
Chapter 32
The Origins of the Multiple-Point
Statistics (MPS) Algorithm

R. Mohan Srivastava

Abstract First proposed in the early 1990s, the geostatistical algorithm known as
multiple-point statistics (MPS) now enjoys widespread use, particularly in petro-
leum studies. It has become part of the toolkit that new practitioners are trained to
use in several oil companies; it has been incorporated into commercial software;
and research programs in many universities continue to tap into the central MPS
idea of extracting statistical information directly from a training image. The
inspiration for the development of a proof-of-concept MPS prototype code owes
much to several different researchers and research programs in the late 1980s and
early 1990s: the sequential algorithms pioneered at Stanford University, the work of
Chris Farmer, then at UK Atomic Energy, and the growing use of outcrop studies
by several oil companies. This largely accidental confluence of divergent theoretical
perspectives, and of distinct practical workflows, serves as an example of how
science often advances through the intersection of ideas that are not only disparate
but even contradictory.
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32.1 Introduction

Through the windows of the cottage, we watched the sun slip behind the trees on
the ridge across the lake, turning the light dusting of snow from pink to red to
crimson. As darkness settled outside, the windows became mirrors, lit by the flame
from the logs in the fireplace, until all we could see was our two reflections, each
resting comfortably in an armchair, wine glass in hand. We talked into the late
evening, past the rising of the crescent moon, reminiscing about people, about
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ideas, about where it all began. We’d known each other for more than three
decades, and were comfortable when talk lapsed into silence … and equally
comfortable when silence gave way to a new thought, a different recollection, and
the conversation flared up into a dispute about memory, about theory or about
practice. Even when the wine bottle stood empty, and the embers in the fireplace
seemed to be exhausted, the logs would sometimes adjust, one breaking and settling
against another as sparks shot into the air. New fire from old.

It was December 2013, and I had succeeded in having my old advisor from
Stanford, André Journel, visit me in Ontario to discuss a joint contribution to the
volume on multiple-point statistics being compiled by Grégoire Mariethoz and
Philippe Renard. Busy lives kept us from completing that task, but the conversation
from that weekend by Lake Muskoka did become enough of an almost-paper that I
was grateful for the opportunity of this 50th anniversary volume to complete what
we began. Neither André nor I have much to contribute to modern MPS research;
we are both “gray hairs” and now stand well back from the fire of leading-edge
research. But our hair was once not so gray, and we were there at the beginning
when we laid the kindling for what has become a remarkably rich idea. So our
offering from that Lake Muskoka discussion is reflections on how the MPS came
together. It is a tale familiar to science, with chance encounters, casual remarks that
turn out to have great depth, cocktail napkins turned into whiteboards, heads
shaking in disagreement: “that can’t be right”. As we yield the stage to the next
generations of researchers, our hope is that others continue to recognize the value of
cross-pollination, of interacting with others in the field, especially those who have
ideas that contradict one’s own beliefs. When one sturdy idea burns and breaks,
settling against another, sparks fly and we have our best chance to ignite new
understandings of both theory and practice.

32.2 1970s

32.2.1 A Hammer Without a Nail

Although the theory of geostatistical simulation was firmly established by the early
1970s (Journel 1974), it had still not been widely accepted in practice by the end of
the decade. The now-venerable turning bands algorithm was the only game in town
when one wanted to create a conditional simulation. There were a handful of
practical case study example of conditional simulation in the mining industry, but it
remained a hard sell in an industry that prefers, even now, to report one single
“best” estimate of mineral resources and reserves than to wrestle with a family of
equi-probable outcomes.
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32.3 1980s

32.3.1 Interest in Geostatistics Spreads to the Oil Industry

Through the 1970s, the oil industry lagged behind the mining industry as an adopter
of geostatistics. Many oil companies found value in some of the trend variants of
kriging as additional tools in their contouring toolkit, especially when dealing with
structural traps where trends are common in the elevation of the top of structure.
Kriging with an external drift provided a good contouring solution in faulted
reservoirs where seismic data provided strongly correlated indirect measurements of
depth to the top of the reservoir (Maréchal 1984). But oil companies had many
good contouring methods that worked well without any geostatistics, and it was not
until the late 1980s when most of the major oil companies took notice of condi-
tional simulation because it offered something new: the ability to do Monte Carlo
analysis with 3D models of a reservoir’s rock and fluid properties that honored data
and that were geologically plausible.

