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Abstract In the oil industry, exploratory targets tend to be increasingly complex
and located deeper and deeper offshore. The usual absence of well data and the
increase in the quality of the geophysical data, verified in the last decades, make
these data unavoidable for the practice of oil reservoir modeling and characteri-
zation. In fact the integration of geophysical data in the characterization of the
subsurface petrophysical variables has been a priority target for geoscientists.
Geostatistics has been a key discipline to provide a theoretical framework and
corresponding practical tools to incorporate as much as possible different types of
data for reservoir modeling and characterization, in particular the integration of
well-log and seismic reflection data. Geostatistical seismic inversion techniques
have been shown to be quite important and efficient tools to integrate simultane-
ously seismic reflection and well-log data for predicting and characterizing the
subsurface lithofacies, and its petro-elastic properties, in hydrocarbon reservoirs.
The first part of this chapter presents the state of the art and the most recent
advances of geostatistical seismic inversion methods, to evaluate the reservoir
properties through the acoustic, elastic and AVA seismic inversion methods with
real case applications examples. In the second part we present a methodology based
on seismic inversion to assess uncertainty and risk at early stages of exploration,
characterized by the absence of well data for the entire region of interest. The
concept of analog data is used to generate scenarios about the morphology of the
geological units, distribution of acoustic properties and their spatial continuity.
A real case study illustrates the this approach.
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25.1 Integration of Geophysical Data for Reservoir
Modeling and Characterization

One of the main challenges regarding hydrocarbon reservoir characterization has
been the integration of different types of data—geological conceptual models,
well-log data, geophysical data, production data—for modelling the subsurface
properties of interest while assessing the corresponding uncertainty and risk.
Although well data provides certain ‘hard’ measures of the subsurface properties,
given the usual lack of such data and, consequently, its limited spatial represen-
tativeness, the corresponding models normally provide little understanding of the
complex and heterogeneous subsurface geology of the entire reservoir area. Since
the eighties, Geostatistics has been a key discipline to provide a theoretical
framework and corresponding practical tools to incorporate as much as possible
different types of data for reservoir modeling and characterization, in particular the
seismic reflection data (Dubrule 2003). One of the most important contributions of
geostatistical methods for seismic data integration in reservoir modelling, has been
the development of stochastic seismic inversion techniques.

Seismic reflection data, since it has high spatial representativeness, by covering
the full spatial extent of the reservoir volume, is a different and privileged window
for targeting the subsurface petro-elastic properties of interest. However, seismic
reflection data represents an indirect measurement of these properties and has a poor
spatial resolution along the vertical direction (temporal domain). This is translated
in a much greater support compared with the well-log data and much greater
uncertainty derived both from measurement errors and the nonlinear relationship
between the recorded seismic signal and the subsurface properties one wishes to
describe (Tarantola 2005). This has been the most serious limitation of direct use of
seismic data as secondary information either in methods using it as local trends or in
joint simulation methods (Dubrule 2003), or even accounting for the different
support of both data (Liu and Journel 2009).

To overcome such limitations, an alternative approach has been widely used.
Seismic inversion methods are based on the following rational: subsurface petro-
physical properties (such as facies, porosity and saturation), can have a relationship
to other seismic attributes, such as acoustic and/or elastic impedances; hence, one
wishes to know the model parameters r (reflectivity coefficients derived from the
subsurface elastic properties), which convolved with a known wavelet w give rise
to the known solution A (i.e. the recorded seismic amplitudes):

A =rtw. (25.1)

The theoretical solutions for seismic inversion are stated in Tarantola (2005).
The seismic inversion problem began to be tackled with deterministic method-
ologies (Lindseth 1979; Lancaster and Whitcombe 2000; Russell 1988; Coléou
et al. 2005). Later, this framework was extended into a statistical domain. Among
the many statistical inverse approaches, two different stochastic approaches for
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solving the seismic inversion are worth mentioning. The first group of stochastic
methodologies approach the seismic inversion as an optimization problem in an
iterative and convergent process. This includes what are traditionally designated by
iterative geostatistical seismic inversion methods, from the seminal work by Bor-
tolli et al. (1993), until the most recent geostatistical inversion methods (Soares
et al. 2007; Nunes et al. 2012; Azevedo et al. 2015; Azevedo and Soares 2017). The
second group of stochastic seismic inversion algorithms is known by linearized
Bayesian inverse methodologies. These are based on a particular solution of the
inverse problem using the Bayesian framework and assuming the model parameters
and observations as multi-Gaussian distributed as well as the data error, which
allows the forward model to be linearized (Buland and Omre 2003). Several authors
have recently contributed towards overcoming some of the limitations of this
method, particularly the multi-Gaussian assumption, by using Gaussian Mixture
Models (Grana and Della Rossa 2010).

