
Chapter 29
Fifty Years of Kriging

Jean-Paul Chilès and Nicolas Desassis

Abstract Random function models and kriging constitute the core of the geosta-
tistical methods created by Georges Matheron in the 1960s and further developed at
the research center he created in 1968 at Ecole des Mines de Paris, Fontainebleau.
Initially developed to avoid bias in the estimation of the average grade of mining
panels delimited for their exploitation, kriging received progressively applications
in all domains of natural resources evaluation and earth sciences, and more recently
in completely new domains, for example, the design and analysis of computer
experiments (DACE). While the basic theory of kriging is rather straightforward, its
application to a large diversity of situations requires extensions of the random
function models considered and sound solutions to practical problems. This chapter
presents the origins of kriging as well as the development of its theory and its
applications along the last fifty years. More details are given for methods presently
in development to efficiently handle kriging in situations with a large number of
data and a nonstationary behavior, notably the Gaussian Markov random field
(GMRF) approximation and the stochastic partial differential (SPDE) approach,
with a synthetic case study concerning the latter.

29.1 Introduction

The creation of the IAMG is a landmark of year 1968, which motivates the present
book. Another important event of this year is the foundation of a research center of
Ecole des Mines de Paris dedicated to geostatistics and mathematical morphology,
two disciplines created by Georges Matheron. Concerning geostatistics, this
research center was about to develop the applications of kriging, invented by
Matheron several years earlier. The theory of kriging seems so straightforward that
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it was reasonable to imagine that, after some generalizations, kriging would become
a classical tool requiring no further research. On the contrary, 50 years later it
remains the subject of active research, with renewed points of view. Other paradox:
originating from mining estimation problems, and very close to statistical regression
from a theoretical standpoint, it was not obvious that kriging would be considered
in other domains than mining and earth sciences. However applications now con-
sider, for example, the design of aircrafts (Chung and Alonso 2002), the prediction
of the mechanical properties of nanomaterials (Yan et al. 2012), the optimization of
supply chain networks (Dixit et al. 2016), the construction of financial
term-structures (Cousin et al. 2016), the modeling of social systems (Oliveira et al.
2013), and in all cases the quantification of the uncertainty.

It is therefore not surprising to see in Table 29.1 that the number of articles on
kriging (word “kriging” or “cokriging” present in the title) published by the journals
of the Scopus database doubles decade after decade. The situation is slightly dif-
ferent for the three journals published by the IAMG: Mathematical Geosciences
(formerly Journal of the International Association for Mathematical Geology, then
Mathematical Geology), Computers & Geosciences, and Natural Resources
Research; indeed, IAMG journals played a major role in the dissemination of the
geostatistical literature in English in the first decades, but have now to share this
role with the journals of the new application domains. (Note incidentally that few
articles were published before 1980: the literature relative to kriging was largely
written in French or published in monographs and conference proceedings.)

At a closer look, the originality of kriging lies in its inclusion in the geostatistical
approach, where the optimality provided by kriging rests on an analysis of the
spatial variability of the phenomenon of interest. Indeed, if methods for charac-
terizing that variability were lacking, the optimality of kriging would simply be
virtual. As for the persistence of research works on kriging, it is widely bound to the
evolution of the capacities of calculation and memory of computers, and to the
increase of the volume of the data. At its origin kriging considered some samples in
the vicinity of a target block, while it has now to take into account up to thousands
or even millions of data (remote sensing, laser, seismic).

This chapter first presents the origins of kriging and its theory. It continues with
further developments, roughly chronologically, up to current research. Kriging has
a number of variants and generalizations. We focus here on linear kriging, more-
over in a monovariate context. Cokriging and disjunctive kriging are therefore not

Table 29.1 Articles whose
title includes the word
“kriging” or “cokriging”:
number of articles per decade
for IAMG journals and for all
journals of the Scopus
database

Decade IAMG Scopus

1970–1979 2 14
1980–1989 63 136
1990–1999 61 272
2000–2009 53 512

2010–2016 28 1076
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considered; conversely, the use of kriging to condition geostatistical simulations is
acknowledged. Our aim is not a thorough presentation of kriging, which can be
found in many textbooks, for example, Chilès and Delfiner (2012).

29.2 The Origins of Kriging

One of the tasks of the mining engineer is to select the panels to be exploited, and
even to delimit them if the exploitation method lets him this freedom. Indeed, to
simplify, a panel deserves to be exploited only if the cost of its extraction and
processing does not exceed the value of the metal which can be extracted from it.
For given technico-economic parameters, this means that the panel grade has to
exceed some cutoff grade. In practice the true grade of a panel is not known before
its exploitation, so that the selection is made on the basis of an estimated grade. At
the beginning of the 1950s the estimate was simply the average grade of the data
belonging to the panel or situated at its border. Krige (1951, 1952), studying
exploitation data of several orebodies, observed that for high cutoffs the panels
selected that way were on average less rich than expected.

As Fig. 29.1 shows it, this is not really surprising. Two parallel galleries in a
sub-horizontal deposit present segments AB and CD with grades above the cutoff,
contrarily to the neighboring parts of the galleries. Therefore the decision is made to
exploit the trapezoid ABDC, and its grade is anticipated to be equal to the weighted
average of the grades of segments AB and CD. In fact, segments AC and BD do not
represent the real border between rich and poor ores. The true (unknown) limits
look like the dotted lines. Therefore, poor ore is exploited (and rich ore abandoned),
so that the grade of the exploited ore is lower than expected.