32.3.2 New Simulation Tools and the Struggle
for Visual Realism

At Stanford, where I studied in the 1980s, research was supported by the Stanford
Center for Reservoir Forecasting. The SCRF consortium’s interest in risk analysis
fueled a growing number of new geostatistical algorithms for creating realizations
that honored continuous data (typically rock and fluid properties) and categorical
data (typically lithologies): sequential indicator simulation (Alabert 1987), LU
decomposition (Alabert 1987; Davis 1987), sequential gaussian simulation (Isaaks
1990; Gómez-Hernández 1991).

Despite having new algorithms for the conditional simulation of continuous
variables, Stanford’s toolkit still struggled to produce convincing simulations of
categorical variables such as lithologies in a sand-shale sequence. Although indi-
cator realizations could be made to honor indicator variogram models, the results
usually were not convincing as artwork; they simply looked wrong. In Fig. 32.1,
much of the (limited) success of the SIS simulation is due to the use of a trend
model and to locally varying directions of maximum continuity, and not so much to
the indicator kriging or to sequential simulation.

Boolean simulations that stochastically arranged prescribed geometries into a
computer model usually won more approval for realism, but because these
object-based algorithms were not pixel-based, they had difficulty with conditioning
to well data, especially if there were lots of closely-spaced wells. In Fig. 32.1, the
SIS realization is conditioned to 240 data points; but the object-based simulation,
which produces a more satisfying result, is unconditional.

Through my time as a graduate student at Stanford, the Holy Grail of conditional
simulation was a best-of-both-worlds algorithm that had the visual realism of
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Fig. 32.1 Examples of indicator simulation and object-based simulation of fluvial channels. The
image at the top shows a training image (a satellite image of the Brahmaputra River) from which
indicator variograms were calculated and used to create the SIS realization in the middle frame,
conditioned to the data shown as circles. The same training image provides information on the
distribution of parameters that describe object geometry; these were used as input to an
object-based simulator, FLUVSIM (Deutsch and Tran 2002), to create the unconditional
realization at the bottom. Although the object-based simulation succeeds in creating channels that
are visually more coherent, it is difficult to condition to known lithologies at specific locations

658 R. Mohan Srivastava



object-based methods but that conditioned easily to hard data, no matter how dense.
There were discussions at that time about the possibility that we might never achieve
what we thought we wanted because of the fundamental difference between the
statistical characteristics of an image and the meaning that knowledgeable experts
extract from the image. In the example in Fig. 32.1, human vision allows us to see
the entire set of meandering braided channels. Statistical summaries, especially
variograms, do not “see” anything in its entirety; they see the image two points at a
time. The analogy that André Journel often used was that it was like a blind person,
trying to understand an object in front of him when he was allowed only to probe
with the two forefingers. Limited to poking here and poking there, the blind person
would struggle to tell the difference between an elephant and a rhinoceros.

The envy of the visual success of object-based realizations, and the desire to
maintain the ease of conditioning with pixel-based methods, catalyzed a lot of
discussion in the late 1980s about multi-point geostatistics. What would three-point
or four-point or n-point variograms look like? How might they be calculated
experimentally? How could they be modeled? How should they be used in an
improved version of kriging?

32.3.3 Outcrops and Scanned Images as Analogs

In the mining industry, where geostatistics was first embraced, drill hole spacing is
typically on the order of tens of meters, close enough that the choice of a variogram
model could be based on experimental variograms. In petroleum reservoirs, wells
are typically spaced several hundreds of meters apart, sometimes thousands of
meters. This practical reality of petroleum applications gave rise to an immediate
practical problem when the oil industry took an interest in conditional simulation in
the 1980s: where to get the closely-spaced information required to make experi-
mental variograms?