This chapter summarizes some iterative geostatistical modeling techniques
dealing with the integration of seismic reflection and well-log data, through seismic
inversion procedures, for characterizing hydrocarbon reservoirs with high spatial
resolution models of main properties of interest, such as lithologies, facies and fluid
saturations.

Uncertainty and risk assessment at different stages of exploration are also
important targets of the proposed methodologies approached in this chapter. Hence,
this chapter finishes with the introduction of recent advances of geostatistical
seismic inversion methods for the uncertainty and risk assessment at early stages of
exploration.

25.2 Iterative Geostatistical Seismic Inversion
Methodologies

The aim of seismic inversion is the inference of the subsurface elastic or acoustic
properties from recorded seismic reflection data. The retrieved inverse models can
be acoustic and/or elastic impedance for post-stack seismic data, or density, P-wave
and S-wave models if the inversion algorithm is used to invert pre-stack seismic
reflection data (Francis 2006).

Seismic inversion might be described as an ill-posed and nonlinear problem with
multiple solutions that can be summarized by (Tarantola 2005):

dops =F(m) +e. (25.2)

The goal is to estimate a subsurface Earth model, m, that after being forward
modelled, F, produces synthetic seismic data showing a good correlation with the
recorded seismic data, the observed data, dops, Which are normally contaminated by
measurement errors e. The match between observed and synthetic seismic is
achieved by the maximization (or minimization) of an objective function measuring
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the mismatch between inverted and real seismic. For example, the objective
function can be as simple as the Pearson’s correlation coefficient:

Pxy=—_ (25.3)

where cov is the centered covariance between variables X and Y, which are the
synthetic and real seismic volumes, respectively, and ¢ the individual standard
deviations of each variable. More complex objective functions integrate Pearson’s
correlation coefficient with least-square errors calculated between the synthetic and
the recorded seismic reflection data in terms of amplitudes.

A geostatistical seismic inversion framework consists on an iterative procedure
in which a set of realizations of parameters, m, are generated by using stochastic
sequential simulation methods (Deutsch and Journel 1996) and optimized until the
match of the objective function reaches a given user-defined value, or a certain
number of fixed iterations. Geostatistical inversion techniques are based on the use
of stochastic sequential simulation as the model perturbation technique, ensuring in
this way the reproduction of the main spatial continuity patterns and the joint
distribution functions of the acoustic and/or elastic properties of interest as retrieved
from the existing well-log data in all the models generated during the iterative
procedure, while simultaneously allowing access to the uncertainty attached to the
retrieved inverse models.

Within this framework there are two traditional approaches for integrating
seismic reflection and well-log data for hydrocarbon reservoir modeling.