Mathematically, this expresses a conditional bias: Denoting Zv the panel grade
and Z ̄ the average grade of the cores situated within the panel, the conditional
expectation E½ZvjZ ̄� is not equal to Zv.

A 

C D 

B 

abandoned 
rich ore

exploited 
poor ore

B’A’

Fig. 29.1 Illustration of the estimation bias. The panel ABDC to be exploited was delimited from
the rich samples observed along AB and CD. Because the true border between rich and poor ores
follows a line similar to the dotted line rather than segments AC and BD, poor ore will be exploited
and rich ore abandoned. (from Matheron 1961)
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To avoid this bias, Krige gives a weight λ to the average grade of the data
situated in the panel and the complementary weight 1 – λ to the average grade of
the orebody, λ being determined by linear regression (Krige in fact considered the
lognormal case and worked with grade logarithm).

Also facing problems of mining estimation, Matheron studied Krige’s work and
generalized his approach by assigning a proper weight to each sample, these
weights being determined so as to minimize the estimation variance under the
condition that the weights sum to 1 (this condition simply expresses that the esti-
mator is a weighted average of the data).

Matheron called this method “kriging” in honor to Danie Krige. To be accurate,
according to Cressie (1990), the French term “krigeage” was coined by Pierre
Carlier and first used at the French Commissariat à l’énergie atomique in the late
1950s, and Matheron translated it by “kriging” in Matheron (1963b) (the first
appearance of “krigeage” found by the present authors in Matheron’s work is
Matheron 1960, where it is mentioned as an already known concept).

29.2.1 Ordinary Kriging (OK)

Geostatistics considers natural variables distributed in space, whose behavior pre-
sents a large complexity of detail. These regionalized variables cannot be ade-
quately represented by deterministic functions and therefore methods dedicated to
random functions (RF) are considered. The theory of kriging as it is usually pre-
sented appears in Matheron (1962, 1963a). It takes place in the framework of an
order-2 stationary random function (SRF) model. The regionalized variable of
interest (here a grade) is considered as a realization of an SRF Z(x), where x denotes
a point in a two- or three-dimensional space. N data are available, at locations xα,
α = 1, 2, …, N, with values Zα = Z(xα). The target Z0 is the value Z(x0) of Z at an
unobserved point x0, or more generally the average value Z(v) of Z in a given cell or
block v. The kriging estimator of Z0 is by definition of the form

Z* = ∑
N

α=1
λαZα

with weights λα summing to 1. The weights are chosen so as to minimize the
variance of the estimation error Z* – Z0 subject to the condition on their sum. This
leads to a linear system of N + 1 equations with N + 1 unknowns (the N weights λα
and a Lagrange parameter μ):

∑
β
λβσαβ + μ= σα0 α=1, . . . ,N

∑
β
λβ =1

8<
:
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where σαβ denotes the covariance of the observations Zα and Zβ and σα0 the
covariance of Zα and the target Z0. This is the ordinary kriging system. The ordinary
kriging variance can then be expressed as:

σ2OK =EðZ* −Z0Þ2 = σ00 − ∑
α
λασα0 − μ

where σ00 denotes the variance of Z0.

29.2.2 Simple Kriging (SK)

Note that the kriging system and variance do not require the knowledge of the
mean. If the mean m were known, we would use an estimator of the form

Z* = ∑
α
λαZα + 1− ∑

α
λα

� �
m

without constraint on the weights, and the minimization of the estimation variance
would lead to the simple kriging system

∑
β
λβσαβ = σα0 α=1, . . . ,N

and to the simple kriging variance

σ2SK =EðZ* − Z0Þ2 = σ00 − ∑
α
λασα0

Simple kriging receives limited applications. It is, however, important, because it
has nice properties that are not shared by ordinary kriging and of course universal
kriging (see Chilès and Delfiner 2012, Chap. 3). From a computational point of
view, the kriging matrix being positive definite, the system can be solved by the
Cholesky method.

29.2.3 Ordinary Kriging in the IRF Model

Because the mean m is not involved in ordinary kriging, it is possible to extend
ordinary kriging to a more general random function model, the (order-2) intrinsic
random function (IRF) model, characterized by
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E½Zðx+ hÞ−ZðxÞ�=0
1
2E½Zðx+ hÞ−ZðxÞ�2 = γðhÞ

The variogram γ(h) summarizes the spatial variability of the random function.
Geostatistics provides a set of consistent tools for choosing the variogram model
adapted to a particular situation (e.g., Chilès and Delfiner 2012, Chap. 2). The
above OK system and OK variance remain valid provided that C(h) is formally
replaced by –γ(h) in the expressions of σαβ, σα0 and σ00 given in the next section.
This is the framework where kriging is widely used, especially in mining
applications.

29.2.4 Discussion

Finally, kriging appears as nothing but (a straightforward generalization of) mul-
tiple linear regression on N data Zα that need not to be of the form Z(xα). Does it
deserve a special consideration?

In fact the application of this regression requires that the covariances between
the observations, and between each observation and the target, are known. They can
be determined experimentally when repeated measurements are available, as is the
case in meteorology, but not in usual earth sciences applications, where a unique
phenomenon is considered. Applying the regression formula with a priori covari-
ances would provide an estimator that would lose any optimality, except if by
chance these covariances are perfectly suited to the data.

Kriging implies a spatial context:

• The random variables Zα are point values of an SRF Z(x) at points xα.
• Structural analysis methods make it possible to determine the covariance

function C(h) of the SRF Z(x).

