciences

with Semantics and Open Data

Xiaogang Ma

Abstract Mathematical geosciences are now in an intelligent stage. The freshly
new data environment enabled by the Semantic Web and Open Data poses both
new challenges and opportunities for the conduction of geomathematical research.
As an interdisciplinary domain, mathematical geosciences share many topics in
common with data science. Facing the new data environment, will data science
inject new blood into mathematical geosciences, and can data science benefit from
the achievements and experiences of mathematical geosciences? This chapter
presents a perspective on these questions and introduces a few recent case studies
on data management and data analysis in the geosciences.

34.1 Introduction

The global science community is facing a fresh data environment that never existed
before. New generations of sensors, instruments and platforms extend the range of
exploration and speed up the frequency of data collection. The quick updates in data
storage facilities make it possible to archive and retrieve massive datasets in digital
formats. The wide coverage of Internet and World Wide Web services allow
researchers to share datasets and communicate with colleagues efficiently both in
the office and from the field. As transparency, openness and reproducibility of
research results and methods receive increasing attention, the science community is
now promoting an open science culture (Nosek et al. 2015) and encouraging actions
on open access, open data, open code and open samples (Easterbook 2014; Hey and
Payne 2015; McNautt et al. 2016). In the domain of geoscience, significant progress
has been achieved on open data, including those emanating from federal agencies
such as data services of NASA, USGS, NOAA and community-built data portals
such as OneGeology, EarthChem, RRUFF, PANGAEA, PaleoBioDB, and more.
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A clear trend in open data actions is that the World Wide Web is used as the space
for data storage, publication, discovery and access. Data resources on the Web
provide convenience for geoscience researchers, and lay out the platform for
cross-disciplinary collaboration and new scientific discoveries.

In addition to focused research topics within each discipline, geoscience
researchers in the 21st century are now able to tackle more grand research questions
(Fig. 34.1) that need broad perspectives, multidisciplinary collaboration and sus-
tained data support. Studies on these questions will lead to the extension of our
fundamental knowledge and understanding about the Earth system, which in turn
will contribute to the application of geoscience in tackling social and economic
issues that are relevant to human welfare. For example, the Future Earth, a ten-year
initiative (2015-2025) coordinated by several international organizations, proposed
eight key challenges to the global sustainability (Future Earth 2014):
water-energy-food nexus, decarbonization, natural assets, cities, rural futures,
human health, consumption and production, and social resilience. To grasp these
tremendous opportunities and make innovative discoveries, geoscience researchers
need the necessary data resources and skills. Although geoscience data are
increasingly made available online, due to the heterogeneities inside them, many
data are not ready for use by end users. The heterogeneities of geoscience data are
reflected in the vast number of subjects, varied data structures and formats, and
diverse terminologies (Berg-Cross et al. 2012; Ramachandran et al. 2006; Reitsma
and Albrecht 2005). Methods and skills of both data management and data analysis
are needed for conducting science within the inspiring and complex data envi-
ronment of today.

Data management and data analysis are the two key concepts in data science
(cf. Schutt and O’Neil 2013), which involves knowledge of library and information
science, computer science, mathematics, statistics, and domain-specific disciplines.
While the theoretical foundations of data science are still under development
(Drineas and Huo 2016), there have already been many applications and

. How did Earth and other planets form?

. What happened during Earth's “dark age” (the first 500 million years)?

. How did life begin?

. How does Earth’s interior work, and how does it affect the surface?

Why does Earth have plate tectonics and continents?

. How are Earth’s processes controlled by material properties?

. What causes climate to change—and how much can it change?

. How has life shaped Earth—and how has Earth shaped life?

. Can earthquakes, volcanic eruptions, and their consequences be predicted?
10. How do fluid flow and transport affect the human environment?
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Fig. 34.1 The 10 grand research questions for the 21st century Earth sciences (National Research
Council 2008)
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Fig. 34.2 Primary steps in a data science process. From Schutt and O’Neil (2013) with changes

discussions of data science in recent years (Schutt and O’Neil 2013), and a general
process of data science is emerging (Fig. 34.2). The steps and processes in
Fig. 34.2 would be familiar to researchers in all disciplines mentioned above, as
they are comparable to the widely-adopted hypothesis-driven research method in
modern science. Nevertheless, there could remain many questions to be asked as we
are now in the “inspiring and complex data environment”: Do we have methods and
techniques to improve the efficiency in each step? How to create a space and design
an approach where researchers from the different disciplines can collaborate and
leverage their individual capabilities to achieve a focused objective? What is the
feature of data science in a domain-specific context, including geoscience?