The common advice in the 1980s was that outcrop studies could provide the data
required to support statistical and geostatistical parameter choices, such as the
length, anisotropy and orientation distributions required for object-based methods,
or the variograms required for geostatistical methods. Outcrop studies did not begin
in the 1980s; but this was the decade when they flourished. Many of the major oil
companies, either individually or in consortiums, funded detailed quantitative
studies of outcrops that could serve as good geological analogs for producing fields.
And outcrop studies from earlier decades were dusted off and re-purposed as
sources for data that could support parameterization of computer models.

Figure 32.2 shows an example of data from a 1960s outcrop study that was
re-discovered by several researchers in the 1980s. It was created by digitizing shale
streaks from a photograph of a cliff face of an outcrop of the Assakao Formation in
the Tassili region of the central Sahara (Dupuy and du Prey 1968). Fifteen years
after the data was first presented, Helge Haldorsen used the Assakao outcrop study
as the basis for choosing the shale length distribution for object-based simulations
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of sand-shale sequences for his Ph.D. research (Haldorsen 1983; Haldorsen and
Chang 1985). During the time when I studied at Stanford, I shared an office with
Alec Desbarats to whom Helge had given the Assakao data for Alec’s research on
stochastic modeling of flow in sand-shale sequences (Desbarats 1987).

If a good outcrop analog was not available, one could (with fingers crossed and a
prayer for absolution of sin) invoke a fractal argument and choose as an analog
something with an entirely different scale. At a much larger scale than most
reservoirs, satellite imagery, which started to become widely available in the 1980s,
could serve as the source of information on spatial statistics. At the regional scale,
or even at the scale of very large reservoirs, images like the top frame in Fig. 32.1
could help in sorting out statistical parameters for numerical simulation. And at a
much smaller scale, there were scanned images of slabs of sedimentary rock at the
scale of hand specimens, such as the example shown in Fig. 32.3.

Digitized images, whether of outcrops or of similar phenomena at different
scales provide a basis for calculating not only experimental variograms but also
multi-point statistics. When calculated from a rasterized image, the length distri-
bution of shale streaks can be seen as a multi-point statistic. In the Assakao outcrop
example shown in Fig. 32.2, where the individuals pixels are 20 × 20 cm, the
probability of encountering a shale streak that is 20 m long can be calculated by
scanning the image across each row, counting up the number of times we get a
white pixel followed by 100 black pixels, then followed by a white pixel … then
dividing this by the total number of shales of any length. Alec Desbarats did exactly
this in his Ph.D. thesis when he wanted to test the fidelity of the synthetic

Fig. 32.2 The Assakao Sandstone data set (from Desbarats 1987). The formation is generally
sandstone (white) with occasional shale streaks (black)
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sand-shale sequences he had created using indicator simulation (Fig. 32.4). He
knew he had the correct proportion of shales and that he had matched the indicator
variogram; but he was curious about how well he had done on the multi-point
statistic that Helge Haldorsen controlled directly in his simulations. Figure 32.5
shows the histograms of the shale length distributions from an indicator simulation
of the Assakao outcrop, and from the original image; the indicator simulation shows

Fig. 32.3 Digital image of a slab of cross-bedded sandstone from Utah

Fig. 32.4 Indicator simulation of the Assakao outcrop image in Fig. 32.2 (from Desbarats 1987)
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more very short shales than does the original image, with a lower mean length and
higher variance.

Other similar studies at the same time by François Alabert showed the same
result: indicator simulation produces realizations that show more short features and
too few long features. The over-representation of short features is also obvious from
a visual comparison of indicator simulations to the reality they try to mimic, e.g. the
top two frames in Fig. 32.1, or the realization in Fig. 32.4 with the outcrop image in
Fig. 32.2. The common explanation given at the time was that when an algorithm
controls only the first and second-order moments (histogram, or indicator propor-
tion, and the variogram) then the uncontrolled higher-order moments drift in the
direction of disorder or maximum entropy.

32.3.4 Leaving the Ivory Tower and Getting
on with Adult Life

My years as a student at Stanford ended in 1988. Sold my bicycle, the one that
hadn’t been stolen. Gave up the wonderful room I had in a camping trailer behind a
house in Palo Alto. Headed off into the world of consulting, with Neil Schofield and
Roland Froidevaux as my partners in FSS International Consultants. The notion
was simple: Neil and I were familiar with student poverty and didn’t mind another
year of living with little money. After a year, if we failed as consultants then we
could get real jobs.