The covariances σαβ are then of the form C(xβ – xα), and σα0 is C(x0 – xα) if the
target is Z(x0) or the average value of C(x – xα) when x spans v if the target is Z(v).
The variance σ00 of Z0 that appears in the expression of the kriging variance is C(0)
if the target is Z(x0) or the average value of C(x′ – x) when x and x′ span v inde-
pendently if the target is Z(v).

Several authors proposed an approach similar to simple or ordinary kriging
before Matheron but not in a spatial context (see Cressie 1990). The noticeable
exception is Gandin (1963), who independently developed an approach similar to
Matheron’s one, in meteorology. SK is called optimal interpolation, and OK op-
timal interpolation with normalization of weighting factors. Like Matheron, Gandin
was concerned by the theory and its applications; he is, for example, the first author
to define and compute a variogram cloud.
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29.2.5 Analytic Calculation of Average Covariances

In the early 1960s computers were not available, at least for mining applications. It
was therefore not easy to solve linear systems of equations. Even if point (or core)
data could be used to determine the variogram, kriging was applied to aggregated
data. In the case of Fig. 29.1, a typical situation examined by Matheron (1961), all
cores along AB are represented by their average grade Z1, those along CD by Z2,
and those belonging to A′A and BB′ by Z3. The target is the average grade Z0 of the
trapezoid ABDC. Kriging amounts to finding the best weights λ1 for Z1, λ2 for Z2,
and λ3 = 1 – λ1 – λ2 for Z3 minimizing the variance of λ1 Z1 + λ2 Z2 + (1 –

1 – λ2) Z3 – Z0. Kriging amounts to solving a system of two equations, which is
straightforward, but first requires to calculate the various covariances involved. For
example, if the series of contiguous cores along AB is described by a
three-dimensional elongated volume s and the target block (the trapezoid ABDC in
projection on the horizontal plane, with some thickness in the vertical direction) by
v, σ10 represents 1

jsjjvj
R
s

R
v Cðx′− xÞ dx′ dx, which is a sextuple integral. A special

variogram model, the logarithmic or de Wijsian model, was widely used because it
is very tractable for analytical calculations of average covariances with Taylor
expansions (see numerous technical reports of Matheron on the internet site of
Mines ParisTech, Center of Geosciences, On-line geostatistical library).

29.3 Development and Maturity: Trend, Neighborhood
Selection

With the availability of computers in the late 1960s, it was possible to solve linear
systems with about 10–20 equations. Kriging was then carried out with about ten
data in and around the target block. Usually a neighborhood of one or two rings or
aureolae around the target was used. If necessary, some data were grouped whose
situations with respect to the target were similar. At the first international geosta-
tistical congress in Rome in 1975, Michel David claimed that he was able to krige a
mining block for a few cents, a reasonable price for real-world applications (David
1976).

In mining applications the outputs were documents with grid cells representing
the blocks; the block estimates and the associated kriging standard deviations were
printed in the grid cells. Very soon applications emerged in other domains than
mining, with a slightly different objective: cartography, more precisely contour
mapping. See, for example, Huijbregts and Matheron (1971), Chauvet and Chilès
(1975) in oceanography; Delfiner (1973), Chauvet et al. (1976) in meteorology;
Delfiner and Delhomme (1975), Delhomme (1978) in hydrology. Moreover, the
phenomena considered in these application domains usually present a trend: the sea
floor is deeper when moving away from the coast line, aquifers have a general
gradient, the top of petroleum reservoirs is usually dome shaped. This called for
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developments in two directions: kriging theory, with universal kriging to account
for trends, and kriging practice, with a careful design of kriging neighborhoods.

29.3.1 Universal Kriging (UK)

The assumption of a constant mean—even if unknown—became soon a limitation
for the application of kriging to phenomena displaying a trend. Kriging was
therefore generalized by Matheron (1969) to random functions with a polynomial
drift m(x) of the form

mðxÞ= ∑
L

ℓ=0
aℓf ℓðxÞ

where the aℓ are unknown coefficients and the f ℓðxÞ are the L + 1 monomials with
degree up to a given degree k (in the one-dimensional case, L = k and f ℓðxÞ= xℓ).
For ℓ = 0, f 0ðxÞ≡ 1. The kriging estimator remains of the form Z* = ∑α λαZα but,
because the aℓ are not known, unbiasedness is ensured only under the L + 1
constraints

∑
α
λαf ℓα = f ℓ0 ℓ=0, . . . , L

where f ℓα = f ℓðxαÞ and f ℓ0 is f ℓðx0Þ if the target is Z(x0) or the average value of f ℓðxÞ
when x spans v if the target is Z(v). The minimization of the estimation variance
leads to a system similar to the OK system except that there are now L + 1 con-
straints instead of a single one, and as many Lagrange parameters.

The UK kriging matrix is no more positive definite, so that the kriging system
should be solved by Gaussian elimination, which is less efficient than the Cholesky
method. However, UK can be expressed as simple kriging, followed by a drift
correction. The second step appears as the solution of a linear system of L + 1
equations with L + 1 unknowns, whose matrix is positive definite. It is thus
advantageous to exploit this result to solve the SK system and the drift correction
system by the Cholesky method (an additivity property also allows the calculation
of the UK variance).