Researchers of mathematical geosciences or geomathematics can have a lot to
say about their experience and understanding of data science, because mathematical
geosciences is a domain with a long history of incorporating knowledge from
computer science, mathematics and statistics with geoscience (Agterberg 2014;
Bonham-Carter 1994; Loudon 2000; Merriam 2004). Will the latest research pro-
gress of data science inject some new blood into the mathematical geosciences; and
vice versa, can the methods and experiences in mathematical geosciences contribute
to the theoretical developments of data science? The purpose of this chapter is to
present a perspective on questions based on a review of the evolution of mathe-
matical geosciences and a summary of the latest discussions of data science within
the geoscience community. To support the presented perspective, a few recent case
studies will be introduced in the second half of the chapter, with a focus on how
data science can help leverage the existing capabilities in geoscience research and
achieve new goals.
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34.2 The Intelligent Stage of Mathematical Geosciences

34.2.1 Evolution of Mathematical Geosciences

Retrospection on the evolution of mathematical geosciences will help us understand
the characteristics of this discipline as well as the opportunities it faces today. In an
informative review, Merriam (2004) summarized the six stages in the development
of quantitative geology: Origins (1650-1833), Formative (1833-1895), Exploration
(1895-1941), Development (1941-1958), Automated (1958—1982), and Integration
(1982-). The three earlier stages, over a period of almost 300 years, made use of
various developments in both geoscience and mathematics, and more importantly
the co-evolution between them. The latter three stages were characterized by the
application of computers, first in geostatistics, simulation and modeling, and the
organization of large datasets and later in all aspects of the geoscience workflow,
including data capture, manipulation, analysis and documentation. Merriam (2004)
also briefly mentioned the Internet and the potential challenges and opportunities in
the connected virtual world, and he stated, “There is seemingly no limit to the
information and communication revolution.”

Indeed, coming to today, which is just about 12 years after Merriam’s review
paper, geomathematical researchers as well as the broad geoscience community
already face the fresh data environment. We now have new instruments for mea-
surement and observation, powerful facilities in data storage and transmission,
improved interoperability of online datasets, and effective algorithms for data
processing and analysis. New methods and technologies such as big data, open
data, machine learning, data mining, data science, semantic web, natural language
processing have been increasingly used in geoscience studies. The functionality of
computers is being leveraged to a new level, where they are not only capable to
represent “what is” known but can also show us “why” and help generate ideas on
“how to” explore new findings. Ma (2015) proposed that the mathematical geo-
sciences is now in an Intelligent stage (2014—). Besides these accelerated devel-
opments and applications of geomathematical methods within the geoscience
disciplines, there are growing needs for using these methods in cross-disciplinary
programs to address socio-economic issues that are of public concern (Freeden
2010).

In this intelligent stage, what we can do to leverage mathematical geosciences in
various multidisciplinary studies? In this chapter, the author wants to address the
need of refreshing our knowledge about the latest progress in open data and data
science. For geoscience researchers, especially those who are not familiar with data
science, knowing open data will be a key to understanding the general data science
process and some featured works using datasets retrieved from the Web.
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34.2.2 Characteristics of Open Data and Semantic Web

