
Chapter 26
Statistical Modeling of Regional
and Worldwide Size-Frequency
Distributions of Metal Deposits

Frits Agterberg

Abstract Publicly available large metal deposit size data bases allow new kinds of
statistical modeling of regional and worldwide metal resources. The two models
most frequently used are lognormal size-grade and Pareto upper tail modeling.
These two approaches can be combined with one another in applications of the
Pareto-lognormal size-frequency distribution model. The six metals considered in
this chapter are copper, zinc, lead, nickel, molybdenum and silver. The worldwide
metal size-frequency distributions for these metals are similar indicating that a
central, basic lognormal distribution is flanked by two Pareto distributions from
which it is separated by upper and lower tail bridge functions. The lower tail Pareto
distribution shows an excess of small deposits which are not economically
important. Number frequencies of the upper tail Pareto are mostly less than those of
the basic lognormal. Parameters of regional metal size-frequency distributions are
probably less than those of the worldwide distributions. Uranium differs from other
metals in that its worldwide size-frequency distribution is approximately lognormal.
This may indicate that the lognormal model remains valid as a standard model of
size-frequency distribution not only for uranium but also for the metals considered
in this chapter, which are predominantly mined from hydrothermal and
porphyry-type orebodies. A new version of the model of de Wijs may provide a
framework for explaining differences between regional and worldwide distribu-
tions. The Pareto tails may reflect history of mining methods with bulk mining
taking over from earlier methods in the 20th century. A new method of estimating
the Pareto coefficients of the economically important upper tails of the metal
size-frequency distributions is presented. A non-parametric method for long-term
projection of future metal resource on the basis of past discovery trend is illustrated
for copper.
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26.1 Introduction

Most models for regional or worldwide mineral or hydrocarbon resource appraisal
assume either a lognormal or a Pareto model for the size-frequency distribution of
the deposits considered. It can also be assumed that both models apply with the
lognormal distribution providing a good fit to all sizes except for the smallest and
largest deposits that satisfy fractal/multifractal Pareto distributions. The largest
deposits obviously are rare and may be too few in number for adequate modeling in
regional studies. However, recently, very large data bases have become available
for metal deposits (Patiño Douce 2016a, b, c, 2017). In a newly proposed
Pareto-lognormal model for worldwide metal deposit size-frequency distributions
(Agterberg 2017a, b, in press), a basic lognormal distribution is flanked by two
Pareto distributions. In this chapter this model is applied to copper, zinc, lead,
nickel, molybdenum and silver. The upper and lower tail Pareto’s are separated
from the central lognormal by bridge functions to ensure continuity. An improved
version of the Pareto-lognormal model will be applied to the upper tails of the
size-frequency distributions for the six metals considered.

Previously, this approachwas also applied to gold and uranium (Agterberg 2017b).
For gold, the Pareto-lognormal model is not fully satisfied in that there is a shortage of
gold deposits with sizes in the vicinity of the median of the worldwide gold
size-frequency distribution. For uranium (sizemeasured in tons ofU3O8), a lognormal
size-frequency distribution without Pareto tails provides a good fit. In the earlier
publications (Agterberg 2017a, b, in press) comparisons were made between regional
and worldwide size-frequency distributions for copper and gold. Logarithmic vari-
ances ofworldwide size-frequency distributions exceed those of regional distributions
and worldwide separate mineral deposit-type distributions. This observation also
applies to the upper tail Pareto size-frequency distributions. A new variant of the
model of de Wijs, to be discussed in more detail later in this chapter, can provide a
partial explanation of the fact that the worldwide basic lognormal can be regarded as a
mixture of regional lognormal distributions with parameters less than those of the
worldwide basic lognormals and Pareto’s. For example, within the Abitibi volcanic
belt on the Precambrian Canadian Shield, the largest deposits for copper and gold
satisfy Pareto size-frequency distributions with Pareto parameters (αCu = 0.45;
αAu = 0.88) that are less than those of their worldwide distributions (αCu = 1.21;
αAu = 1.16) illustrating that upper tail size parameter estimates for individual metal
deposits are not stochastically independent data but subject to spatial correlation.

It should be pointed out that worldwide size-frequency distributions for some
metals including copper (2541 deposits) are sufficiently large so that original data
(without use of parametric statistical models) can be employed for long-term pro-
jections into the future at specific cut-off metal sizes (Agterberg 2017b; also see
later in this chapter). Main emphasis in this chapter will be on size-frequency
distribution modeling of the upper tail Pareto distribution and its transition into the
basic lognormal. This is because total amount of metal in the lower tail of each
Pareto-lognormal distribution is negligibly small. For example, 1340 copper
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deposits with greater than median size contain 99.7% of all copper in the complete
data set of 2541 deposits so that information provided by the approximately 50%
smaller deposits can be neglected (cf. Patiño Douce 2016c).