The equations of UK were already presented by Goldberger (1962) but not in a
spatial context and with covariances supposed to be known, whereas Matheron
proposed tools for determining the underlying variogram in the presence of a drift.
These tools let appear an inference problem that was adequately solved in the
framework of a more general model, presented hereafter.
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29.3.2 Kriging in the IRF-k Model

Like the mean for OK, the coefficients aℓ are not involved in universal kriging. This
made it possible to extend it to a more general random function model, the model of
intrinsic random functions of order k (IRF-k), where a generalized covariance
function K(h) is substituted to C(h). The RF model was first presented by Yaglom
and Pinsker (1953), and the complete theory in the n-dimensional space by
Matheron (1971, 1973). It suffices to say here that the class of GCs includes
ordinary covariances and covariances of the form –γ(h) when k = 0, and increases
with k. It includes, for example the power covariances (–1) p+1 |h| 2p+1,
0 ≤ p ≤ k, and the “spline” covariances (–1) p+1 |h| 2p log |h|, p integer,
1 ≤ p ≤ k. The kriging system is the same as for UK, with K replacing C.

29.3.3 Kriging as an Interpolant

In cartography, the objective of the applications of kriging was more precisely to
draw maps with isolines derived from point kriging at the nodes of a regular grid.
Nowadays it is possible to locally refine the grid to precisely track an isoline. In
both cases, there is a requirement that kriging is not only the optimal linear esti-
mator for a single point or block but also has nice interpolation properties.

According to theory, when kriging is considered as an interpolant, that is, as a
function z*(x) of the target point x, the kriged map inherits from the covariance or
variogram model. Indeed the universal kriging estimate can be presented in its dual
form

z*ðxÞ= ∑
α
bαCðx− xαÞ+ ∑

ℓ
cℓf ℓðxÞ

with the convention that C can be replaced by –γ or by the generalized covariance
K. The coefficients bα and cℓ are linear functions of the data. They are obtained as
solutions of a system of equations similar to the UK system (same kriging matrix).
If the variogram is parabolic at the origin, then z*(x) is differentiable; if the vari-
ogram is linear at the origin (and thus with a cusp at the origin when considered as a
function of vector h), z*(x) is continuous with cusps at the data points. This may not
be aesthetically nice from the user’s point of view, because this is not primarily the
purpose of kriging. Nevertheless, a smooth map can always be obtained by
applying kriging with a smooth variogram or generalized covariance model. This is
the way splines were used at that time, without explicit reference to geostatistics,
but Matheron (1981) showed that any spline problem is equivalent to a kriging
problem in the framework of the IRF-k model. For example, in 2D, interpolating
with biharmonic splines is equivalent to kriging in the framework of an IRF-1
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model with the generalized covariance |h|2 log |h|. Of course if the “true” covari-
ance model does not conform to this model, kriging loses its optimality.

29.3.4 Neighborhood Selection

The dual kriging approach is very efficient in terms of computer time but presents
two limitations: (i) it does not provide the kriging variance, and (ii) like direct
kriging, its above interpolation properties are valid when working globally, that is,
all data points are taken into account (global neighborhood). Due to practical
limitations in memory space and calculation time, there is a limit in the number N of
data that can be processed (several hundreds at that time, several thousands now).
Therefore, in practice kriging often continues to be used with a moving neigh-
borhood, that is, a limited number of data points around the target point are taken
into account.

Now, when kriging with a moving neighborhood, the neighborhoods of two grid
nodes can differ, and this can produce spurious discontinuities, especially when an
outlier data is included in the neighborhood of a grid node and not in the neigh-
borhood of the next grid node.

The neighborhood problem is also important when building conditional simu-
lations. The classical way at that time (and even now) for continuous variables was
to work in the framework of a Gaussian RF model (if necessary after suitable
transformation of the data), to generate a nonconditional simulation of the Gaus-
sian RF, and to condition that simulation on the data with a kriging step (Journel
1974). Due to their random nature, nonconditional simulations present small-scale
variations. If spurious discontinuities are added by the kriging step, it is not easy to
distinguish them from natural variations, which can lead to inaccurate conclusions.

Therefore, during years, much effort was devoted by software developers to
neighborhood selection (e.g., Renard and Yancey 1984). Sophisticated algorithms
have been devised to reach a compromise between near and far sample points.
Focusing on 2D only, neighborhoods usually include all points of the first ring and
then more distant points, following a strategy that attempts to sample all directions
as uniformly as possible while keeping the number of points as low as possible
(octant search). Typically, 16 to 32 points are retained, from at least five octants or
four noncontiguous octants. For contour mapping purposes, where continuity is
important, larger neighborhoods may be considered to provide more overlap. Such
an algorithm may not provide satisfactory results when data originate from profiles
sampled with a short interval. The neighborhood selection then includes the
requirement to have data originating from several profiles. Along years, the size of
the neighborhoods increased with the improvements of computers in terms of CPU
time and storage.
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29.3.5 Maturity

In the 1980s kriging seemed to have reached maturity. It was widely used in mining
projects to build block models of orebodies, even with a large number of sample
data and a very large number of blocks. In civil engineering it enabled an accurate
design of the Channel tunnel on the basis of a model of the geological layers
obtained by kriging from about 100 000 data, with a sound evaluation of the
uncertainty of the model (Blanchin and Chilès 1993; Chilès and Delfiner 2012,
Sect. 3.8). There were further developments specific to nonlinear geostatistics
(disjunctive kriging, indicator kriging) and to multivariate geostatistics (factorial
kriging analysis) which are not considered here.

