Chapter 24 )
Mathematical Minerals: A History Skl
of Petrophysical Petrography

John H. Doveton

Abstract The quantitative estimation of mineralogy from wireline petrophysical
logs began as an analytical stepchild. The calculation of porosity in reservoir
lithologies is affected by mineral variability, and methods were developed to
eliminate these components. Simple inversion methods were applied in pioneer
applications by mainframe computers to a limited suite of digital log data. Over
time, the value of lithological characterization of reservoirs and resource plays has
been recognized. At the same time, the introduction of newer petrophysical mea-
surements, particularly geochemical logs, in conjunction with increasingly
sophisticated algorithms, has increased confidence in mineral profiles from logs as a
routine evaluation tool.

24.1 Pioneering Computer Methods

The volumetric determination of mineral composition from petrophysical logs
originated in efforts to estimate reliable porosity estimates that were confounded by
variations in rock mineralogy. When Archie (1950) introduced the term ‘petro-
physics’ he framed it in terms of “the physics of particular rock types” and then
elaborated on the petrophysics of reservoir rocks. The petrophysical properties that
he considered were restricted entirely to those “related to the pore and fluid dis-
tribution”. The reason was obvious in that almost all boreholes were drilled for the
location of either hydrocarbons or useable water in commercial quantities. The
mineralogy of the pore framework complemented the fluid content of the pore
network, but estimations would be focused on the evaluation of pore volume,
permeability, and fluid content. In monominerallic rocks, pore volumes could be
estimated very simply by interpolating between two endpoints of mineral and fluid.
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In multiminerallic rocks, porosity estimates became more difficult and significant
errors were introduced if the mineral properties were radically different from one
another.

Probably the earliest application of a mathematical solution to the resolution of
porosity in a multiminerallic rock was directed to Permian carbonate reservoirs in
West Texas. Petrophysicists were frustrated by complex mineralogy in their
attempts to obtain reliable porosity estimates from logs as described by Savre
(1963). Porosities had been commonly estimated from neutron logs, but values
were excessively high in zones that contained gypsum, caused by the hydrogen
within the water of crystallization. If the density log was used, then porosity esti-
mation was compromised by the occurrence of either anhydrite or gypsum.
Collectively, the mix of dolomite, anhydrite, gypsum, and porosity meant that pore
volumes could not be resolved by graphical methods such as crossplots and
nomograms that were the standard procedures of that time.

It was recognized that lithologies composed of several minerals would require
several porosity logs to be run in combination in order to estimate volumetric
porosity. In the most simple solution model, the proportions of multiple compo-
nents together with porosity could be estimated from a set of simultaneous equa-
tions for the measured log responses. These equations can be written in matrix
algebra form as:

CV=L

where C is a matrix of the component petrophysical properties, V is a vector of the
component unknown proportions, and L is a vector of the log responses of the
evaluated zone. The equation set describes a linear model that links the log mea-
surements with the component mineral properties. Although porosity represents the
proportion of voids within the rock, the pore space is filled with fluid whose
physical properties make it a “mineral” component. The set of equations is then
solved as an “inverse problem”, in which rock composition is deduced from the
logging measurements. As a closed system of dolomite, anhydrite, gypsum, and
porosity, a deterministic solution is possible from three log inputs, which were
chosen as neutron, density, and acoustic velocity log measurements. The solution
for the unknown vector, V is:

v=C~'L

where C™' is the inverse of the C matrix.

Savre (1963) described how this procedure was coded in a computer program, as
a pioneer application of computers to petrophysics. An example of the graphical
output drafted from one of the earliest computer runs is shown in Fig. 24.1 (Alger
et al. 1963), where profiles of porosity, dolomite, anhydrite, and gypsum are shown
from a Permian San Andres Formation section in West Texas. At the time that this
early application was made, computing power was typically provided by a single
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Fig. 24.1 Graphical output profiles of porosity, dolomite, anhydrite, and gypsum from one of the
earliest computer runs that processed neutron, sonic, and density logs of a Permian San Andres
Formation section in West Texas (from Savre 1963)

mainframe computer in the company or university which had extended computing
times and limited memory, while programming code was a specialized and
time-consuming task. The same application is very easy to implement today as a
spreadsheet procedure, using standard matrix functions and graphical outputs.
The inverse solution is a simple and powerful procedure for compositional
analysis, but its simplicity carries certain assumptions that must be considered
carefully. In particular, the basic model contains no intrinsic constraint to preclude
negative estimates of compositional proportions. A unity equation dictates the
closure of the system so that the proportions collectively sum to unity. However,
individual proportions can have a negative value or one that exceeds unity. Rather
than representing mathematical error, apparently anomalous zones are located
outside the composition space defined by the mineral endmembers as vertices.
Consequently, the generation of negative proportions is a perfectly natural conse-
quence of the model and can contain useful feedback information. If the negative
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values are small, then this is usually called by the stochastic nature of the input
nuclear logs coupled with borehole rugosity perturbations. If large, the possibility
of washouts and gas effects should be examined before evaluating the possibility of
another mineral that is not included in the composition model.

