Chapter 31 )
When Should We Use Multiple-Point Skl
Geostatistics?

Gregoire Mariethoz

Abstract Multiple-point geostatistics should be used when there is either too little
or too much information available for other types of geostatistics.

31.1 Under-Informed Versus Over-Informed Models

For a long time, the classical geostatistical framework required moderate amounts
of knowledge. Too little knowledge (few hard data, poorly distributed, absence of
auxiliary information), makes it difficult to infer the parameters of a covariance
model. In the other extreme, too much knowledge risks revealing characteristics of
the underlying field that are too complex to be represented by a handful of
covariance model parameters. These two situations can be denoted respectively
under-informed and over-informed models. In-between these extremes, we have the
moderately informed case where it is convenient to use the covariance-based
geostatistical framework, which has been—and still is—a very solid basis for
building models that incorporate spatial and temporal variability.

Extreme under-informed and over-informed cases have often presented technical
challenges, for which practical workarounds are used. For under-informed cases,
standard geostatistical practice consists for example in including interpretative
knowledge to guide variogram fitting when too few hard data are available. This is
one of the reasons for the common recommendation to fit variograms by hand (e.g.
Olea 1999). The question of designing spatial models for over-informed cases (i.e.,
when large amounts of data are available) is relatively recent, with the development
of improved sensors and high-resolution numerical models that triggered the era of
“big data”.

The concept of multiple-point statistics (MPS) appeared in the early 1990s,
initially as a means of overcoming extreme under-informed situations. The idea, at
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the time developed by Guardiano and Srivastava (1993) under the impulsion and
guidance of A. Journel, was to give the modeler improved tools to include inter-
pretative knowledge in spatial models. The fundamental novelty of the MPS
framework was to encapsulate in a training image the interpretative knowledge on
the spatial structure of the modeled phenomenon. Since an image is an object most
people are familiar with, it allows combining different types of expertise and data,
in particular from people who are not familiar with geostatistics.

This approach naturally leads to disregarding hard data as a tiny fraction of the
information to include in a model, implying that data alone are not enough. Then,
an important part of the modeling work resides in the design of the training image,
which can be difficult as natural images are typically not sufficiently repetitive or
stationary. Unsurprisingly, the first successful applications of MPS took place in
fields where data are typically few, uncertain and expensive, such as reservoir
modeling, soil science or mining. In those domains, MPS is often seen as an
alternative to object-based methods. Later, it was found that the concept of training
image could also be used to incorporate large amounts of information in a model,
and therefore address over-informed and data-rich situations, where an increasing
number of applications are taking place.

31.2 MPS Versus Covariance-Based Geostatistics

These different aspects have resulted in MPS being seen as in opposition with
covariance-based geostatistics. Indeed, from a traditional statistics point of view,
MPS is not rigorous in many respects: for instance there is no real model inference,
the uncertainty that can be estimated based on a set of MPS realizations is poorly
defined, and extreme events cannot be produced beyond those found in the training
image. Emery and Lantuéjoul (2014) have shown, based on thorough numerical and
theoretical investigations, that MPS only produces random fields when the size of
the training image tends to infinity. With a finite training image, MPS algorithms do
no longer approximate a random function. Their value then lies in their capability to
automatically generate realistic model realizations, but without control of the
underlying statistical model. These issues make MPS methodologically close to
machine learning and computer graphics. As a result, when using MPS, one often
has to make compromises with random function theory and model consistency. In
return, it may be possible to explore the data in new ways and obtain, in some cases,
models that are more in line with the unobserved physical reality (Journel 1993).

While the hypotheses and tools used are very different, the domains of appli-
cation of MPS are essentially the same as traditional geostatistics, consisting in the
simulation of either conditional or unconditional random fields, mainly for geo-
science applications. As such, MPS and covariance-based geostatistics can be seen
as competing, and it is not very surprising that in the last decade there have been
many cases of fierce debate between the promoters of these two concurrent
approaches (Journel and Zhang 2006; Li et al. 2015). My view is that in fact, the
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two sets of methods should not be seen as opposed, but as complementary
approaches. They are complementary because they are able to solve different types
of problems which can be distinguished by the nature and amount of information at
hand. Seeing the covariance-based and the algorithm-based approaches as opposed
can distract from the higher goal of building on the strengths of each approach. The
risk has been stated by Breiman (2001) on the topic of machine learning methods:
“statisticians have ruled themselves out of some of the most interesting and chal-
lenging statistical problems that have arisen out of the rapidly increasing ability of
computers to store and manipulate data”.