At the same period, Sacks et al. (1989) opened a completely new domain to
kriging: the design and analysis of computer experiments (DACE). The coordinates
of x are no longer geographic but represent scalar design variables, while the
variable of interest Z is an objective function that depends on the design variables.
A computer experiment gives the value of the objective function for chosen values
of the design variables. When computer experiments are costly, kriging is used to
interpolate the response surface from a limited number of data (computer experi-
ments). Applications mainly concern engineering problems, for example, the design
of aircrafts (Chung and Alonso 2002). They call for specific research works, due to
the very special space considered, the sparsity of the data, the difficulty to infer the
covariance. See Kleijnen (2016) for a recent review.

29.4 Iterative Use of Kriging to Handle Inequality Data

Up to the early 1980s, geostatistics provided direct solutions: kriging was obtained
by solving a linear system of equations, (Gaussian) simulations were built by
turning bands or other methods directly transforming a vector of independent
standard normal random variables in a vector representing a discrete view of the
random function. Iterative algorithms appeared to handle inequality data and more
specifically to generate conditional simulations of truncated Gaussian RFs.

Inequality data were already considered in the 1980s, notably by Dubrule and
Kostov (1986) and Kostov and Dubrule (1986), with a solution based on quadratic
programming where inequality data are treated as constraints placed on the kriging
estimate. At the end, the inequalities are classified either as inactive (they can be
forgotten) or active, and in the latter case they are replaced by an equality to the
upper or lower bound of the inequality. This classification is not trivial at all and is
the value of the method, but the clamping effect produced by the replacement of
some inequalities by their lower or upper bound is not really satisfactory.

An alternative approach proposed by Langlais (1990) is to regard inequalities as
data and replace them by exact values. The procedure is to (i) simulate exact data
satisfying the given inequalities while honoring the exact data and the spatial
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structure, (ii) average the results over several simulations, thus generating data that
will replace the inequality data, and (iii) proceed to kriging from both actual and
generated data.

At the same period, truncated Gaussian RFs were considered to represent geo-
logical facies. In its simplest form, such RF is defined by a Gaussian SRF Y(x) and a
threshold s. The truncated Gaussian RF is simply the indicator 1Y(x)≥ s. The
applications account for a threshold that varies with x (an ordinary function of x).
More general models are obtained with several thresholds and possibly two or three
Gaussian SRFs (plurigaussian RF). Matheron et al. (1987) proposed a method to
build conditional simulations of truncated Gaussian RFs in the case of a separable
exponential covariance. The method is rather simple because it fully exploits the
Markov properties of that covariance model.

From that time the geostatistics community devoted a growing interest to
Markov chain Monte Carlo (MCMC) methods (e.g., Tjelmeland and Holden 1993),
and particularly to the Gibbs sampler (Geman and Geman 1984). Initially devel-
oped to solve optimization problems, these methods also provide useful algorithms
for generating simulations of RFs at a finite number of sites (e.g., grid nodes). The
Gibbs sampler gives a consistent iterative method to achieve the first step of
Langlais (1990), which is the critical one: simulate exact data satisfying the
inequalities. Let us consider that the inequality data are of the form Zα ∈ Bα for
some values of α, where Bα denotes an interval. The procedure is initialized by
generating each of these Zα separately, by a value zα chosen in the interval Bα. Then
the following sequence is repeated:

1. Select an inequality site α.
2. Simulate Zα conditional on Zα ∈ Bα and Zβ = zβ for all α ≠ β (β ranges over

all sites except α), and assign the simulated value to zα.

The procedure changes the simulated values at the inequality sites so that they
progressively honor the spatial structure given by the covariance. This approach
finds its theoretical justification in the ideal case of a Gaussian SRF with a known
mean, where the conditional distribution of Zα is Gaussian with mean and variance
equal to the kriging estimate and the kriging variance. It is however robust and is
used even in the case of an unknown mean. The same approach is used effectively
to generate conditional simulations constrained by inequality data, and especially
truncated Gaussian RFs (the 0 or 1 data are transformed in inequality data of the
form Y(xα) < s or Y(xα) ≥ s). The algorithm should be used in global neighbor-
hood; otherwise, care should be given to the neighborhood selection, because the
algorithm may diverge.
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29.5 Nonstationary Covariance

Up to now we have considered models with a stationary covariance. But reality
does not care about our theoretical models. If a stationary covariance is often a
reasonable assumption when a limited number of samples is available, large data
sets usually show some lateral variations in the covariance or variogram, so that a
global model with a stationary covariance would be a too crude approximation.
This problem is obviously not new. A simple solution is to split the study domain
into several subdomains, to determine a specific variogram in each subdomain, and
to krige each subdomain with its own variogram. To avoid discontinuities at sub-
domains boundaries, the variogram parameters evolve progressively from one
model to the next in a transition area. This ad hoc method was used, for example,
for the study of the Channel tunnel where the 100 000 data clearly showed struc-
tural variations along the 60 km of the tunnel project. Machuca-Mory and Deutsch
(2013) generalize and systematize this approach.

Global nonstationary covariance models are of course sounder than the previous
approach from a theoretical point of view, and also from a practical one if they can
adapt to actual situations. A simple global covariance model can be derived by
generalization of the covariogram model, defined by autoconvolution of an inte-
grable and square integrable function w(u):

gðhÞ=
Z

wðuÞwðu+ hÞdu

If we replace w(u) by a dilution or kernel function w(x; u) also depending on x,
integrable and square integrable in u whatever x, and define

gðx, x′Þ=
Z

wðx; uÞwðx′; uÞdu

then g(x, x′) is a nonstationary covariance model (e.g., Higdon et al. 1999).
A random function with that covariance can be obtained by the dilution method
(Higdon 2002).