Fig. 32.5 Histograms of shale lengths from Fig. 32.2 (left) and Fig. 32.4 (right) (from Desbarats
1987)
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We managed not to fail, and each of the FSS partners found ourselves busy with
clients who wanted advice and assistance with geostatistical studies. My workload
was split between mining studies, where simulation was rarely discussed, and
petroleum studies, where kriging was rarely discussed.

Even though my mining studies had little to do with stochastic modeling, there
was one mining project that, in hindsight, probably planted some useful seeds for
what later became the MPS prototype algorithm. It was a project in which some of
the useful geological and numerical data were available only from paper records
written by hand decades ago: drill logs with assay values transcribed manually. In
the late 1980s, software for optical character recognition (OCR) struggled with
handwriting; it still does today, but it was worse back then. Even though com-
mercial OCR software could make no sense of the handwritten logs, my sense was
that it should be possible to extract much of it automatically, instead of going
through a time-consuming and error-prone process of manual data entry. The drill
logs were neat and legible, and all of the key numerical values were written in
boxes on a form. With only 11 possible characters in use, the ten digits and the
decimal point, it seemed possible to me that the handwriting could be recognized by
an algorithm that trained itself from actual images. I wrote a program that would
search the scanned image (an eight-level grayscale raster), looking for islands of
non-white in the appropriate boxes on the form. It would then show what it had
found to the user, who would identify the symbol by typing in one of the 11
choices. After a few dozen examples of each of the 11 possibilities, the software
was able to estimate the probability that a new small patch corresponded to each of
the possibilities. It did this simply by direct pixel-to-pixel matching of grayscale
levels, without any clever rescaling or rotation. If it could not establish a sufficiently
high probability for one particular choice, it would drop pixels from the comparison
and try again. The user would correct it when it made mistakes, and the software
would store its acquired collection of confirmed examples in a growing database.
As with most of my Mo-code, it took a bit of tinkering to get it to work well; but it
ended up being used, and saved weeks of data entry from hundreds of old drill logs.
We ended up calling the program “Am-I-Right” because that’s how the program
worked: by making guesses based on pixel-to-pixel pattern matching, and then
checking with the user to see if that guess was correct.

32.3.5 Chris Farmer’s Unexpected Claim

1988 was also the year when I first met Chris Farmer, at the SPE Forum on
reservoir characterization in Grindelwald, Switzerland. He was working on methods
for numerically simulating reservoir rocks, recognized the benefits of a pixel-based
approach, and had developed new ideas about what information to extract from
outcrop studies and scanned images of analogs (Farmer, 1989). During my early
years as a consultant, I managed to visit Chris at the UK Atomic Energy Agency’s
research centre at Winfrith. During this visit, he made a claim that seemed
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implausible … no, it actually seemed flat out wrong; but I was raised well by my
parents, and knew that it was rude for a guest to precipitate an argument.

We had been talking about extracting indicator variogram and cross-variogram
information from scanned images and Chris remarked that you have to be careful
when you do this because if you try to make a realization exactly match all of the
indicator variograms and cross-variograms from a scanned image, then you’ll just
get back the scanned image; and the purpose of creating realizations is not to
exactly match one “true” image, but instead to sample a space of uncertainty that
shares something in common with the original image. I checked if I understood him
correctly: did he really mean that you can exactly… exactly … match an image just
by reproducing its indicator variograms and cross-variograms? I knew (or thought I
knew) that this wasn’t true. Even with multiple indicators, all of the variograms and
cross-variograms are still two-point statistics; you’re still a blind person, feebly
prodding either an elephant or a rhino.

Chris clarified that he did mean exactly, with one minor caveat: that you actually
get two possible images which are 180° rotations of each other; you might end up
with an upside-down elephant, but you’d easily be able to figure out that it wasn’t a
rhino. And he also explained that he meant that you match to the complete
experimental indicator variograms for every possible separation distance and
direction on the rasterized image. Even with these caveats, I still found his claim
implausible; but kept thinking about why he would be so sure about this.