Patiño Douce (2016a, b, c, 2017) has published four important papers that are
helpful in planning future metal supply; showing, for example, that for copper there
would be a deficit of about 2.39 × 109 t (tonnes) by the end of this century if recent
discovery rates are maintained. For comparison, according to the USGS Mineral
Commodity Summaries (2015), proven copper reserves currently are 0.68 × 109 t.
According to Patiño Douce (2017), current copper resources including the estimated
reserves are 2.32 × 109 t whereas new demand by 2100 will be 4.70 × 109 t.
Consequently, estimated future copper deficit is approximately equal to currently
known copper resources. Using a non-parametric statistical method, this forecast
was confirmed by Agterberg (2017b) who estimated copper resources to be dis-
covered by the end of this century at 2.77 × 109 t with 95% confidence interval
of ±0.994 × 109 that contains Patiño Douce’s estimate (also see Sect. 26.5).

Patiño Douce (2016b) is accompanied by a supplementary database with sizes
and grades for 20 metals. For example, his data on 2541 copper deposits were
compiled from as many as 49 different sources. Patiño Douce (2016b) initially fitted
lognormal distributions to the metal deposit size-frequency distributions in this data
base pointing out that the logarithmic (base e) standard deviation ranges from about
2 to 3 for different metals, although average metal deposit sizes are greatly different.
Both Patiño Douce (2016c) and Agterberg (2017a) showed that the largest deposits
for different metals can be described by means of Pareto distributions. In the
Pareto-lognormal metal size-frequency distribution model of Agterberg (2017a, b)
the lognormal has a Pareto upper tail separated from the central lognormal by a
bridge zone. This model recognizes both (1) lognormality of metal content of ore
deposits from within smaller regions and those belonging to different mineral
deposit types (see, e.g. Singer 2013), and (2) Pareto size-frequency distribution of
the largest deposits but also for the economically unimportant smallest metal
deposits that exhibit Pareto size-frequency distributions as well.

The Pareto-lognormal model for metal deposits provides an alternative to other
size-frequency distribution models, which until about 30 years ago almost exclu-
sively were based on the lognormal model. Mandelbrot (1983, p. 263) stated that oil
and other natural resources have Pareto distributions and “this finding disagrees
with the dominant opinion, that the quantities in question are lognormally dis-
tributed. This difference is extremely significant, the reserves being much higher
under the hyperbolic than under the lognormal law.” It will be seen in this chapter
that size frequencies in the upper Pareto tails of the worldwide metal deposits taken
for example are less than those of the basic lognormals when these are projected to
the largest sizes. In this sense, the metal size frequency distributions are not
“heavy-tailed”. It can, however, be assumed that the Pareto represents a stable
limiting form for the largest as well as the smallest metal deposits. Pareto
size-frequency distribution modeling of the largest deposits has during the past
35 years been used by many authors including Drew et al. (1982) and Crovelli
(1995) for oil and gas fields, and Cargill (1981), Cargill et al. (1980, 1981) and
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Turcotte (1997) for metal deposits. The latter author has developed a modification
of the model of de Wijs (1951) that results in a Pareto instead of a lognormal
distribution. Turcotte (1997) based this model on original publications by Cargill
et al. (1980, 1981) and Cargill (1981) who had assumed power-law instead of
lognormal models for U.S. mercury, lode gold and copper production. Like the
lognormal, the Pareto-lognormal distribution is not universally applicable to all
elements, which show bimodal or multimodal size-frequency distributions when all
the many different rock bodies within the Earth’s crust would be considered.

The fact that uranium has lognormal distribution without Pareto tails suggests
that a multiplicative form of the central limit theorem is applicable for this metal
and possibly for other metals in different kinds of mineral deposits as well. A new
variant of the model of de Wijs described in the next section provides a partial
explanation of the fact that the basic lognormal probably can be regarded as a
mixture of regional lognormals with parameters that are less than those of the
worldwide basic lognormal.