Let us now examine the case where w, considered as a function of u for fixed x,
is a Gaussian kernel with variance–covariance matrix Σx. The resulting correlation
function can be written (e.g., Paciorek and Schervish 2006)

gðx, x′Þ= Σxj j1 ̸4 Σx′j j1 ̸4 Σx +Σx′

2

����
����
− 1 ̸2

expð−Qxx′Þ
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with quadratic form

Qxx′ = ðx′− xÞT Σx +Σx′

2

� �− 1

ðx′− xÞ

If Σx is constant with respect to x, then g(x, x′) is the standard Gaussian cor-
relation function with global anisotropy matrix Σx. Otherwise, if Σx varies slowly,
g is approximately stationary in a small neighborhood of x. This locally stationary
correlation function can be generalized by replacing expð−Qxx′Þ by ρð−Qxx′Þ
where ρ is a stationary correlation function that is valid in every dimension. This
class of nonstationary covariance functions can be fitted by using local variograms
whose parameters are used to build local Σx matrices (e.g., Fouedjio et al. 2016).
Emery and Arroyo (2018) describe a spectral algorithm for simulating such models.

29.6 Kriging for Large Data Sets

We have seen that kriging with moving neighborhoods provides artifacts that can
be limited in their amplitude by a careful design of the neighborhood selection but
not eliminated. This problem is important when putting the Gibbs algorithm into
practice because the procedure might diverge. The best way to avoid artifacts is to
krige in global neighborhood, that is, any target point is kriged from all the data. As
the capabilities of computers in terms of memory and computational performance
always increase, this becomes possible for larger and larger data sets. However, the
size of most data sets is also increasing with the advent of automatic measurement
stations, so that the problem remains. A direct solving of the kriging system by
Gaussian elimination or the Cholesky method is possible for up to several thousand
equations. Several attempts were made for processing larger systems. Before pre-
senting two truly global approaches, let us start with a method deriving from
moving neighborhoods.

29.6.1 Continuous Moving Neighborhood

Gribov and Krivoruchko (2004) developed an original method to ensure continuity
with moving neighborhoods. The idea is to modify the kriging system so that data
beyond a specified distance from the estimated point receive weights gradually
approaching zero. This way, no discontinuity occurs when data points enter or exit
the kriging neighborhood.

Rivoirard and Romary (2011) propose an equivalent approach from a different
perspective: The idea is to introduce a penalty on the kriging weights in the
objective function to be minimized. This penalty acts as a noise variance except that
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it varies with the target point x0. It is typically equal to 0 for data points xα within a
distance r of the estimated point x0 (no penalty applied near the target point), and
increases continuously to infinity as xα approaches the outer boundary of the kriging
neighborhood, located at a distance R. Data points at a distance larger than R thus
receive a zero weight. Because this method is solely based on the addition of a noise
that increases with distance, it works for all versions of kriging algorithms: OK,
UK, and even IRF-k. Because it is local, this method can handle lateral changes in
the covariance parameters.

29.6.2 Covariance Tapering

Large systems can be solved if the kriging matrix is sparse. This can be achieved by
tapering the covariance function to zero beyond a certain range. Furrer et al. (2006),
who proposed this approach, define the tapered covariance as the product of the true
covariance C by a taper covariance K that has a finite range. To preserve the
behavior of the true covariance C near the origin, which controls the lateral con-
tinuity of the interpolant, the taper covariance K should be more regular near the
origin than C. The authors apply the method with about 6 000 data.

29.6.3 Fixed Rank Kriging

In order to reduce the complexity of the kriging system when the number of data is
very large, Cressie and Johannesson (2008) represent Z(x) as a linear combination
of r given basis functions Sk(x) with random coefficients ηk, plus a white noise
ε(x) (for simplicity, we omit the covariates considered by the authors as external
drift functions):

ZðxÞ= ∑
r

k=1
ηkSkðxÞ+ εðxÞ

The basis functions need not be orthogonal. They are usually chosen so as to
represent several scales of variation and, for each scale, to cover the whole study
domain. A typical choice is wavelet functions.

Denoting by S(x) the vector of the basic functions Sk(x), by K the variance–
covariance matrix of the ηk, and assuming that the white-noise variance is constant
and equal to σ2, the covariance of Z(x) and Z(x′) is

Cðx, x′Þ=SðxÞT KSðx′Þ+ σ2 δðx′− xÞ

where δ is the Kronecker function.

29 Fifty Years of Kriging 603



Given a vector Z of N data Z(xα), the kriging matrix is

Σ= SKST + σ2I

where S is the N × r matrix whose (α, k) element is Sk(xα). The authors show that
the inverse of Σ (an N × N positive-definite matrix) in fact only requires the
inversion of K and K–1 + ST S/σ2 (two r × r positive-definite matrices). They also
show that the inference of the positive-definite matrix K and the variance σ2 can be
done with the classical geostatistical approach. Therefore, kriging becomes tractable
even with a very large number of data. In an application to ozone satellite data, the
authors use 396 basis functions, a huge reduction in comparison with the 173 000
data.