Most geoscience studies are driven by data. The term “open data” reflects people’s
desire of access to freely available datasets. Some open data are made accessible
with specified licenses and copyrights, and others are without any limits or
restrictions. The popularity of the Internet and the Web creates a wide space for the
implementation of open data. For end users of open data, an issue of extreme
concern is the data interoperability (Fig. 34.3). Researchers have discussed the
levels of data interoperability from different aspects. The levels in the center of
Fig. 34.3 (Brodaric 2007) are from a technical point of view. Systems level is
fundamental, which means there should be the necessary protocols (e.g. TCP/IP for
the Internet and HTTP for the Web) supporting data discovery and transmission.
Syntax and Schematics levels are relevant to the data structures and models, for
which an end user should be able to parse and analyze. Semantics level indicates
that the meaning of data reflected in data model, terminology and encoding are
made readable to machines and thus understandable to users. Pragmatics level
means the data are suitable for the user’s purpose and can contribute value in
applications. The right part of Fig. 34.3 (Ma et al. 2011) explains these technical
levels with layman’s language, and it also adds that all the technologies and
implementations at those levels should be legal and ethical from a point of view of
social science.

The Semantic Web (Berners-Lee 2000) provides technological support to each
level of data interoperability (Fig. 34.3). For geoscience researchers, the Semantic
Web creates a space where datasets can be more efficiently annotated, published,
discovered and accessed. The Semantic Web is an extension to the current World
Wide Web (Berners-Lee et al. 2001). The Web is now in the transition from a Web
of Documents to a Web of Data because of the embedded structures and meanings
that did not exist before. Nevertheless, to add structure and meaning to the
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Fig. 34.3 Levels of data interoperability and a comparison with the architecture of the Semantic
Web. From Berners-Lee (2000), Brodaric (2007) and Ma et al. (2011)
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information on the Web, definitions and representations of concepts and the
interrelationships among concepts are needed (Berners-Lee. 2006). In the Semantic
Web such definitions and representations are called ontologies. Each ontology is the
formal specification of the shared conceptualization of a domain of study (Gruber
1995). In practice, ontologies can be of different forms, such as glossary, controlled
vocabulary, conceptual schemas and detailed logic constraints, depending on the
level of detail on conceptual specification. Semantic Web technologies provide the
essential elements for modeling and encoding ontologies in machine-readable
formats.

In the context of cross-disciplinary program with datasets from various resources
and subjects and researchers from different knowledge domains, there could be a
large number of ontologies addressing the various needs on knowledge engineering
and concept representation. Those ontologies can be implemented to build inno-
vative functions to support the discoverability, accessibility, understandability and
usability of open data. For example, there can be projects on categorizing datasets
and publications based on their subjects and keywords, recommending datasets or
publications to a user based on his research interests, suggesting matches between
datasets and scientific questions, and more. The data science domain recently also
has proposed the topic “smart data” (Sheth 2014), which aims at using Semantic
Web technologies to improve the efficiency in the transformation from massive
datasets into actionable information.

34.2.3 Methodology of Deploying Data Science
in Geoscience

Although data science has already attracted significant attention in both academia
and the industry, the theoretical foundations and technological systems of data
science are still under development. In the summary report of a recent NSF-funded
workshop (Drineas and Huo 2016), the emergence of data science as a discipline
was compared to the rise of computer science in the 1950s along with the wide
availability of computers, especially personal computers (PCs). The data deluge of
today and its great potential for academia and industry are, in the report authors’
language, a “forcing function™ that will catalyze the emergence of data science
departments in universities and nurture the development of data science as a dis-
cipline. At the current time, since we do not have established theoretical founda-
tions for data science, we can understand the core of data science as a
cross-disciplinary topic, or a blend of massive datasets with methodologies in
existing disciplines, such as computer science, library and information science,
statistics and mathematics. The application of data science will further extend the
coverage of disciplines to other domains, such as geoscience.