25.3 Trace-by-Trace Geostatistical Seismic Inversion

Geostatistical seismic inversion was introduced by the seminal papers of Bortoli
et al. (1993) and Haas and Dubrule (1994). These authors proposed a sequential
trace-by-trace approach in which each seismic trace, or location within the inversion
grid, is visited individually following a pre-defined random path within the seismic
volume. At each step along the random path a set of Ns realizations of one acoustic
impedance trace is simulated using sequential Gaussian simulation (Gémez-Her-
nandez and Journel 1993; Deutsch and Journel 1996), taking the well-log data and
previously visited/simulated nodes into account. Then, for each individual simu-
lated impedance trace, the corresponding reflection coefficient is derived and
convolved by a wavelet, resulting in a set of Ns synthetic seismic traces. Each of the
Ns synthetic traces is compared in terms of a mismatch function with the recorded/
real seismic trace. The acoustic impedance realization that produces the best match
between the real and the synthetic seismic traces is retained in the reservoir grid as
conditioning data for the simulation of the next acoustic impedance trace at the new
location following the pre-defined random path. One of the main drawbacks of
trace-by-trace stochastic seismic inversion methodologies concerns those areas of
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the record seismic reflection data with low signal-to-noise ratio. In areas of poor
seismic signal, the sequential trace-by-trace approaches impose inverted models
fitting the observed noisy seismic reflection data. As the simulated trace is assumed
to be ‘real’ data for subsequent steps, this can lead to the spread of unreliable
impedance values that are related with noisy seismic samples. Noisy areas should
be interpreted as high uncertainty areas with very low influence throughout the
inversion process. More recent versions of trace-by-trace models try to overcome
this drawback by avoiding noisy areas in the early stages of the inversion procedure
(Grijalba-Cuenca and Torres-Verdin 2000).

25.4 Global Geostatistical Seismic Inversion
Methodologies

To overcome these limitations, Soares et al. (2007) introduced the global stochastic
inversion methodology that, contrary to trace-by-trace approaches, uses a global
approach during the stochastic sequential simulation stage of the inversion proce-
dure: at each iteration a set of Ns impedance models is generated at once for the
entire inversion grid. The general outline of this family of geostatistical inversion
algorithms is depicted in Fig. 25.1. Briefly, this group of iterative inverse
approaches uses the principle of cross-over genetic algorithms as the global opti-
mization technique driving the convergence of the procedure from iteration to
iteration, while the model perturbation is performed using direct sequential simu-
lation and co-simulation (Soares 2001). The global optimizer uses the trace-by-trace
correlation coefficients between the different simulated synthetic seismic data and
the real model as the affinity criterion to create the next generation of models for the
next iteration, by using stochastic sequential co-simulation. The iterative procedure
continues until a stopping criterion is reached: frequently the global correlation
coefficient between real and inverted seismic reflection data.

In global iterative geostatistical seismic inversion procedures, areas of low
signal-to-noise ratio remain poorly matched throughout the entire iterative inversion

Stochastic simulation Synthetic seismic Real seismic
of elastic properties

Forward moEeI Compare

| - - | L

Global izer (genetic-aigorihtm princi

Fig. 25.1 General outline for global iterative geostatistical seismic inversion
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procedure: an ensemble of best-fit inverted models will always present high vari-
ability, or high uncertainty, for those noisy areas where the signal-to-noise ratio is
low.

This framework was generalized for the inversion of seismic reflection data for
acoustic and elastic impedance, direct inversion of petrophysical properties and
seismic AVA inversion. These methods are introduced with more detail in the
following sections.

25.4.1 Global Geostatistical Acoustic Inversion

The global stochastic inversion (GSI; Soares et al. 2007; Caetano 2009) is one of
the existing methods to invert fullstack seismic reflection data for acoustic impe-
dance (Ip) models. The general outline of this iterative geostatistical methodology
can be described in the following sequence of steps, summarized in Fig. 25.2:

Stochastic Simulation of Al
from well-log data(DSS)

Forward model
Synthetic seismic Real seismic
compare
seismic

\Lse,‘ect best local correlation

Local correlation Best Al mode
‘ I. -

Use local correlation and Best Al for co-simulation.

lterate until a given global correlation coefficient is reached.

Fig. 25.2 Outline of geostatistical acoustic inversion (adapted from Azevedo and Soares 2017)
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(1) Simulate with direct sequential simulation (Soares 2001) for the entire seismic
grid a set of Ns acoustic impedance models, conditioned to the available
acoustic impedance well-log data and assuming a spatial continuity pattern as
revealed by a variogram model;

(2) From the impedance models simulated in the previous step, derive a set Ns
synthetic seismic volumes by computing the corresponding normal incidence
reflection coefficients (RC) (Eq. 25.4):

Ipy — 1
c=P"P (25.4)
Ip> + Ip;

where the indexes 1 and 2 correspond to the layer above and below a given
reflection interface.

(3) The resulting RC are convolved by an estimated wavelet for that particular
seismic dataset in order to compute synthetic seismic volumes (Eq. 25.1).