29.6.4 Gaussian Markov Random Field Approximation

The approach of Gaussian Markov random fields may be seen as the opposite of
that of covariance tapering in the sense that it seeks to make the inverse of the
covariance matrix—and not the covariance matrix itself—sparse. It was first used to
generate simulations (Besag 1974, 1975) but offers a new approach to kriging (Rue
and Held 2005). Let us consider a Gaussian random vector Z = {Zi: i = 1, …, N}
with known mean m and variance–covariance matrix C. The conditional distribu-
tion of Zi given the other components {Zj: j ≠ i} is Gaussian with mean and
variance the kriging estimate Z*

− i of Zi (the minus sign recalls that Zi is excluded
from the data used for that kriging) and the associated kriging variance σ2Ki.
Denoting by B the inverse of C, the kriging weights are found to be equal to
λjðiÞ= −Bij ̸Bii so that we have

Z*
− i =mi − 1

Bii
∑
j≠ i

Bij ðZj −mjÞ σ2Ki = 1
Bii

Since Bii is the inverse of the conditional variance of Zi given {Zj: j ≠ i} (all
except the i-th), B is known as the precision matrix. Its off-diagonal elements are
related to the conditional correlations of Zi and Zj given {Zk: k ≠ i, j} by

CorrðZi,ZjjfZk: k≠ i, jgÞ= −
Bi jffiffiffiffiffiffiffiffiffiffiffi
Bii Bjj

p

B is a symmetric positive-definite matrix. The pattern of zeroes of B can be used
to define an undirected graph structure in which two nodes are connected by an
edge when Bij ≠ 0. Let ne(i) denote the neighborhood of node i, that is, the set of
nodes connected to i by an edge. The vector Z has the Markov property that Zi is
conditionally independent of {Zk: k ∉ ne(i)} given {Zj: j ∈ ne(i)}. The discretely
indexed Gaussian Z is called a Gaussian Markov random field (GMRF).
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If the N components Zi are split in N1 unknown components to be estimated and
N2 = N – N1 data, it can be shown that kriging can be achieved by solving a linear
system of N1 variables and N1 equations whose system matrix is that part of the
precision matrix B corresponding to the N1 unknown components. The GMRF
approach is used when this matrix is sparse, so that the system can be solved even
when N1 is large.

29.6.5 The Stochastic Partial Differential Equation (SPDE)
Approach

Although the GMRF approach seems particularly appealing to deal with large data
sets, its use remained limited due to the fact that the link with the geostatistical
models based on covariance functions was not clear, making it difficult to param-
eterize the precision matrix. Nevertheless, some empirical studies showed that the
commonly used covariance functions could be approximated quite closely by
GMRFs (e.g., Rue and Tjelmeland 2002; Hrafnkelsson and Cressie 2003). These
results spurred some authors to model the data by using a Gaussian field charac-
terized by its covariance and then to find a discretized GRMF for which the inverse
of the associated precision matrix B provides a good approximation of the
covariance matrix of the Gaussian field (Song et al. 2008; Cressie and Verzelen
2008). Although promising, these algorithms suffer from a lack of theoretical
foundations, which makes their application difficult.

In their seminal paper, Lindgren et al. (2011) propose a formal link between
Gaussian field and GRMFs. They use a result established by Whittle in the 1950s
linking some Gaussian fields and the solutions of a class of SPDEs. More precisely,
let us consider the Matérn covariance function

CðhÞ= σ2

2ν− 1ΓðνÞ
jhj
a

� �ν

Kν
jhj
a

� �

where σ2 is the sill parameter, a > 0 is the scale parameter, ν > 0 is a regularity
parameter which determines the mean-square differentiability of the Gaussian field
and Kν is the modified Bessel function of the second kind and order ν. The result of
Whittle (1954) states that a Gaussian field Z with Matérn covariance function C is a
solution of the linear fractional SPDE

ðκ2 −ΔÞα ̸2ZðsÞ= τWðsÞ s∈ℝd

where α= ν+ d ̸2, κ=1 ̸a, τ2 = Γðν+ d ̸2Þð4πÞd ̸2κ2ν

ΓðνÞ , Δ is the Laplacian operator, and

W is a Gaussian white noise with unit variance. The pseudo-differential operator
ðκ2 −ΔÞα ̸2 can be defined through its Fourier transform but it is simply a linear
combination of iterated Laplacians when α ̸2 is an integer.
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Then, by using some numerical methods to solve the PDE, for example, a finite
differences method (FDM) or a finite elements method (FEM), Lindgren et al. (2011)
show that the resulting discretized field at the mesh points (which can include the
data locations) is a discrete GRMF. The precision matrix is directly provided by the
FDM or FEM implementation. It is a sparse matrix although the number of non-zero
elements increases with ν. Therefore, by including the target points in the mesh
generation, one can perform kriging with very large data sets by using an efficient
solver for sparse matrices. Note that, when α is not an integer, the operator

ðκ2 −ΔÞα ̸2 has to be approximated by ∑p
i=0 λiΔ

i
� �1 ̸2, where p is the smallest

integer greater than α. This operator can also be discretized by a FDM or FEM.
Anisotropies can be handled with the operator ðκ2 − divðH.∇ÞÞα ̸2 where H is a

symmetric positive-definite matrix linked to the anisotropy matrix and div is the
divergence operator.

An interesting feature of the SPDE approach is that it allows to easily incor-
porate varying coefficients. For instance, the matrix H can be replaced by H(s) to
handle a varying anisotropy (see Fuglstad et al. 2015).