The other reason it was not worth getting into the details of why Chris was
confused was that I agreed with the basic point he was trying to make: the purpose
of what we have now taken to calling a “training image” is not to match it, but
instead to use it as a guide for selected spatial statistical characteristics. You want to
match the statistics, while conditioning to data, not replicate one training image.

32.4 1990s

32.4.1 Why Chris Farmer Was Right

In 1991, the SPE Forum on reservoir characterization was held in Crested Butte,
Colorado, and I had a chance to continue the discussion with Chris Farmer about
indicator variograms and training images. When I explained, as diplomatically as I
could, that I didn’t think his claim was correct, he grabbed a nearby napkin,
sketched a small grid, and colored in some pixels as black, white and gray. He
agreed that I was right if we lived in a world of variogram models for random
functions that are infinite in all directions. “But in the real world, things have
edges,” he explained patiently, “and this means there’s only one pair of pixels in the
original image that completely span the diagonal”. He went on to show how
you can actually deduce the grayscale levels for the two corner pixels (up to the

664 R. Mohan Srivastava



180° rotation) and then work inwards from the corners. The Appendix to this paper
shows a small worked-out example of the trick that Chris explained.

As soon as he explained it, and I realized that I was the one who was wrong,
Chris dismissed it as an algorithmic oddity, a cute and clever trick that has no
practical value for simulating reservoir rocks, especially because the goal is never to
exactly replicate the original image.

Even though I understood the principle behind the procedure of attacking the
corners first and then working inwards, the algorithm still wasn’t clear in my head,
and I spent some time that year trying to write code for doing what Chris had
described. I never did manage to work out all the special cases, and it ended up on
the back burner as one more unfinished project.

32.4.2 Back to the Ivory Tower: A Brief Escape
from Adult Life

In late 1991, my consulting business was thriving and growing; I had a small staff
in Vancouver, and plenty of project work. But I was spending more time as an
administrator and manager, neither of which I am good at, and less time doing the
technical work that I enjoy.

My old advisor convinced me that I could let the staff run the show while I spent
a year at Stanford, back in the ebb and flow of new ideas with his new crop of
graduate students. Twenty five years later, I find it remarkable what was accom-
plished during that year: P-field simulation, co-located cokriging, and a
proof-of-concept algorithm for multiple-point statistics. All of these new geosta-
tistical methods that we investigated in 1992 began with a piece of Mo-code that
did something useful, and not with theory; that came later. André comes at research
from the side of theory that leads to equations that can be coded and tested. I tend to
come at it the opposite way, with a piece of code that achieves a desired result and
that then leads to the question “I wonder why that works?”.

In the early part of 1992, with the luxury of time to do research again, I dusted
off some of my back-burner projects, and came back to my attempt to code Chris
Farmer’s trick for replicating an image from its indicator variograms and
cross-variograms. The details of the algorithm were still a mess, but I realized that I
could get very close to a satisfactory result using simulated annealing, a possibility
that came to the forefront because Clayton Deutsch was finishing his Ph.D. thesis
on simulated annealing that year. I wrote a program that would start with a grid that
had exactly the correct proportions of the gray levels, randomly scattered, and that
would use simulated annealing to iteratively adjust the image by swapping pixels in
order to push the experimental indicator variograms and cross-variograms of the
evolving grid in the direction of a target values established by the complete indi-
cator variograms of the original image. No variogram models were used; everything
was done using look-up tables of variogram values. I used a photo of André,
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exhausted after a climb on Mount Whitney, as the training image, converted it to an
eight-level grayscale image with seven indicators. 200 columns and rows, seven
direct indicator variograms, 21 indicator cross-variograms, all calculated for every
one of approximately 80,000 lags on the image. It took four days of run-time and
hundreds of millions of swaps before the difference between the indicator vari-
ograms of the simulation and the image could not be reduced. It was hopelessly
inefficient, but it confirmed for me that Chris Farmer had been right.