(4) Each seismic trace from the Ns synthetic seismic volumes is compared in terms
of correlation coefficient against the real seismic trace from the same location.
From the ensemble of simulated Ip models, the acoustic impedance traces that
produce synthetic seismic with the highest correlation coefficient are stored in
an auxiliary volume along with the value of the correlation coefficient.

(5) These auxiliary volumes, the one with the best acoustic impedance traces and
the other with the corresponding local correlation coefficients, are used as
secondary variables and local regionalized models for the generation of the new
set of acoustic impedance models for the next iteration. The new set of N
acoustic impedance models is built using direct sequential co-simulation
(Soares 2001) conditioned to the available acoustic impedance well-log data,
and using the best Ip volumes as secondary variable and local correlation
coefficients to condition the co-simulation.

(6) The iterative procedure stops when the global correlation coefficient between
the full synthetic and real stacked seismic volumes is above a certain threshold.

Synthetic and real case applications of geostatistical acoustic inversion can be
found in several studies; for example, Soares et al. (2007) and Caetano (2009).
A summary of a real application example, using a fullstack seismic volume
acquired offshore Brazil, illustrates herein the method (a detailed description of the
dataset is available in Azevedo et al. 2015). The best-fit Ip model (Fig. 25.3) was
retrieved after 6 iterations where on each iteration an ensemble of 32 realizations of
Ip were generated. The use of stochastic seismic inversion allows retrieving high
resolution (with high variability) acoustic impedance models. The synthetic full-
stack seismic data computed from this model (Fig. 25.4) do match the observed
seismic reflection data in both the spatial extent of the main seismic reflection and
its amplitude content. This is of great importance for this case study since the
reservoir areas are related with those spatially constrained amplitude anomalies
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Fig. 25.3 Vertical well-section extracted from the best-fit P-impedance volume retrieved from the
global stochastic inversion after six iteration with thirty-two realizations generated at each iteration

L e 2690 2672 2650 12 = 252 2628 2438
a) = 1728 1756 1866 1528 1585 13e8 @ 2106 2186

m3 '8 e grey white

TWT (ms)

b L e poi el mre 250 212 F-i ] Faid 2625 498
o 1728 179 1266 1928 1946 1988 048 2108 88

Fig. 25.4 Comparison between vertical well sections extracted from: a synthetic seismic
reflection data computed from the best-fit inverse Ip model shown in Fig. 25.3 and b real seismic
volume. The log curve plotted on top of the seismic data represents Ip (same color scale as shown
in Fig. 25.3)

observed in the real seismic volume. The global correlation between the inverted
and the real seismic volumes is 87%.

25.4.2 Global Geostatistical Elastic Inversion

The acoustic inversion algorithm was extended for the inversion of partial angle
stacks directly, and simultaneously, for acoustic and elastic impedance (Is) models
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(Nunes et al. 2012; Azevedo et al. 2013b). The main purpose of this development
was the integration of more information, related with the elastic domain (Is), to
enrich the final elastic reservoir models allowing better lithofacies prediction. Two
main differences compared with acoustic inversion summarize this elastic inversion
method (Azevedo and Soares 2017):

(1) Acoustic and elastic impedances, Ip and Is, are jointly simulated (step 1) of
previous outline and co-simulated (step 5) by using the direct sequential
simulation with joint distributions of probability (Horta and Soares 2010).
This simulation method succeeds in reproducing the bivariate distribution
function (Ip, Is) as it was estimated from the experimental log data.

(i) The reflectivity coefficients (step 9) are obtained with the Ns pairs of Ip and Is,
simulated at each iteration, using the approximation outlined in Fatti et al.
(1994) (Eq. 25.5) for the calculation of the corresponding angle-dependent
reflection coefficient volumes:

2
R,y (0)~(1 + tan’0) 2—2 _4(5) sin20AL

A 2,
A[p =ip2 — ]pl»
I I
I,= % (25.5)
Aly=1Ip — I,
152 +Isl
= ———.
2

The index 1 refers to the vertical location in which the calculation of the
reflection coefficient is carried out, the layer above the reflection interface; and 2
refers to the sample immediately below, the layer below the reflection interface.