Figure 29.2 presents a synthetic vertical section that could represent a variable of
interest such as porosity in a sedimentary layer. The base and top of the layers were
obtained by standard geostatistical simulations. The variable of interest was built
according to the model of Fuglstad et al. (2015) with α = 3/2, the matrix H in-
corporating the anisotropy model depicted in Fig. 29.3. This anisotropy model was
deduced from the model of the base and top of the layer, with a constant range
along the local direction of the layer, and a shorter range, varying proportionally to
layer thickness, in the orthogonal direction. Figure 29.2 shows five vertical
“drill-holes” considered as the data set, and Fig. 29.4 shows the kriged section
obtained with the SPDE method. The latter shows the capability of this approach to
account for the anisotropy model even in areas where there are no data (provided of
course that information is available concerning the anisotropy). From a computa-
tional point of view, the method is extremely efficient: in 2D a data set with about
100 000 data can be processed in about 10 s on a standard computer, with possibly
a number of conditional simulations nearly in the same time.

Fig. 29.2 SPDE synthetic case study: “Reality” (in fact a simulation) and sampling of five
drill-holes
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29.7 Iterative Algorithms for Solving the Kriging System

Before to conclude, it is advisable to remind a presentation of two iterative kriging
algorithms by Jean-François Royer in 1974, that is, in the early times of geo-
statistics. In meteorology, at that time, two main approaches were used to carry out
the “objective analysis”, that is, the interpolation of temperature and pressure at the
nodes of a grid from the observations at time t, then used as input for a numerical
weather forecast at time t + 1. One is Gandin’s approach (1963), similar to simple
kriging (in meteorology, the mean can be considered known thanks to a long
sequence of observations). The other is an iterative approach, the method of suc-
cessive corrections proposed by Cressman (1959).

Royer (1975) considers the simple monovariate situation. Rewritten with present
notations, let us consider a vector z with N = NG + NS components zi, the first NG

components corresponding to grid nodes (i ∈ G = {1; …; NG}) and the other NS

components corresponding to observation stations (i ∈ S = {NG + 1; …; NG +
NS}); zi represents the variable of interest, at location xi. Because the average
situation for the season or month considered is known from past observations, we
can subtract it and assume that z has mean 0. Two iterative algorithms are proposed,
depending on the set of points that drives the changes (grid nodes or observation
stations). In both cases, an influence function ρ(h) is used for extending a change

Fig. 29.3 SPDE synthetic case study: Anisotropy model

Fig. 29.4 SPDE synthetic case study: Kriging from the data of the five drill holes
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made at location x to location x + h depending on separation h. This function
satisfies ρ(0) = 1 and decreases to 0 when h increases. When extending to xj a
change made at xi, the notation ρij = ρ(xj – xi) will be used.

Algorithm driven by grid nodes: As step p = 0, select a vector z0 with com-
ponents z0i , for example zeroes or the values of the weather forecast for time t based
on the objective analysis made at time t – 1. Then iterate as follows:

1. increase the step number p by 1
2. calculate the discrepancies of step p – 1 with regard to the data: zi − zp− 1

i , i∈ S
3. define model p as zpi = zp− 1

i + ∑
j∈ S

ρijðzi − zp− 1
i Þ, i∈G∪ S

Algorithm driven by the observations: As initial state, select a vector znew with
components znewi , for example zeroes or the values of the weather forecast for time
t based on the objective analysis made at time t – 1. Then iterate as follows:

1. Set zcurrentj = znewj , j∈G∪ S
2. Select a component of S, say i, at random or by systematic scans of all the

components of S
3. Calculate the discrepancy of the current value with regard to the observation:

zi − zcurrenti
4. Define znewi = zi
5. Update all other components so that znewj − zcurrentj = ρijðznewi − zcurrenti Þ, j≠ i

The convergence of both algorithms is ensured if and only if the matrix ρ defined
by the ρij is positive definite, which is ensured if ρ(h) is a correlogram. Moreover, in
that case, the iterative process converges to the solution of dual kriging. Indeed,
both approaches amount to an iterative resolution of the dual kriging system (by the
Jacobi method in the first approach, by the Gauss-Seidel method in the second one),
followed, after each iteration, by the propagation of the changes to the point kriging
estimates.

The second algorithm is very similar to the Gibbs propagation algorithm pro-
posed nearly 40 years later by Lantuéjoul and Desassis (2012) to simulate a
Gaussian vector (this algorithm is also presented in Chilès and Delfiner 2012,
Sect. 7.6.3; it constitutes a further step to an algorithm proposed by Galli and Gao
1999). It is this similarity that reminded one of the present authors the paper of
Royer, not exploited by geostatisticians to our knowledge, which should deserve
new consideration. These iterative algorithms have the advantage that they can be
used even with a very large number of data, notably when the Cholesky method
cannot be used.
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29.8 Conclusion

We have shown the long way from Krige’s regression, which took account of two
average sample grades (a local one and a global one) to avoid bias in the estimation
of a panel, to present applications of kriging, which can deal with few data (e.g., a
limited number of computer experiments in applications to DACE) as well as
several hundred thousand data (remote sensing, seismic). We have seen the large
diversity of application domains of kriging, so that is it probable that many users do
not know the origin of the word: this is the price of success.

We also gave a look at current research to enable a global application of kriging
to large data sets, with the requirement to also benefit from nonstationary random
function models. Much work remains necessary to transform them in standard
methods applicable to a large variety of situations but, in view of the large com-
munity of researchers and developers in this area, no doubt that it will be done. The
future will show which approaches are the most efficient ones.
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