For me, the recognition that you can exactly match an image from a very
complete and specific statistical summary of specific patterns was an eye-opener.
Although it now probably seems fairly obvious, in the early 1990s, the wealth of
information contained in an image’s statistical summaries was not immediately
apparent. Then, the normal workflow was to assemble statistical parameters by
fitting models to experimental statistics. The experimental variogram, for example,
was an important stepping-stone to a variogram model; but it was only a means to
an end. We did not think of the massive look-up table of summary statistics for
thousands of grouped pairs of data as something that could serve directly as an
input parameter. But why not? Why in an age of computer power did we continue
to create simplified mathematical models of statistical characteristics? Was it really
necessary to boil the parameterization down to a few numbers, a nugget effect and a
range, rather than leave the statistical summary in its original form as a massive
look-up table? For me, this was the “aha” moment catalyzed by my belief, years
earlier, that Chris Farmer’s claim about indicator variograms was not correct. The
reason I was wrong was that massive look-up tables of indicator variograms are a
rich source of very detailed information. The mistake we were making was that we
moved past this wealth of information and replaced it with a simple model.

The idea for the first prototype of an MPS simulation algorithm came from the
accidental meeting of thoughts about the role of training images in reservoir sim-
ulation and the experience of having coded the Am-I-Right procedure for optical
character recognition for a mining project. The principal difference between
Am-I-Right and the MPS prototype is that, after scanning the image to build a
probability distribution, the Am-I-Right procedure always took the most likely
value while MPS used the distribution as a basis for random sampling.

The first tests of the MPS prototype were done on a digital image of a
cross-bedded sandstone, like the one shown in Fig. 32.3. This was chosen because
it presents curved structures that are difficult to capture with most geostatistical
simulations, which tend to show straight features in the direction of maximum
continuity unless an explicit attempt is made to use locally varying directions of
anisotropy. Figure 32.6 shows the first published results of an MPS simulation
(Guardiano and Srivastava 1992). That Tróia ’92 paper used a two-level
black-and-white training image because the first tests on an eight-level grayscale
image were very slow; it would be several years before Sebastien Strebelle’s Ph.D.
research (Strebelle 2000) produced the first efficient and practical implementation of
the original clumsy prototype.

Even though the first results were not brilliant, certainly not by today’s stan-
dards, they did show that it was possible to impart to a simulation higher-order
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connectivities and patterns that are not explicitly summarized in variograms. In the
right frame of Fig. 32.6, it is the black pixels that make the thin curved arcs, while
the contiguous regions of white pixels tend to be larger and blockier. The middle
frame of Fig. 32.6 shows that these features are hard to capture in an indicator
simulation, which tends to symmetrize the black and white geometries when the
proportion is near 50%.

32.5 Concluding Thoughts

Where do ideas come from? Is it possible to create fertile conditions for innovation?
Of the many who have studied these questions, my favorite is Steve Johnson, who
wrote Where Good Ideas Come From: The Natural History of Innovation; he has
presented his thoughts in a 2010 TED Talk and also in a short YouTube video
(https://www.youtube.com/watch?v=NugRZGDbPFU). Much of what Johnson
identifies as key elements of innovation are in evidence in the origins of the MPS
simulation algorithm: the slow incubation of hunches, the borrowing and com-
bining of ideas from other people with related hunches, the catalytic effect of
recognizing error, and of finding the missing piece.

The one piece of Johnson’s message that resonates most strongly with my
experience is the importance of staying connected to others; he often concludes his
presentations with the observation that innovation comes by chance, but chance
favors the connected mind. By “connected mind” he means a mind that is connected
to what others are doing, how they are thinking about similar problems. It is the
hunches and cast-off ideas of those people that you’ll end up borrowing and
adapting to improve a hunch of your own that has still not reached fruition.

Of the many different ideas that ended up being woven together into the MPS
prototype, there may be a dropped thread, something that might be research worth
pursuing. It is the fact that complete indicator variograms and cross-variograms
provide extremely rich and detailed information about an image, so rich and
detailed that they can, in fact, be used to replicate the original image.