Detailed application examples of this method can be found in the following
studies: Nunes et al. (2012), Azevedo et al. (2013b), Azevedo and Soares (2017).
For illustrative purpose, here we show the application of this methodology to the
same case study shown in the previous section. The best-fit Ip and Is models that
jointly produce the highest value of correlation coefficient between synthetic and
real seismic reflection data are shown in Fig. 25.5. Comparing the Ip models
derived from the acoustic and elastic inversion it is clear that the introduction of
more information using different angles of incidence brings more detail for the
retrieved inverse model. The comparison between real and synthetic seismic
reflection data derived from the best-fit elastic models is shown in Fig. 25.6.

Due to the use of direct sequential simulation with joint probability distributions
(Horta and Soares 2010) the relationship between Ip and Is as observed in the
well-logs is reproduced for all pairs of models generated during the inversion
procedure (Fig. 25.7). Besides the richness of the inverted models, this is a key step
of the proposed inversion technique since it allows, for example, more reliable
facies classification, and consequently a better reservoir description, over the
inverted elastic models.
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Fig. 25.5 Comparison between vertical well sections extracted from: a best-fit Ip model and
b best-fit Is model

Fig. 25.6 Comparison between vertical well sections extracted from: (left) synthetic seismic
reflection data computed from the best-fit inverse Ip and Is models and (right) real seismic volume.
From top to bottom: nearstack, near-mid stack, far-mid stack and farstack. The log curve plotted on
top of the seismic data represents Is (same color scale as shown in Fig. 25.5)
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Fig. 25.7 Comparison between the joint distribution of Ip and Is as retrieved from the best-fit
inverse pair of Ip and Is and from the well-logs

25.4.3 Geostatistical Seismic AVA Inversion
(Pre-stack Inversion)

During the last decades, the quality of seismic reflection data has increased
tremendously, together with the decreasing of its acquisition costs. Pre-stack seis-
mic data with high signal-to-noise ratio and high fold number is nowadays a reality,
increasing this data’s use in seismic reservoir characterization even within early
exploratory stages. The better subsurface characterization using pre-stack seismic
data is achieved by interpreting the changes of amplitude versus the offset (AVO),
or with the angle of incidence (AVA; Castagna and Backus 1993; Avseth et al.
2005). The use of pre-stack seismic reflection data allows the inference of density,
P-wave and S-wave velocity models, instead of the traditional impedance models.
The availability of the three properties individually is a clear enhancement in what
reservoir modelling and characterization are concern with.

Stochastic seismic inversion methodologies for pre-stack seismic data, commonly
called seismic AVA inversion, are being proposed based on different assumptions
and frameworks (Mallick 1995; Ma 2002; Buland and Omre 2003; Contreras et al.
2005). Here we refer to geostatistical seismic AVA inversion (Azevedo et al. 2013a),
which relies on the same general framework of global iterative geostatistical seismic
inversion methodologies but with the following main characteristics of pre-stack
inversion (see outline of Fig. 25.8; Azevedo and Soares 2017):
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Fig. 25.8 Schematic representation of the global iterative geostatistical seismic AVO inversion
methodology (adapted from Azevedo and Soares 2017)

(i) the perturbation of the model parameters for density, P-wave and S-wave
velocities is performed sequentially using stochastic sequential co-simulation
with joint distributions (Horta and Soares 2010);

(i) forward modeling is computed using an angle-dependent approximation
when computing the reflection coefficients that can be modified according to
the complexity of the subsurface geology;

(iii) the mismatch evaluation between the observed and the inverted seismic data
and selection of the conditioning data for the generation of the next set of
elastic models during the next iteration by multi-variable optimization.