26.2 Modified Version of the Model of de Wijs Applied
to Worldwide Metal Deposits

In the original model of de Wijs (1951) for metal concentration values in blocks of
rock, any block with metal concentration model ζ is repeatedly divided into halves
with concentration values (1 + d) ˑ ζ and (1 − d) ˑ ζ where d is the coefficient of
dispersion which us assumed to be independent of block size. The frequency dis-
tribution for metal concentration values in increasingly smaller blocks then satisfies
the so-called logbinomial distribution that rapidly approaches lognormal form. If

there are p subdivisions, the logbinomial distribution of the
p
K

� �
concentration

values of the resulting n = 2p blocks is

X p,Kð Þ= ζ ⋅ ð1+ dÞp−Kð1− dÞK

where K satisfies the binomial distribution with μ(K) = p/2 and variance
σ2(K) = p/4 (cf. Agterberg 1974, p. 322). This logbinomial has μ(X) = ζ and
variance σ2(X) approaching to:

σ2ðXÞ= p
4

⋅ ln
1− d
1+ d

� �2

Various modifications of the original model of de Wijs (1951) were developed
by Matheron (1962), Turcotte (1997) and Agterberg (2007). These modifications
were primarily concerned with randomizing the model of the Wijs (e.g. in the
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random-cut model), spatial realizations to account for spatial autocorrelation,
maximizing p (three-parameter model of de Wijs) and producing a Pareto tail (or
other types of tail) on the logbinomial (e.g., as in the accelerated dispersion model,
Agterberg (2007)). As discussed by Mandelbrot (1983), the model of de Wijs was
the earliest example of a multifractal cascade. Lovejoy and Schertzer (2007) have
pointed out that this original cascade is micro-canonical in that average metal
concentration value is preserved locally at every cut. In universal multifractal theory
these authors have generalized the cascade-type approach by preserving regional-
ized instead of strictly local averages. Their approach can result in a cascade that is
largely lognormal but generates tails which are exactly Pareto-type. Here, another
modified version of the original model of de Wijs (1951) is introduced as follows.

Suppose that the sizes of all deposits are combined with one another into a single
very large block which is assigned to an arbitrary point in the upper part of the
Earth’s crust that contains metal deposits that have been or can be discovered.
Suppose further that this block is divided into halves and the two smaller blocks are
assigned to two points randomly located within halves of the upper part of the
Earth’s crust. This process can be repeated 2p times. At each step, the two resulting
half-blocks of metal are further divided into halves that, after every cut, are ran-
domly assigned to successively smaller segments of the upper Earth’s crust. If there
are n known deposits the cascade process is repeated until n ≤ 2p. For example, in
relatively well-known parts of the Earth’s crust there occur 2541 copper deposits.
Suppose that p = 12 so that total number of subdivisions would be 4096. The 2541
copper deposits then can be regarded as a random subset of this larger population,
so that the overall mean copper content value ζ and the coefficient of dispersion
d can be estimated. From the parameters of the straight line representing the basic
copper lognormal distribution (Fig. 26.2a, see later) it follows that the logarithmic
(base e) mean and standard deviation are μ = 10.445 and σ = 3.1062. Conse-
quently, ζ = exp (μ + σ2/2) = 4.277 × 109. It then follows that d = 0.7276.

“Observed” frequencies satisfying the log-binomial model are shown in
Fig. 26.1. The best-fitting straight line (y = 0.755x – 3.8123) in this diagram has
coefficients corresponding to mean μˊ = 11.627 and standard deviation σˊ = 3.050
which are relatively poor estimates in comparison to the values to derived later for
the basic lognormal for copper in Fig. 26.2a. Main reason for this minor discrep-
ancy is relatively strong influence on the best-fitting regression line of logbinomial
frequencies represented by first and last points which are for single blocks only.
Positions of these two points illustrate that the logbinomial produces slightly
weaker upper and lower tails in comparison with the lognormal. On the whole, the
logbinomial very closely approximates the lognormal in this application.

The preceding model would allow for spatial autocorrelation of metal deposit size
observations, which is known to exist. For example, the largest copper deposits are
porphyry type and largely clustered in the Andes mountain chain of South America.
On the other hand, the largest copper deposits in the Abitibi volcanic belt on the
Canadian Shield are volcanogenic massive sulphide deposits which are smaller than
the South American porphyry coppers. Because of the close resemblance of the
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logbinomial to the lognormal, preceding results also can be represented as follows.
The characteristic function of a random variable X is:

ɡ uð Þ=EðeiuxÞ =
Z∞

−∞

e− iuxf xð Þdx

where f(x) is the probability density function of X. Characteristic functions are
discussed in statistical textbooks including Billingsley (1986) and Bickel and
Doksum (2001). For a normal distribution:

ɡ uð Þ= eiμu− σ2u2 ̸2

If Z, with mean μz and variance σ2z , represents the sum of two random variables
X and Y, then the respective three characteristic functions satisfy:

ɡzðuÞ=ɡxðuÞ ⋅ ɡyðuÞ

y = 0.755x - 3.8123
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Fig. 26.1 Model of de Wijs
applied to worldwide copper
deposit size-frequency
distribution. Overall mean set
equal to ζ = 4.277 Mt copper;
dispersion index d = 0.7276;
number of subdivisions
p = 12. “Observed”
frequencies satisfy
log-binomial model.
Best-fitting straight line
represents lognormal
distribution. Logbinomial
frequencies represented by
first and last point are for
single blocks only (Source
Agterberg, in press)
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If X is normal with zero mean and variance σ2x , and Y is normal as well with
mean μy and variance σ2y , then Z is normal with:

ɡzðuÞ= e iðμx + μyÞ ⋅ u− ðσ2x + σ2yÞ ⋅ u2 ̸2½ �
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Fig. 26.2 Lognormal Q-Q plots for six metals (Cu, Zn, Pb, Ni, Mo and Ag). Coefficients of
straight lines representing truncated lognormal distributions are shown in Table 26.1. Sample sizes
are shown in Table 26.2. In each case, frequencies for the largest and smallest deposits deviate
from the straight-line pattern indicating lower and higher number frequencies than expected on the
basis of the lognormal size frequency distribution models represented by the straight lines
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Consequently, the probability density function of Z is:

f ðzÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x + σ2y

q
⋅

ffiffiffiffiffi
2π

p e− z− ðμx + μyÞf g2
⋅ 2 ⋅ ðσ2x + σ2y Þf g− 1

Interpretation of this result in the context of worldwide metal deposits can be as
follows. Suppose that log Z represents the basic lognormal metal deposit
size-frequency distribution with logarithmic mean μz = μx + μy and logarithmic
variance σ2z = σ2x + σ2y . Then log Z can be regarded as a composite of many regional
lognormal distributions with different means and lesser logarithmic variances, much
like as in the previous version of the model of de Wijs the overall logbinomial
would consist of regional logbinomials with different parameters.

26.3 Theory and Applications of the Pareto-Lognormal
Model

The cumulative frequency distribution for the Pareto-lognormal distribution
F(x) = F(log x) can be written as

Fðlog xÞ≈Φ
log x− μ

σ

� �
+Hðlog x− μÞ ⋅ B1ðlog xÞ ⋅ ðlog x− μÞ− α

+Hðμ− log xÞ ⋅ B2ðlog xÞ ⋅ ðμ− log xÞ− κ

where Φ log x− μ
μ

� �
represents the basic lognormal (logs base 10). H (…) is the

Heaviside function that applies to two filtered Pareto distributions, for positive and
negative values of (log x - µ), respectively; it signifies that values at the other side of
µ are set equal to zero when the equation is applied to either the upper tail or the
lower tail of the Pareto-lognormal distribution.. The bridge functions B1(log x)
and B2(log x) span relatively short intervals between the basic lognormal and
the Pareto distributions for the largest and smallest values, respectively. They
satisfy limx→∞ B1 log xð Þ= limx→ 0 B2 log xð Þ=1 and limx→ 0 B1 log xð Þ= limx→∞
B2 log xð Þ=0.

The Pareto-lognormal probability density function f(log x) corresponding to
F(log x) can be written as

f ðlog xÞ≈φ
log x− μ

σ

� �
+Hðlog x− μÞ ⋅ B′

1 log xð Þ ⋅ ðlog x− μÞ− α− 1

+H μ− log xð Þ ⋅ B′
2 log xð Þ ⋅ ðμ− log xÞ− κ− 1
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It may be useful for prediction of resources to be discovered in the future. The
exponents in ðlog x− μÞ− α− 1 and ðμ− log xÞ− κ− 1 reflect the fact that the Pareto
probability density function remains linear on a plot with logarithmic scales for
both frequency and deposit size, but has a steeper dip.