Fig. 32.6 The first published example of results of an MPS simulation (from Guardiano and
Srivastava 1992). The frame on the left shows the training image, a black-white image obtained
from a digital photograph of a slab of cross-bedded sandstone. The middle frame shows a
realization from sequential indicator simulation. The right frame shows a realization from the MPS
prototype algorithm
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While replication of a training image should never be a goal, it’s intriguing to think
about what we might be able to do if we matched a small sub-set of the complete
look-up table of all indicator variograms. We know that we get a “perfect” real-
ization if we use 100% of the look-up table. Would the realization look “fairly
good” or “completely ugly” if we decimated the complete look-up table and used
only 10% of it, or only 1%? My own tests with the annealing version of this
procedure, and the example in Appendix A, indicate that the indicator
cross-variograms are sometimes not necessary, i.e. that you can achieve nearly
perfect reproduction of the original image without them. Dropping all the indicator
cross-covariances would considerably reduce the size of the look-up table, or any
subset of it. Something worth trying?

My final reflection is on the beneficial tug-of-war between theory and practice.
Throughout my career as a consultant, and tourist in academia, I have enjoyed
discovering that the path to a solution sometimes starts when you enter the maze
from the theory side, and sometimes starts from an entrance on the practical side.
When theory leads you to the point of a set of equations, that need not be the end
because there may be something useful to be learned in attempting to implement
those equations in practice, in writing a piece of computer code that produces an
answer in a reasonable amount of time. And, coming from the other end, having
developed an algorithm that produces an intriguing result that seems “good” or
“right”, it’s useful to try to work out why it works. Even if the answer came
heuristically, the theory that explains why it’s an approximately correct answer
might reveal a generalization that makes it possible to improve the answer.

Appendix: Example of Reconstructing a Grid from Its
Indicator Variograms and Cross-Variograms

Figure 32.7 shows a tiny image with three levels of gray on a 3 × 3 grid. If we
give values of 1, 2 and 3 to white, gray and black, the three levels give rise to two
indicators: I1 with a threshold between 1 and 2 and I2 with a threshold between 2
and 3. There are two direct indicator variograms, γ1 and γ2, and one
cross-variogram, γ12. The nine locations give rise to 36 paired locations (not
including the pairs that have zero separation). These 36 pairs are shown in
Fig. 32.8, grouped into the 12 possible lags.

For any lag, the experimental indicator variogram is calculated by taking half the
average squared difference between the paired indicators:

Fig. 32.7 Example used to
show how complete
experimental indicator
variograms can be used to
reconstruct an image
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γðhÞ= 1
2NðhÞ∑ IðxÞ− Iðx+ hÞ½ �2

Because the squared difference between 0 s and 1 s is always 0 or 1, all of the
terms in the summation are either 0 or 1; the summation is simply a counting of the
number of times that the indicators separated by h are different.

Fig. 32.8 All 36 pairs in the image in Fig. 32.7, grouped into the 12 lags

Table 32.1 Look-up table for the experimental indicator variograms and cross-variogram for
every lag for the image in Fig. 32.7

ΔX ΔY N #Diff1 #Diff2 #Diff12 γl1 γl2 γl12
0 1 6 5 3 3 0.42 0.25 0.25
1 0 6 2 4 2 0.17 0.33 0.17
1 1 4 3 2 3 0.38 0.25 0.38
1 −1 4 2 2 3 0.25 0.25 0.38
0 2 3 1 3 2 0.17 0.50 0.33
2 0 3 2 0 1 0.33 0.00 0.17
1 −2 2 1 0 1 0.25 0.00 0.25
1 2 2 0 0 1 0.00 0.00 0.25
2 1 2 1 1 2 0.25 0.25 0.50
2 −1 2 0 1 1 0.00 0.25 0.25

2 2 1 0 1 0 0.00 0.50 0.00
2 −2 1 1 1 1 0.50 0.50 0.50
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For the image in Fig. 32.7, Table 32.1 gives the complete look-up table of the
indicator variograms and cross-variograms in every lag, and includes for each lag
the value of the summation term before the division by 2N(h), i.e. the number of
pairs in each lag that have different indicators; these are in the columns headed
#Diff1, #Diff2 and #Diff12.