In this approach, each elastic property is generated sequentially. Density is first
simulated because it is the property associated with a higher degree of uncertainty
since its contribution to the recorded seismic reflection data is small, i.e. the
component of the seismic reflection data related with density is low and mostly
related to the signal received at the far angles (Avseth et al. 2005). Also, density is
the most spatially homogeneous variable and consequently most convenient to be
used as secondary variable for the co-simulation with joint probability distributions
of Vp. The resulting Vp models are then used as auxiliary variable for the
co-simulation with joint probability distributions of Vs. At the end of the iterative
inversion procedure, the reproduction of the joint distribution densities, Vp and Vs,
allows a distinction to be made between any litho-fluid facies previously identified
from the original well-log data within the inverted set of elastic models. As well as
the spatial interpretation of these litho-fluid facies, the stochastic approach allows
the assessment of the spatial uncertainty related with each facies of interest.
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After the sequential simulation of Ns elastic models, density, Vp and Vs, an
ensemble of synthetic pre-stack seismic volumes are calculated. The
angle-dependent RC (R,,(6)) may be calculated, for example, following Shuey’s
(1985) three-term approximation:

R, (0)~R(0) + Gsin*0 + F (tan*60 — sin*0), (25.6)

with the normal incidence, R(0), reflection as defined by:
1 AV A
RO)== (=2 + 22,
2\Vp »p

and the variation of the reflectivity versus the angle, the AVO gradient, G:

AVp (1  2AVs*\ 4AVs*AV.
G=R(0)— p( Vs)_ s? AVs

Vp \2 * Vs? Vp2 Vs’
and F, the reflectivity at the far angles (reflection angles higher than 30°), defined
as:
1A
F=18%
2 Vp

Each elastic property is defined on each side of the interface where the reflection
is happening as follows:

AV, =V, =V,
Vo 4+ Vi
V = P P ,
P 2
AVi=Vp —Vy,
V52+Vsl
Vi=———,
) 2
AV, =V, =V,
V,= 7‘//)2 ; Vol .

Indexes 1 and 2 have the same meaning as in Eq. 25.4.

Each angle gather is composed by n seismic traces, equal to the number of
reflection angles considered. The Ns angle-dependent reflection coefficient traces
are convolved by estimated angle-dependent wavelets for each particular incident
angle 0 (Fig. 25.9) to obtain Ns synthetic angle gathers. The best elastic models,
created at the end of each iteration, are composed by the portions of the elastic
traces from the ensemble of density, P-wave and S-wave velocity models simulated
at the current iteration, that jointly produce synthetic seismic reflection data with the
highest correlation coefficient compared with the real seismic volume. Hence, the
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Fig. 25.9 Example of an angle-dependent wavelet, for 23 angles, used for the convolution of the
angle-dependent reflection coefficients (Ry,(6)) to generate pre-stack seismic reflection data

best models are selected by using a multivariate (traces for each angle) objective
function (Azevedo and Soares 2017 illustrate an example of multivariate objective
function).

As an application example, Fig. 25.10 shows vertical well sections extracted
from the triplet of elastic models that produced synthetic pre-stack seismic reflec-
tion data with the maximum correlation coefficient during the iterative procedure.
The inverted density, Vp and Vs models show high variability and agree with the
expected spatial extent of the anomalies of interest as inferred from previous studies
(Azevedo et al. 2015).

By comparing the inverse elastic inversion, shown in the previous sections for
the different geostatistical seismic inversion techniques (Figs. 25.3, 25.5 and 25.10)
it is clear that introducing more information within the inversion procedure, i.e.
moving from the fullstack into the pre-stack domain, allows retrieving more
detailed and variable inverse models. Usually, such models allow for a better
understanding of the reservoir and identify and assess the main uncertainties related
with its subsurface properties.

25.4.4 Recent Developments of Iterative Geostatistical
Seismic Inversion

The global iterative geostatistical inversion techniques presented in the previous
sections have been extended to allow inferring the subsurface petrophysical
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Fig. 25.10 Vertical well section extracted from the best-fit models of: (from top to bottom)
density, Vp and Vs

properties of interest, directly from the existing seismic reflection data: direct
geostatistical seismic inversion to porosity (Azevedo and Soares 2017); and inte-
gration of rock physics into geostatistical seismic AVA inversion for simultaneous
characterization of facies (Azevedo et al. 2015). In addition, the potentiality of these
methodologies is enormous in what concerns the very different data integration like
for example the electromagnetic data (CSEM). Application example of the joint
inversion of seismic and electromagnetic data is illustrated in the study of Azevedo
and Soares (2014).