The lognormal QQ-plot (logarithmic probability paper) provides a useful first
step in fitting the Pareto-lognormal distribution. Figure 26.2 contains results for the
six metals. Original data were taken from Patiño Douce (2016b). Each graph shows
a straight-line pattern with departures from lognormality in the upper and lower
frequency distribution tail. Relatively, there are too many smallest deposits and too
few largest deposits. In the Pareto-lognormal model both the upper and lower tail
distributions have transitions to the central lognormal that are gradual and described
by the two bridge functions. For projections into the future (or for global downward
projections into the Earth’s crust) only the upper tails of the size-frequency dis-
tributions are of economic interest. In the next section, a new, relatively simple
method will be described for fitting the upper tail Pareto distributions. The upper
tail bridge function will be fitted empirically by connecting this Pareto to the central
lognormal distribution. Copper can be used for illustrating details of the methods
used. The straight line y = bx + a in Fig. 26.2a for copper represents the basic
lognormal with coefficients a = −3.314 and b = 0.741 derived from the logarith-
mic mean μ = −a/b = 4.469 and standard deviation σ = 1/b = 1.349 of a trun-
cated lognormal for which 10% (or 254 values) in both upper and lower tail were
excluded from the sample of 2541 original copper deposit size values. The mean μ
of this truncated distribution is only slightly different from 4.403 representing the
logarithmic mean of all values. The basic lognormal standard deviation σ = 1.349
is slightly less than 1.423 representing the standard deviation based on all values
because there are relatively many copper deposit size values in the lower tail. It was
obtained by dividing 0.893 representing the standard deviation of the truncated
copper data set by 0.662, representing a value taken from Johnson and Kotz (1970,
Table 10, p. 84). Other published truncation correction factors were used for metals
with wider upper or lower tails. Coefficients for all six straight lines shown in
Fig. 26.2 are given in Table 26.1. The basic statistics estimated for all six metals
shown in Table 26.2 were taken from Agterberg (2017a, b and in press) except for
the upper tail Pareto coefficients with slightly different values newly derived by the
method to be described in the next section.

Table 26.1 Constants a and
b in equations y = a + bx for
straight lines shown in
Fig. 26.2 representing
truncated lognormals for six
metals

Metal a b

Cu −3.314 0.741
Zn −4.538 0.924
Pb −3.894 0.847
Ni −3.400 0.758
Mo −4.616 1.030
Ag −6.501 0.819
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26.4 Upper Tail Pareto Distribution and Its Connection
to the Basic Lognormal Distribution

The cumulative Pareto distribution function satisfies

FðxÞ=1−
k
x

� �α

where α > 0 and k > 0 are its two parameters. The following maximum likelihood
estimator of the Pareto coefficient α has been used in several publications (Clauset
et al. 2009; Patiño Douce 2016c; Agterberg 2017b) in various ways:

α=
n

∑n
i=1 ln

xi
k

where n represents number of metal deposits selected in an ordered sequence of
values xi (i = 1, 2, …, n), and k is the critical size parameter representing the
truncation point at which the maximum value of the Pareto probability—density
drops to zero. In the original algorithm of Clauset et al. (2009), which was used by
Patiño Douce (2016c), all possible values of k are tested for sizes x1 < x2 < x3 … <

xn. Minimum size (x1) was set at median size and xn at maximum size. Each sample
of n sizes provides a different estimate of k and α. The Kolmogorov-Smirnov test
was used to find the Pareto distribution that provides the best fit.

In Agterberg (2017b)’s application, x1 > x2 > x3 … > xn, was used instead. This
reversal of order was based on the following three premises: (1) worldwide metal
deposit size sample sizes are very large ensuring that cumulative frequencies
become increasingly precise when n is increased, regardless of whether or not the
Pareto distribution model is satisfied; (2) starting with the largest deposits and
increasing sample size by including progressively more deposits improves results if

Table 26.2 Comparison of basic statistics for eight metals including the six metals represented in
Table 26.1 and Figs. 26.2, 26.3 and 26.4. N—number of deposits; Mt—million tons, t metric tons;
LM, LS—logarithmic mean and standard deviation; μ, σ—ditto for truncated lognormal; α, κ—
upper and lower tail Pareto coefficients