In most scientific researches, including those in geoscience, a general research
process includes the following steps: (1) Choose a general direction and do
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background research; (2) Generate a hypothesis; (3) Conduct experiments and
collect data; (4) Analyze data and revise hypothesis; (5) Communicate results. We
can compare those steps with the data science process in Fig. 34.2. Both processes
follow a direction of data collection, data analysis and result communication, but
there are also a few items worthy of further discussion. First, data science often
faces a situation in which massive datasets are already in existence while we do not
yet have a hypothesis. Second, the data science process addresses a step called data
pre-processing, which detects the inconsistent, incomplete and incorrect parts in the
datasets and takes actions to ensure the data quality before doing analysis. Data
pre-processing is an essential step for large datasets collected from multiple sources.
Third, the step of exploratory data analysis (EDA) offers clues for hypotheses in
scientific research. EDA is a widely-used approach in statistics, and it covers many
methods, such as scatterplot, box plot, residual plot, smoother, bag plot, and more
(Brillinger 2011). The term “exploratory” explains the purpose of the method: it is
flexible and can help look for things that we believe are not there or to be there
(Tukey 1977). EDA helps address the shortage of research hypotheses for massive
data that already exist. The functionality of EDA is comparable to the approach of
data-driven abductive discovery (Hazen 2014). Abduction means the formation of a
plausible explanation for an observation. Charles S. Pierce (1839-1914) viewed
abduction as the first stage of scientific reasoning, i.e. to create a hypothesis. Then
deduction will be carried out to determine the specific evidence needed to prove the
hypothesis. After that, induction will be used to extrapolate a general rule or
principle from the findings. Hazen (2014) summarized that abduction is to discover
what we do not know we do not know, while deduction and induction are to
discover what we know we do not know. This is comparable to Tukey’s point of
view on EDA (Tukey 1977).

One of the most significant challenges to deploy data science in geoscience is to
create a space (physical and/or virtual) and establish an approach so that researchers
from different disciplines can talk to each other. Science of today is highly com-
partmented into disciplines and there are considerable gaps between these, as
reflected by differences in scientific subjects, research methods, terminologies used
and even styles of working. The challenge of cross-disciplinary collaboration is like
encouraging people to step out from their “comfort zones”. Researchers in geoin-
formatics (Fox and McGuinness 2008; Ma et al. 2014b) have proposed a method
called use case-driven iterative approach, and have successfully implemented it to
facilitate the collaboration between data scientists and domain scientists in several
projects. Each use case is a description of the process of a focused task. It can be
used to identify scientific questions to ask, resources to be used to answer these
questions and methods to be implemented to determine the answer. Through the
documentation and analysis of a use case, data scientists and domain scientists (e.g.
geologists) can understand the needs and aims of each other. As each use case is a
focused small task, the collaborative team can spend a relatively short time to
achieve the goal, and then can review, update and move on to the next use case. The
process is iterative until the overall objective of a research program is realized.
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34.3 Case Studies of Data Science in Geoscience

When applying data science to leverage current geoscience studies, the focus or
highlight can consist of one or a few steps, depending on the target aimed at. For
example, the target can be improving data discoverability and accessibility by
updating building blocks and frameworks in the cyberinfrastructure. It can also be
focused on finding patterns within massive datasets such as those from literature
legacy or crow-sourcing databases. In this section, a few recent efforts and case
studies will be introduced.

34.3.1 Coordinating Standards to Improve Data
Interoperability

In the domain of geoscience, a few recent achievements on data standards and their
implementation were led by CGI-IUGS (http://www.cgi-iugs.org), the Commission
for the Management and Application of Geoscience Information within the Inter-
national Union for Geological Sciences. GeoSciML was proposed as a markup
language for the exchange of general geoscience information on the Web (Sen and
Duffy 2005). GeoSciML was built on top of the Geography Markup Language
(GML) and the eXploration and Mining Markup Language (XMML). The first
geoscience subjects covered in GeoSciML included boreholes and structural
geology. Raw datasets such as those in geologic maps can be transformed into
GeoSciML formats once the mapping between the original data structure and the
GeoSciML schema is set up. This makes it easier for data exchange and sharing
among organizations and nations. GeoSciML was successfully implemented in the
OneGeology project (Jackson and Wyborn 2008). On the front end of the
OneGeology data portal (http://portal.onegeology.org), users can access geologic
map services in a standard data structure. At the back end of the portal, there are
multiple data providers, distributed data servers and different data structures.
GeoSciML acts as a mediator between those heterogeneous structures and improves
the data interoperability. Another significant contribution from CGI-IUGS is the
multi-lingual geoscience vocabularies. Initial projects on geologic time and rock
type vocabularies were applied in the OneGeology-Europe project to harmonize
geologic maps from around 20 European countries (Laxton et al. 2010). Standards
derived from those vocabularies also became a part of INSPIRE, the Infrastructure
for Spatial Information in Europe (http://inspire.jrc.ec.europa.eu).