The integration of dynamic production data with seismic data is another
important and very promising field of application of these methodologies. In fact
the integration of dynamic production data in reservoir modelling (commonly
designated as history matching) is an even more complex inverse problem (e.g.
Oliver and Chen 2011; Oliver et al. 2008; Mata-Lima 2008; Demyanov et al. 2011;
Caeiro et al. 2015). If this is approached by a geostatistical iterative outline, the
integration of both inverse methods can lead to a very rich model able to
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characterize geological complex structures and, simultaneously, reproduce the
geological conceptual model, the seismic data and the dynamic data at the pro-
duction wells (Marques et al. 2015; Azevedo and Soares 2017).

25.5 Uncertainty and Risk Assessment at Early Stages
of Exploration

This section introduces a recent development of using seismic inversion for
uncertainty and risk assessment at early stages of reservoir exploration character-
ized by the lack of well data. The idea of the proposed methodology is to account
with the concept of geological analog data to define possible geological models of a
given target, such as the geometry of different geological units, and also the a priori
probability distributions for the elastic property of interest. An a priori uncertainty
space is first built from plausible geological scenarios, generated from different
sources of knowledge about the area of interest. For each scenario the corre-
sponding elastic properties are computed and existing seismic reflection data is
integrated, through a geostatistical seismic inversion, giving rise to an uncertainty
space of petro-elastic properties. The first steps towards this direction correspond to
the case study presented below.

25.5.1 Characterization of Different Scenarios
with Analogue Data

Due to the lack of data, several authors use analog data to constrain and integrate
regional geological knowledge into reservoir models (e.g. Martinius et al. 2014;
Grammer et al. 2004). The use of analog fields, and/or sedimentary basins, can help
understand and predict the behavior of a reservoir since they are natural systems
that may have similarity with the unknown study area. For example, one of the most
valuable information that analogs can give to reservoir modelling, normally
obtained from outcrop studies (Howell et al. 2014), is related to the geometry and
the relation between the different geological units and their elastic properties.

This section proposes the extension of a traditional geostatistical seismic
inversion methodology to integrate data from analogs (Pereira et al. 2017). In this
application example the analog information is provided by well-logs located very
far from the exploration area but somehow geologically related with the area of
study. This iterative geostatistical seismic inversion methodology integrates a priori
knowledge from the regional geology and the information from analogs, such as
existing well-logs far from the region of interest (illustrated in Fig. 25.11).

One of the mandatories steps of this procedure, consists in dividing the area of
interest in regional geological units based on conventional seismic interpretation
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Fig. 25.11 Schematic representation of the workflow to integrate geological analogue data into
geostatistical seismic inversion, for each scenario

and the current knowledge of the prospect under study. The interpretation of the
available seismic reflection data should be such that the interpreted seismic units are
consistent with the stratigraphy of the region. The geological regionalization model
of the area of study should be based not only on available seismic reflection data but
include information from outcrop analogs or based on the geological knowledge of
the sedimentary basin.

After the definition of the geological regionalization model, one needs to
establish different scenarios, for each geological unit, about its elastic responses.
These can be inferred from for example analogue data. This critical step should be
done by integrating expertizes from different fields. The correlation between the
elastic and rock properties should result in probability distribution functions of the
elastic property of interest per region. The resulting distributions should be repre-
sentative of the elastic properties of the geological region, and also of the rela-
tionship between the different geological regions. Meaning that if there is a
progressive transition between geological regions (i.e. geological transition in terms
of facies), this relationship should be expressed in the distributions of each region.

This approach is illustrated here with a real case study located in an offshore
unexplored basin. The available data of this basin comprises a 3D seismic reflection
and three appraisal wells drilled outside the main region of interest. The existing
appraisal wells show evidences that suggest hydrocarbon generation, migration and
possibly accumulation. Within this unexplored basin a promising prospect was
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Fig. 25.12 Real Seismic data for the area of interest showing the seismic signature of the prospect
of interest. Lighter values indicate positive polarity and darker values indicate negative polarity

identified associated with a turbidite system, corresponding to a classic clastic
sedimentary unit. This can be recognized and interpreted from the available seismic
reflection data (Fig. 25.12). A detailed description about the geology of this basin
can be found in Pereira et al. (2017).