Metal N Total metal Mean LM LS μ σ α κ

Cu 2541 2319.11 Mt 0.9127 Mt 4.403 1.423 4.469 1.349 1.206 0.332
Zn 1476 1111.51 Mt 0.7531 Mt 4.821 1.215 4.910 1.082 1.162 0.318
Pb 1102 481.43 Mt 0.4367 Mt 4.479 1.337 4.596 1.180 1.654 0.340
Ni 464 171.05 Mt 0.3686 Mt 4.384 1.261 4.484 1.319 1.352 0.515
Mo 343 59.76 Mt 0.1742 Mt 4.371 1.131 4.480 0.971 1.093 0.358
Ag 1644 1899.43 t 1.1554 t 7.832 1.342 7.936 1.221 1.382 0.361
Au 2106 284.33 t 0.1350 t 6.551 1.168 6.629 0.994 1.164 0.297
U 172 59.76 Mt 0.3474 Mt 2.979 1.177 2.979 1.177 0.000 0.000
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the Pareto distribution model would indeed be satisfied; and (3) for increasingly
large values of n, observed frequencies become increasingly less than expected
Pareto distribution model frequencies because the upper tail Pareto gradually passes
into the lower frequency density basic lognormal via the upper tail bridge function.
Theoretically, if α is known, k could be derived from α by using the preceding
equation for the maximum likelihood estimator. In Agterberg (2017a, b, in press), α
was pre-determined by visual inspection for 7 metals that all show approximately
linear patterns in log rank—log size plots for their largest deposits.

Initially, for small values of n, the resulting patterns for copper and other metals
show large random fluctuations. For larger values of n the plots develop multi-peak
patterns for α that are superimposed on a gradational decrease. In Agterberg
(2017b) a straight line was fitted by least squares for copper and gold avoiding the
large small-sample fluctuations at the largest size values end capture the downward
bend of log rank values toward lower log size values. This procedure produced
estimates of kCu = 6.98 and kAu = 8.98. Both estimates were confirmed by more
detailed analysis of cumulative frequencies for largest deposits yielding kCu ≈ 7.0
and kAu ≈ 9.2.

However, the preceding method does not work very well for some metals with
fewer data than copper and gold. The following relatively simple method gave good
results for six metals as shown in Figs. 26.3 and 26.4. The value of n was set equal
to 20 in each application for a window that was slid along the series of ordered
metal deposit size values from the largest deposit downward. Initial random fluc-
tuations connected to the largest values were avoided and so were windows on the
upper bridge function transition zone toward the basic lognormal size-frequency
distribution. For copper this procedure gives α = −1.2059 for k = 6.996. The
straight line with slope α passing through the point with average log size and
average log rank for the 20 pairs of copper deposit size values used is shown in
Fig. 26.3a. Similar results for the other five metals are shown in Figs. 26.3 and
26.4. According to the Pareto-lognormal model, a decrease of estimated values of α
at the point where the upper tail Pareto ceases to be applicable is indeed expected.
However, it is not clear why there is an equally strong decrease of estimated values
of α in the patterns of Fig. 26.3 from the peak outward toward increasing values of
log (deposit size). Very large random fluctuations are known to exist for the largest
deposits. However, the upper tail downward trends in Fig. 26.3 could mean larger
sizes than expected for the largest deposits although there are no indications of this
in Fig. 26.4. Neither are there obvious deviations from linearity in log rank—log
size plots that include the largest deposits for various metals (Agterberg 2017a, b).
Residuals from the straight lines representing the Pareto distributions show rela-
tively strong autocorrelation. Because of this uncertainty, it remains important to
look for alternative upper tail models like the lognormals proposed by Patiño Douce
(2016c, 2017) and shown for copper and gold in Agterberg (2017b). These alternate
lognormals differ from the basic lognormals primarily in that they have much large
mean deposit size values.

In order to fully represent the upper tail cumulative size-frequency distribution,
the Pareto’s have to be connected to the basic lognormals. Taking copper for
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example again, it can be seen in Fig. 26.2a that observed frequencies deviate from
the best-filling straight line for log Cu deposit size values greater than 6. In total 42
deposits have log Cu deposit size values greater than 7 and their observed cumu-
lative frequency of 42/2524 can be used as an anchor point to connect the upper tail
Pareto to the upper bridge function which represents the transition zone between the
basic lognormal (for values < 6) and the Pareto (for values ≥ 7). Table 26.3 shows
anchor points used for all six metals considered. Figure 26.5 shows best-fitting
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Fig. 26.3 Pareto coefficient (α) for log of metal deposit size as obtained in the text, setting n equal
to 20 for overlapping data sets moving from larger to smaller log (deposit size) values. Maximum
α will be taken as optimum value with data sets, on which it is based, for the six metals shown in
Fig. 26.4
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Fig. 26.4 Sets of twenty log (metal deposit size) values corresponding to maximum value of α in
Fig. 26.3 for the six metals. Corresponding Pareto distribution functions are shown as straight lines
on these log rank—log size plots