Such efforts on data standards are an essential part of informatics, especially
applied informatics that has a domain specific background. Comparing with the
geoscience community at large, the number of people working on geoinformatics is
low. The value and gains that data standard work can provide are often not fully
understood within the geoscience community (Jackson and Wyborn 2008). The
situation has been changing in recent years since the value of data science was
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recognized by increasingly more geoscience researchers. For instance, besides
GeoSciML, CGI-IUGS also has developed EarthReousrceML for the exchange of
information on mineral occurrences, mines and mining activity. CGI-IUGS’s Ter-
minology Working Group has published additional standardized vocabularies. The
geoscience community has also collaborated with standard organizations to
improve the visibility of data standard outputs. In 2017, GeoSciML was published
as a standard of the Open Geospatial Consortium (OGC) (OGC 2017), making it
one of the first domain-specific standards in OGC. Geoinformatics researchers also
take the lead in coordinating data standards among different scientific disciplines. In
2016, CODATA, the International Council for Science’s Committee on Data for
Science and Technology, set up a task group on coordinating data standards
amongst scientific unions (http://www.codata.org/task-groups/coordinating-data-
standards). The aim of the group is to take stock of the progress on disciplinary data
standards in different scientific unions, recognize the best practices and coordinate
the development of future work. Data standards provide the basic-level technical
support when we collect and analyze datasets in cross-disciplinary projects. They
significantly reduce the workload on data pre-processing and data cleansing in a
data science process (Fig. 34.2).

34.3.2 Openness, Provenance and Reproducibility
of Research

Provenance and reproducibility are both regarded as important research topics in
data science (Drineas and Hou 2016), and they are also essential parts of open
science. The literal meaning of provenance is the origin of something. In data
science, documenting provenance involves the annotation and interconnection of a
network of research activities, people, organizations and resources involved in the
production of scientific findings (Ma et al. 2014a). In 2013, the Semantic Web
community released an ontology called PROV-O (Lebo et al. 2013). The three top
classes Entity, Activity and Agent in PROV-O are easy to understand. The ontology
also covers a list of subclasses and relationships that can be applied in domain
specific applications. A recent successful implementation of PROV-O is the Global
Change Information System (GCIS) (Tilmes et al. 2013), which is part of the U.S.
Global Change Research Program (USGCRP, http://www.globalchange.gov).
USGCRP is a multi-agency research program to “assist the Nation and the world to
understand, assess, predict, and respond to human-induced and natural processes of
global change.” Every four or five years, USGCRP releases a National Climate
Assessment Report with the latest scientific findings on different aspects global
change. The most recent one was released in 2014. The initial aim of GCIS is to
present the 2014 report and to incorporate integrated access to interlinked resources
underpinning that report. The long-term goal of GCIS is to be a web-based source
of authoritative, accessible, usable and timely information about global change.
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Semantic Web technologies, including PROV-O, were applied in the design and
development of GCIS. The project included four major parts: categorization,
annotation, identification and linking (Ma et al. 2014a), which are coherent within
the architecture of the Semantic Web (Berners-Lee 2000). With the
well-documented provenance information on the GCIS website (https://data.
globalchange.gov), users will be able to conduct innovative research on prove-
nance tracing data mining. For example, they can seek answers for the question:
What is NASA’s contribution to the sea-level rise scenarios in the 2014 National
Climate Assessment Report?