The interpretation of the existing seismic reflection data resulted in three main
geological units. For each region, probability distribution functions of Ip were
assumed, taking into account the geological knowledge of the region of interest and
from the Ip-logs available at the three neighbor wells. A representative wavelet of
the time interval of interest was extracted exclusively from the available seismic
reflection data using conventional wavelet extraction techniques based on statistical
procedures (i.e. Weiner-Levinson filters). One of the main difficult steps of this
methodology is the validation of the wavelet scale. A possible approach to tackle
this issue can be selecting the distribution function of Ip for each region, making
them plausible, by comparing the amplitude values of the synthetic seismic against
the observed one.

25.5.2 Geostatistical Seismic Inversion of Each Scenario

The previous step of this approach results in a set of geological models that rep-
resent the uncertainty about the prospect to be modelled. In order to reduce this
space, the purpose of this step is based in the following rationale:

(i) for each one of the a priori chosen scenarios, in terms of geological region-
alization model, one intends to access the models of acoustic and/or petro-
physical properties, that match the known seismic, by running a conventional
iterative geostatistical seismic inversion;
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(i) The match of each scenario synthetic seismogram with the real seismic can be
used to validate or falsify them and build an uncertainty space of those
properties.

Here, we show an example for one of the scenarios considered. The iterative
geostatistical seismic inversion ran with six iterations, where on each sets of
thirty-two realizations of Ip were generated conditioned simultaneously by the
regionalization model (i.e. the three main seismic units resulting from seismic
interpretation (Fig. 25.12)) and the individual Ip distributions as inferred from the
nearby analog wells and published data.

The seismic inversion converged after six iterations when a global correlation
coefficient between real seismic and synthetic seismic reflection data reached 85%.
For region 1, the overburden region the correlation coefficient was 80%; for region 2,
the potential reservoir region the correlation coefficient was 89% and for region 3,
the underburden region the correlation coefficient was 70%. The synthetic seismic
data was able to reproduce the real observed seismic reflection data in terms of the
location and spatial distribution of the main geological features of interest.

The best-fit inverse Ip model (Fig. 25.13) allows the interpretation of the tur-
bidite feature of interest in both vertical and horizontal slices. It also shows a
reasonable spatial continuity pattern where it is possible to identify both large and
subtle features of potential interest when appraising an unexplored sedimentary
basin. Moreover it is clear that each region of the inversion grid is constrained
individually by a given distribution function of Ip values. In this way we are
constraining the spatial distribution of the simulated values. Since the regional-
ization of the area of interest is done using a geological criterion, the resulting
best-fit inverse models are therefore geological consistent with the geological
knowledge.

Uncertainty and risk of this unexplored area could be accessed by doing identical
exercise but for different scenarios regarding the geometry of different geological
units (regions) and, as well as, the Ip distributions for each one of them.

Pampadanca [kPa s'm||
o

Al

Fig. 25.13 Best-fit inverse model of Ip retrieved after 6 iterations (left). It is possible to identify
the turbidite system of interest corresponding to lower acoustic impedance values (purple). At right
is the distribution function of the Best-fit inverse model of Ip, which reproduces the initial
distribution function of Ip
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25.6 Final Remarks

This chapter presents the state of the art and the most recent advances in geosta-
tistical seismic inversion. The promising results of presented and also referenced
case studies clearly show an evident maturity of these methods as privileged
instruments for the integration of different types of data, particularly seismic
reflection data, for the characterization and modeling of hydrocarbon reservoirs.

Very recent studies, regarding the integration of electromagnetic data and pro-
duction data, show the inversion methodologies as important new paths on geo-
statistical tools for modelling complex geological structures.

The methodology introduced for the characterization of uncertainty and risk in
early stages of exploration integrates two important components: (i) the use of
analog data to generate scenarios of uncertainty regarding the morphology of
geological units and the distribution of acoustic and petrophysical properties;
(i1) the stochastic inversion methodologies evaluate the most probable images
within each scenario and also validate (or falsify) these scenarios regarding the
known seismic reality.
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