Table 26.3 Pareto coefficients α and k corresponding to peaks for six metals in Fig. 26.3. Anchor
point is log metal deposit size on upper tail Pareto distribution with relative frequency (Rel Freq)
and observed y-value—log10 (1—cumulative frequency)

Metal α k Anchor pnt Rel Freq Obs y-value

Cu 1.2059 6.996 7 42 −1.7818
Zn 1.1615 6.782 7 15 −1.9930
Pb 1.6535 6.405 6.5 27 −1.6108
Ni 1.3523 6.049 6 42 −1.0433
Mo 1.0926 5.130 5 106 −0.5286
Ag 1.3820 10.017 10 38 −1.6361
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Fig. 26.5 Upper tails of Pareto-lognormal size-frequency distributions for the six metals
constructed by using the method explained in Table 26.4. Upper tails bridge functions are
smooth curves that satisfy quartic polynomials fitted by least squares to log size values satisfying
basic lognormal on the left and upper tail Pareto on the right side. For copper the result does not
differ significantly from sextic polynomial previously shown in Agterberg (2017b, Fig. 14). For
molybdenum no bridge function was fitted. Points with log (Mo deposit size) ≤ 5 satisfy basic
lognormal shown as straight line on Fig. 26.2e; points with log (Mo deposit size) ≥ 5 belong to the
upper tail Pareto distribution
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frequency distribution curves that are Pareto-type for log deposit size values
exceeding the anchor points. Some anchor points slightly exceed the estimated
values of the truncation parameters k without significantly changing the results.
Quartic polynomials were used to approximate the smooth shapes of each fre-
quency distribution within the upper tail bridge function that connects the Pareto
with the basic lognormal. Table 26.4 shows results of this interpolation procedure
for copper. The curve in Fig. 26.5a resembles the curve previously shown in
Agterberg (2017a) where it was a best-fitting sextic polynomial. Contrary to the
fitting of sextic polynomials to other metals, the method using a quartic explained in
Table 26.4 gave good results for the other metals considered with the exception of
molybdenum that does not seem to need a bridge function to pass from the Pareto
into the basic lognormal. It is the only metal for which the upper tail Pareto and the
central lognormal almost continuously pass into one another. Molybdenum,
therefore, almost exactly satisfies the model proposed by Patiño Douce (2016b,
Appendix 1) in which the probability density function of the lognormal as well as
its first derivative pass continuously into the density function of the Pareto. The
value at log (Mo deposit size) = 5 predicted by the basic lognormal is equal to the
value of the Pareto at this point. Figure 26.5e, however, shows that there is a slight
change of dip of the curve for log (1—cumulative frequency) at this point. All
frequency distribution curves in Fig. 26.5 are close to their observed cumulative
frequencies also shown in these diagrams.

26.5 Prediction of Future Copper Resources

As previously pointed out in Agterberg (2017b; in press), one of the purposes of
developing statistical models of the size-frequency distributions of worldwide metal
deposits is to use these models for prediction purposes either spatially (e.g., from
relatively well-explored regions to unexplored regions, or deeper down from the
Earth’s surface), or in time. For multifractal modeling of the spatial distribution of
mineral deposits, see Cheng (1994) or Cheng and Agterberg (1995). Use of para-
metric models is discussed by many authors including Agterberg (1974), Patiño
Douce (2017) and Agterberg (2017b). The following non-parametric approach was
first presented in the latter paper.

Suppose that X is a continuous random variable denoting mineral deposit size
and that K is a discrete random variable for number of deposits per unit of area,
volume or time; then the continuous random variable Y representing the sum of the
sizes of the K deposits satisfies:

Y =X1 +X2 + ⋯ +XK
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The mean E(Y) and variance σ2(Y) satisfy:

EðYÞ=EðKÞ ⋅ EðXÞ; σ2 Yð Þ=EðKÞ ⋅ σ2ðXÞ+ σ2ðKÞ ⋅ E2ðXÞ

These equations were previously used in Agterberg (1974, Eq. 7.72) who had
adopted them from Feller (1968, Chap. 12) where they are derived for K and X both
representing integral-valued random variables. The approach also is applicable
when X is a continuous random variable. The variance equation can be found in an
online article on compound distributions (Lin 2014, Eq. (4)) with many additional
references. Specific distribution models can be assumed to hold true for K and
X. However, as shown earlier in this chapter, significant uncertainties remain in
modeling the upper tail of worldwide metal size-frequency distributions that contain
most metal. Fortunately, samples now available for statistical modeling are so large
that the following non-parametric approach can be used.