Reproducibility in data science and open science includes at least two levels of
meaning. The first is replicability of a research output by using the datasets and
methods in the research. The second is the derived value, which means the open
datasets and methods from that research can be reused in new research and make
substantial contributions (Beaulieu et al. 2017). To improve the reproducibility of
scientific research, several technical frameworks can be applied and/or adapted,
such as workflow platforms and provenance documentation. In a recent study about
reproducible marine ecosystem assessment (Ma et al. 2017), the PROV-O ontology
was extended and implemented in the Jupyter Notebook (http:/jupyter.org) to
capture and interconnect information from various resources in a scientific research
project. Jupyter Notebook is an open-source web application that can be used to
create workflow documents with codes, formulas, tables, diagrams, interactive
visualizations and descriptive text. The developed ontology further enhanced the
function of the platform in capturing and presenting scientific provenance infor-
mation. The work was used in the Ecosystem Assessment Program of the U.S.
NOAA Northeast Fisheries Science Center to support assessment reports of Large
Marine Ecosystems. In the implementation, a user works within the Jupyter
Notebook to write codes and text for data input, analysis, output and documenta-
tion. Once the notebook is completed, the provenance information is automatically
captured using the structure defined in the ontology. The collected provenance
information is machine-readable and can be archived for later use, such as verifying
steps and outputs in the workflow or retrieving raw datasets used in any given step.

34.3.3 Leveraging Geoscience Data Legacy
Jor New Discovery

Geoscience is a domain with abundant literature resources, and much useful infor-
mation can be extracted from the data legacy. A recent study, originally called
PaleoDeepDive (Peters et al. 2014) and now GeoDeepDive (https://geodeepdive.org),
has demonstrated the significant value of geoscience publication archives through the
application of machine learning and data mining technologies. The domain of focus in
GeoDeepDive is paleontology and its aim is to detect and extract fossil occurrence
information from the massive scientific literature. The work leverages methods in
natural language processing, entity recognition and extraction and knowledge graph
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construction to improve the efficiency of document processing and the quality of
output datasets. In several complicated data extrication and reasoning tasks, the
outputs of GeoDeepDive were comparable to the results collected by human experts
of geologic history (Peters et al. 2014). Most recently, several publishers and research
organizations have set up partnerships with GeoDeepDive and provided a huge
number of publications for processing. By middle April 2017, the team has already
processed more than 3.2 million documents. The extracted fossil records and their
interrelationships can provide useful updates to existing databases, such as the
Paleobiology Database (PBDB, https://paleobiodb.org/). PBDB, in turn, has set up
interfaces and libraries such as those for Web-based data query and retrieval (Peters
and McClennen 2015) and the R environment (Varela et al. 2015). These projects
build up channels through which any geoscience researcher can easily access datasets
of interest and integrate them with other datasets in their own projects.

A project ongoing in the author’s group is about using an ontology to help
integrate datasets from PBDB with geologic map services provided by USGS and,
thus, to build an enriched data portal where users can discover and access more
information. Previous works already have shown the functionality of ontology and
data visualization in geoscience data services (Ma et al. 2012). In the ongoing
project the focus is an ontology for the regional geologic time scale of North
America, in addition to the established ontology for the global geologic time scale
(Cox and Richard 2015). The geologic time scale of North America has unique
classification and terminology for the time intervals at the Epoch and Age levels;
for the levels of Eon, Era and Period it shares the architecture with the global
standard. As the terminology in the regional standard has been used in geoscience
research of the North American region, specific terms in the regional standard can
now also be used as keywords in data search, such as in queries sent to PBDB. In
the ontology for the regional geologic time scale of North America, detailed
information on all time intervals and their relationships were captured and repre-
sented in a machine-readable format. A Web-based visualization was then devel-
oped for the ontology, and interactive functions were developed to deploy the
visualization as a control panel for data search. When a user clicks a time term in
the panel, a query will be sent to PBDB, and the retrieved fossil records from PBDB
will be plotted in a map window. Our project also set up connections to the USGS
data services, so the user can load geologic map layers onto the map window and
browse the background geologic information of a location where a fossil was
discovered. The multi-source information has the potential to stimulate discussion
among users and help them propose new research questions.