Figure 32.9 shows a sequence of steps that can be used to interrogate Table 32.1
for the information that allows the values of specific cells to be deduced. It begins in
the upper left with the (2, 2) lag that spans the main diagonal. There is only one pair
that contributes to this lag and the (2, 2) row, (second from the bottom of
Table 32.1) tells us that:

• the two I1 indicators are the same, because of the 0 in the #Diff1 column
• the two I2 indicators are different, because of the 1 in the #Diff2 column

The second of these facts says that the two values are either 2 and 3, or 1 and 3;
but the second choice is contradicted by the first fact, so the only choice is a 2 in
one cell and a 3 in the other. This gives us the next frame in Fig. 32.9, where a 2 has
been fixed in the lower left and a 3 in the upper right. Note that this is exactly where
the 180° rotation may occur because we can’t tell which one is the 2 and which is
the 3. But once we make a choice, everything else is fixed; so the worst that will
happen is that the final solution will be rotated upside-down.

Proceeding across the first row of Fig. 32.9, the next thing we check is the (1, 2)
lag, to which two pairs contribute. The look-up table entries for the (1, 2) lag, fifth
row from the bottom, tell us that both pairs have the same I1 and I2 indicators,
because of the 0s in the #Diff1 and #Diff2 columns. The only way that this can
occur is if the value paired with the 2 in the lower left is also a 2, and the value
paired with the 3 in the upper right is also a 3.

Continuing across the first row of Fig. 32.9, the next thing we check is the (0, 2)
lag, to which three pairs contribute. The look-up table entries for the (0, 2) lag, fifth
row from the top, tell us that all three pairs have different I2 indicators, because of

Fig. 32.9 The sequence of steps used to interrogate Table 32.1 to deduce values in specific cells,
the knowledge of which can then be used to fix the values of other cells by using other information
from the look-up table. The sequence begins in the upper left where the look-up table is used for its
information on the lag that spans the main diagonal. It then proceeds across the first row, down to
the start of the second row, and across to the final solution at the lower left
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the 3 in the #Diff2 column. This tells us that the upper right corner must be a 3, and
that the lower left is either a 1 or a 2.

The sequence continues on the second row, where we check the (2, −2) lag.
There is only one pair that contributes to this lag, and this pair has different values
for the I1 indicator, because of the 1 in the #Diff1 column. The only way this can
happen is if the value in the lower left is a 1.

Continuing across the second row, the next thing we check is (2, −1) lag, to
which two pairs contribute. The entries for the (2, −1) lag, third row from the
bottom, tell us that both pairs have the same I1 indicators, so the 1 in the bottom
right must be paired with a 1, and the 3 in the upper left must be paired with either a
2 or a 3. For the same two pairs, one of the I2 indicators is the same and one is
different; we know that the pair with the same I2 indicators is the pair of 1–1 values
that we just fixed, so it’s the other pair that must have different I2 indicators. We
already know that the 3 must be paired with a 2 or a 3, so the only correct choice is
a 2.

Moving along the second row, the last thing we check is the (0, 1) lag, to which
there are six pairs that contribute. In the #Diff1 column, the top row in Table 32.1
tells us that five of the six pair have different I1 indicators. With the eight values
already fixed in previous steps, we can see three of those (0, 1) pairs: the 3–1 and 1–
2 pairs in the first column and the 2–1 pair in the last column. But the only way we
can get to five such pairs is if the middle column gives us two more. So the only
correct choice for the middle cell is a 1 … which gives us the last value, and
completely reconstructs the original image (Fig. 32.7) with no conditioning data,
but with heavy use of the information in the complete table of indicator variograms.

Regardless of the size of the image, or of the number of levels in the grayscale
(or number of colors in a color image), the approach of starting at the corners and
working inwards will always work. There is enough information in the complete
look-up table of experimental indicator variograms and cross-variograms that the
corner pixels can be pinned down and then used to leverage the solution for the
neighbors. In this particular example, the indicator cross-variogram was never
needed for the final solution. It may be that the indicator cross-variograms are never
needed, and that the image can always be exactly reconstructed (up to a 180°
rotation) using only the indicator variograms.
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