Patiño Douce (2017) contains tables with statistics based on number of 1950–
2007 copper deposit discoveries originally derived from a plot by Schodde (2010)
for copper deposits with size > 3 × 105 t Cu. Mean and variance of yearly number
of discoveries are 8.621 and 14.304, respectively. Extrapolation of these two
parameters over 85 years, toward the end of this century, would yield an expected
number of 732.8 discoveries with variance of 12.158 × 103. Patiño Douce (2016b)’s
original data base contains 591 copper deposits with sizes > 3 × 105 t Cu resulting
in estimated values of E(X) = 3.784 × 106 t and σ2(X) = 1.135 × 1014. Because of
the large sample size, the 95% confidence limits on the estimated mean value are
3.784 × 106 ± 0.859 × 106 t with the large sample ensuring approximate normality
of the frequency distribution of this mean. Consequently, this estimate is rather

Table 26.4 Curve connecting smoothed y-values for log10 (1—cumulative frequency) in
Fig. 26.5a in comparison with observed y-values for copper. Commencing as lognormal, the
curve passes gradually into the straight line for its upper tail Pareto. Smoothed y-values for the
intermediate bridge function satisfy a quartic polynomial equation fitted by least squares to
lognormal values for x ≤ 5 and x ≥ 7. Smoothed values include quartic polynomial for x = 5 and
x = 7

x Lognormal Pareto Quartic Smoothed Observed

4 −0.196 −0.199 −0.196 −0.198
4.5 −0.309 −0.298 −0.309
5 −0.460 −0.449 −0.449 −0.460
5.5 −0.653 −0.671 −0.671
6 −0.892 −0.974 −0.974 −0.908
6.5 −1.180 −1.364 −1.364
7 −1.518 −1.782 −1.838 −1.838 −1.782
7.5 −1.909 −2.411 −2.388 −2.411
8 −2.354 −3.041 −2.999 −3.041 −2.928
8.5 −2.853 −3.670 −3.650 −3.670
9 −3.408 −4.299 −4.313 −4.299
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precise. Using the preceding equations for mean E(Y) and variance σ2(Y), it follows
that estimated total tonnage copper value amounts to 732.8 × 3.784 × 106 =
2.773 × 109 t. The corresponding variance amounts to 25.726 × 1016, from which
it follows that the 95% confidence limits on the estimated mean value are 2.773 ×
109 ± 0.994 × 109 t. This mean value is approximately normally distributed as
well. Although the method for deriving this result differs significantly from the
computer simulation method used by Patiño Douce (2017), the end result is only
0.654 × 109 t greater and the difference between the two estimates is not statisti-
cally significant. These results confirm Patiño Douce (2017)’s conclusion that there
would be a significant shortage of copper if current rates of discovery will be
maintained. The problem would become even worse if future rates would decrease.

26.6 Concluding Remarks

In this chapter it was argued that publicly available large metal deposit size data
bases (especially Patiño Douce 2016b) allow new kinds of statistical modeling of
regional and worldwide metal resources. The two models most frequently used in
the past are lognormal size-grade and Pareto upper tail modeling. Both approaches
are probably valid for several metals including copper, zinc, lead, nickel, molyb-
denum and silver taken for example because the upper tails of their mostly log-
normal size frequency distributions satisfy the Pareto distribution model. The
worldwide metal size-frequency distributions for these metals are similar indicating
that a central, basic lognormal distribution is flanked by two Pareto distributions
from which it is separated by upper and lower tail bridge functions. The lower tail
Pareto distribution shows an excess of small deposits which are not economically
important. Number frequencies of the upper Pareto are mostly less than those of the
basic lognormal. A new method for fitting the upper tail Pareto was introduced and
produces good results for the six metals taken for example. Parameters of regional
metal size-frequency distributions as well as those of mineral deposit type distri-
butions are less than those of the worldwide distributions. Uranium differs from
other metals in that its worldwide size-frequency distribution is approximately
lognormal. This may indicate that the lognormal model remains a standard model of
size-frequency distributions of metals predominantly mined from hydrothermal and
porphyry-type orebodies. A new version of the model of de Wijs may provide a
framework for explaining the differences between regional and worldwide distri-
butions. Further research on this topic remains to be carried out. The Pareto tails
may reflect historical mining methods with bulk mining becoming prevalent in the
20th century. A new method of estimating the Pareto coefficients of the econom-
ically important upper tails of the size-frequency distributions was presented, and a
non-parametric method for long-term projection of future metal resource on the
basis of past discovery trend was illustrated for copper.
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