When the available data and knowledge on the studied phenomenon allow
building a random function model, using covariance-based geostatistics is usually
appropriate. There are numerous examples of successful models designed in this
framework for which it would be very difficult to apply MPS (e.g. Diggle et al.
1998; Goovaerts 2005). Conversely, there are applications where the use of training
images and MPS algorithms are better able to address some practical questions. In
the next sections, I will show two such examples where the available information is
either extremely poor or extremely rich. Applying covariance-based geostatistics to
these examples would likely yield unsatisfactory results. I emphasize here that for
the purpose of demonstration, I am exclusively focusing on examples that are
tailored for the application of MPS. Countless examples can be found for which
covariance models are perfectly applicable, but it is beyond the scope of this short
chapter to show them here.

31.3 Examples for Which MPS Works Well

31.3.1 MPS Can Be Used in Extreme Under-Informed
Situations

An example of extreme under-informed model is the common problem of inter-
polating rainfall data over a given area based on a small number of rain gauges.
Rainfall is an inherently intermittent and highly spatially variable process (Benoit
and Mariethoz 2017). Moreover, in some cases rain gauge data can be of poor
quality, and it is not uncommon to only have binary wet/dry information (as
opposed to rainfall accumulation). An example of such poor dataset is shown in
Fig. 31.1, with synthetic rain observations consisting of 30 rain gauges. While this
case is synthetic, the setting is relatively standard in terms of data density and
heterogeneity. It is quite clear that 30 observation points are insufficient to properly
infer a spatial model, which is confirmed by the experimental variogram that shows
no spatial structure (and wild fluctuations when the number of lags is varied).

In such a setting, the MPS approach starts by stating that the information con-
tained in the hard data is insufficient. At best, the data points can be used for
conditioning, but not for inferring any kind of structural model. Instead, one has to
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Fig. 31.1 Under-informed setting. Left: synthetic rain gauge network made of 30 points with only
wet/dry information. Right: experimental omnidirectional indicator variogram of the probability of
rainfall, computed on 10 lags

supplement the insufficient data by resorting to external knowledge of the modeled
process. For example, one may know the type of rainfall for that specific day. Based
on this knowledge, it is possible to collect radar images of rain events of the same
type. Rainfall radar images, either ground-based or satellite-based, are typically
collected by national weather agencies and made available to the scientific com-
munity. Then, using these representative radar images as training images, MPS can
be used to generate rain fields conditioned to the gauge data.

Figure 31.2 shows the results of using two different training images to inter-
polate the data shown in Fig. 31.1, by considering as training image alternatively a
cyclone (left) or a tropical storm (right). It is obvious here that the choice of the
training image has a strong influence on the results as it determines the types of
patterns found in the simulations, as well as global statistics such as the proportion
of wet areas.

This example illustrates the conceptual differences between MPS and
covariance-based geostatistics. These differences extend beyond the formalism or
the algorithms used. While classical geostatistics infer a model based on data, MPS
generates additional data based on external knowledge, in this case through the
search for and the selection of an appropriate radar image.

31.3.2 MPS Can Be Used in Extreme Over-Informed
Situations

The most common situation in geostatistics is to have a handful of data points, and
based on these, to estimate the target variable on a large grid. Increasingly in recent
years, the opposite situation occurs with a large number of data used to predict the
value at a smaller set of locations. One prime example of such over-informed
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Fig. 31.2 Application of MPS for rain occurrence simulation. Left: simulation of binary rainfall
based on a training image of a cyclone. Right: same setting based on a training image of a tropical
storm. Size of training images: 572 X 584 pixels. Size of simulation grid: 400 X 400 pixels. The
Direct Sampling MPS algorithm was used

problems is applications to satellite imagery, which typically consist in large spatial
datasets (typically the entire Earth is covered at high spatial resolution) that also
present a temporal aspect since the same location is imaged at regular intervals.
Here we look at the Landsat 7 ETM + sensor, which has the characteristic that it
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Fig. 31.3 MPS applied to gap-filling of a 5-band Landsat 7 image. Scene acquired on March 22,
2017 in Western Switzerland. Image size: 500 X 500 pixels. The Direct Sampling MPS algorithm
was used. Image shown in natural colors

partially failed in 2003, and since then the images it acquires present gaps (as
shown on Fig. 31.3a). The goal here is to fill these gaps with simulated values. In
such an image, the regions to reconstruct typically represent about 20% of the
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domain, the rest consisting of conditioning data. These data contain not only local
information, but also very rich structural information such as the type of land
surface features (fields, forests, cities), the connectivity of the different objects
(roads, water bodies), and their spatial arrangement (see details shown in
Fig. 31.3c, e).