34.3.4 Cross-Disciplinary Collaboration for Innovative
Discoveries

In early 2015, a research project focused on the co-evolution of geo- and biospheres was
kicked off at the Carnegie Institution of Washington (http://dtdi.carnegiescience.edu).
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The researchers in that project are from several universities and institutions and are
with diverse knowledge backgrounds, making the research a real cross-disciplinary
collaboration. The project proposed to deploy a data-driven abductive approach to
discover patterns in the evolution of Earth’s environment. A major task in the early
stage of the project is to set up a Deep-Time Data Infrastructure (DTDI), which
includes the enrichment of attributes (e.g. age information) in existing geo- and
bio-databases, connections among geo-databases of petrology, mineralogy and
geochemistry, the linkage between geo- and bio-databases, and open access and
dissemination protocols for the built data infrastructure. Many open access data
resources were considered for DTDI, including rruff.info (mineral species and
properties), mindat.org (mineral species and localities), earthref.org (geochemistry
and geomagnetism), geokem.com (igneous rock chemistry), metpetdb.rpi.edu
(metamorphic petrology), earthchem.org (geochemistry, geochronology, petrol-
ogy), vamps.mbl.edu (subsurface microbial ecosystem), pdb.org (protein struc-
tures), paleobiodb.org (paleobiology), and more. The user case-driven iterative
method mentioned in Sect. 34.2.3 has been implemented to organize meetings and
promote collaborations among researchers in the group. While the project is still
ongoing, several interesting findings have already been achieved. One of them is
the pattern of Large Number of Rare Events (LNRE) among the mineral species
frequency distribution (Hystad et al. 2015). The work used the records of mineral
species, localities and observations (species-locality pairs) from mindat.org and
discovered the LNRE pattern. By extrapolating the domain of observation to be
about four times the current size, the result in the LNRE model showed that there
are about 1,500 new mineral species to be discovered. From that work, further
studies on the population probabilities of all mineral species lead to the charac-
terization of Earth-like planets, such as the Mars (Hystad et al. 2017).

As an affiliated scientist in the project mentioned above, the author led a project
of using data visualization to study the co-relationships between mineral-forming
elements and mineral species. The first study focused on a list of 30 key elements
chosen by the research team (Ma et al. 2016). First, we built a 30 x 30 x 30
matrix and visualized it in a three-dimensional coordinate system, which made the
matrix a fundamental framework to fill in records. Along each axis in this matrix we
plotted the same arranged list of 30 elements as indices. Each cell in the matrix was
first filled with the raw number of minerals in which elements X, Y, and Z coexist.
A color spectrum was then applied to render each cell according to the value of the
number in it. The process was intuitive, and the output in the three-dimensional
matrix already showed interesting patterns in the co-relationships between elements
and minerals. The visualized matrix was developed to be interactive in a web
browser. Researchers can rotate the matrix and zoom into see details of a part,
highlight a certain cell and see attributes in it, and slice one or more planes out from
the matrix to see two-dimensional patterns. In another study, we extended the scale
to all the 72 mineral-forming elements and constructed a 72 X 72 X 72 matrix.
We then applied a chi-squared test to generate values to be filled and visualized in
that matrix (Hummer et al. 2016). The mineralogical research question in that
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study was “Does the presence of element Z affect the correlation between elements
X and Y in mineral species, and is the effect positive or negative?” Besides the
completed case studies, many other interesting projects can be further developed
with the three-dimensional matrix. For example, we can add data on electronega-
tivity, ionic radius, atomic number, period, crustal abundance, etc. as associated
parameters to each axis and test for different clustering of elements based those
parameters.

344 Concluding Remarks

Mathematical geosciences are now in an intelligent stage. As a research domain,
mathematical geosciences share many topics in common with the data science of
today. A topic of great interest in deploying data science for geoscience is how to
generate research questions or hypotheses when massive datasets are already in
existence. In this chapter, the role of exploratory data analysis was analyzed for that
purpose, and it was compared with the data-driven abductive approach. Semantic
Web and Open Data create a freshly new data environment for conducting geo-
mathematical studies. The Web is built as an open space where Anyone can say
Anything on Any topic. The Semantic Web aims to facilitate data Interoperability
on the Web, to improve Interactivity between humans and machines, and to inspire
Intercreativity for exploring new things. For informatics, a major objective is to
present the Right information to the Right person in the Right way. We can use the
acronym AIR3 to represent those nine words with initial capital letters. AIR3
presents a broad vision of deploying data science for geoscience in the context of
the Semantic Web and Open Data. To put this into practice, we need to create a
physical and/or virtual space and implement an approach where researchers from
different disciplines can step out from their ‘comfort zones’, talk to each other, and
collaborate on focused research topics.
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