The application of covariance-based geostatistics is in this case difficult, not
because of challenges related to model inference and identification (as in Fig. 31.1),
but because standard simulation techniques, such as Sequential Gaussian Simula-
tion or turning bands, will likely result in artifacts that are clearly visible to the eye.
Indeed, the complex land surface information cannot be entirely represented by
covariance models which are typically represented by a small number of parame-
ters. Furthermore, although interpolation artifacts are sometimes obvious to the eye,
they are typically undetectable by standard statistical metrics because these metrics
are based on covariance (or two-point statistics) and cannot identify complex pat-
terns such as connectivity, for which the human eye is very well suited. It can of
course be argued that there are applications where these complex properties do not
matter; but if they do, the covariance-based framework is inappropriate (Zinn and
Harvey 2003).

In contrast, applying MPS to this gap-filling problem is straightforward.
The MPS approach used here for the simulation of gaps is the one presented by Yin
et al. (2017a, b). Each color channel is co-simulated and no auxiliary variables are
used. Contrarily to the data-poor case, there is no need here to infer, construct or
hypothesize a training image. The training image is given by the 80% of the domain
that is known. While the training image size is far from infinity, it is a little closer to
the ideal situation outlined by Emery and Lantuéjoul (2014). The gap-filling results
(Fig. 31.3b, d, f) present very few visual artifacts. In certain places, it is possible to
see that some reconstructed elongated features are discontinuous (e.g. the road near
the center of Fig. 31.3d). However in most cases it is difficult to distinguish the
reconstructed and the original areas (e.g. in Fig. 31.3f).

31.4 Conclusion

Often the debate around MPS and covariance-based approaches has been centered
on the dichotomy between multiGaussianity or non-multiGaussianity of the vari-
able to simulate (Gomez-Hernandez and Wen 1998). The choice of a simulation
approach or algorithm should certainly be driven by the nature of the variable of
interest: is it non-multiGaussian? is it non-stationary? is it channelized? do these
characteristics matter for a given problem? I argue here that the question of the
amount of information at hand is also a critical factor to consider when choosing
which simulation framework to use, and this question has often been overlooked. It
may make sense to also base this choice on the quantity of information available: do
I have a conceptual model? do I have enough hard or soft data to infer a covariance?
do I have so much data that I am able to detect non-multiGaussian behavior?
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To summarize, one can say that different tools are available, and those should be
chosen according to the problem to be solved. While no example with moderate
amount of information has been shown in this chapter, it is understood that it is
generally the realm of covariance-based geostatistics. Under-informed situations are
always going to be difficult because there are important modelling choices to make.
For over-informed cases, relatively few assumptions are needed and, with some
precautions, it can be possible to rely on algorithms such as MPS.

Better defining the role of MPS in the galaxy of existing spatial modeling tools
can potentially help narrowing areas where future MPS research should focus. So
far, there has been a strong emphasis on the development of simulation algorithms.
The different algorithms available can reproduce spatial features with various
degrees of faithfulness, they may need different computing resources or may offer
specific options. While developments in MPS are still needed (in particular
regarding training image selection and manipulation, as well as parametrization),
the simulation algorithms are becoming quite mature. Moving beyond the dichot-
omy between covariance-based geostatistics and MPS can enable the development
of new hybrid approaches. For example, using distance-based (also known as
convolution-based) MPS algorithms can be seen as bootstrapping the training
image. However, the link with bootstrapping theory (e.g. Davison and Hinkley
1997) has not yet been fully explored. Similarly, the MPS framework is currently
unable to simulate extreme values. Combining MPS with more standard statistical
approaches may open new fields of applications, in particular in domains such as
climate science, hydrology or earth surface observation where increasingly rich
space-time datasets are now available.
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