If these explanations are not sufficient, then negative proportions of components
have a role as a basic check on the validity of the model used for compositional
analysis. As such, they are diagnostic errors with an information content to be used
to guide the analysis to a better solution. The distinction between errors that are
acceptable as minor, random measurement noise and systematic deviations is best
made by a comparison between the original logs and the logs predicted by the
model solution. The predictions are given by:

L=CV

If the inverse procedure has generated zone solutions with proportions that are
negative or exceed unity, then the adjustment to rational proportions will result in
log predictions that will deviate from the original logs. The deviations between
measurements and predictions can then be examined to differentiate minor mea-
surement error from systematic perturbations that require intervention and correc-
tion. In the more sophisticated models to be reviewed, tool response errors are
actively incorporated within the solution algorithm, together with constraints that
preclude irrational compositional proportions.

However, if the solution results in compositional proportions that are all positive,
then there will be an exact match between the logs and model predictions. This
equivalence does not imply that the result is geologically correct; it simply means
that the solution is rational and consistent with the choice of components and their
properties. There may be other satisfactory solutions based on alternative mineral
suites.

24.2 Mineralogy of Underdetermined Systems

The basic compositional inversion procedure requires a precise match between the
number of knowns and unknowns. This situation is a “determined system”. The
alternative possibilities are that the number of logs is insufficient to provide a
unique resolution of the proportions of the components (an underdetermined sys-
tem) or that the number of logs exceeds the number of components (an overde-
termined system). In reality, it is likely that most formations present
underdetermined compositional problems, if all the constituents are counted and
matched against the number of logs run in a typical borehole. As counterpoint,
many of the minerals will be found in small quantities and the overall composition
dominated by a few components.
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McCammon (1970) and Harris and McCammon (1971) considered alternative
model procedures to the estimation of mineral compositions from logs in
underdetermined cases. Although their algorithms have been superseded by opti-
mization procedures, their approach is instructive concerning the role of informa-
tion in log compositional analysis and the potentially competing criteria of
mathematical optimality and geological reality. McCammon (1970) considered the
underdetermined system. In terms of classical information theory, which proposes
that the least biased solution is the one that maximizes the entropy function:

E= Y pilogp;

where pi is the proportion of the ith component. This equation for entropy is closely
approximated by that for proportional variance:

P= (nﬁl) Zvi(l=v)
=(2)0-%9)

n—1

The maximum of the variance function, P, is close to the condition of maximum
entropy, and the resulting optimal solution is easier to compute using the matrix
algebra equation:

v=C'(cc)™'L

where V is the vector of unknown proportions, C is the matrix of component log
properties, ¢ signifies a matrix transpose, and L is the vector of zone log responses
(Doveton and Cable 1979).

The compositional solution from the proportional variance algorithm is optimal
from a classical statistical viewpoint: the average squared errors between estimates
and real compositions should be the minimum possible.

This is a conservative philosophy that aims to be least wrong or risk-averse with
a minimum error as penalty. However, mineral proportions are frequently dis-
tributed in a highly unequal manner. Therefore the real rock composition will often
be one of several extreme possibilities, rather than the less likely seemingly
homogeneous composition that can result from a minimum variance solution. The
correct interpretation of a bland compositional solution is that it represents the
average of a range of possibilities. As such, it is a good estimate of the average, but
may be a very poor prediction of the particular: the composition of the zone in
question. Such a result is a useful diagnostic that suggests that several extreme
alternatives should be reviewed and that extra information is required. The infor-
mation can take a variety of forms, such as explicit geological knowledge of the
range of actual compositions, or the use of additional constraints that preclude
impossible solutions.
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24.3 Mineralogy of Overdetermined Systems

Many rocks are dominated by a relatively small number of components, so that the
number of logging tool measurements may exceed the number of significant
lithological components. The situation becomes overdetermined when the number
of log response equations is greater than the number of components. The appro-
priate solution is then one that most accurately reproduces the original logs when
logs are calculated as predictions from the compositional solutions. Using con-
ventional statistical theory, this solution is the one that minimizes the sums of
squares of the deviations between the original logs and their predictions. The
least-squares solution is given readily by the matrix algebra equation:

v=(Cc'c)"'C'L

where the terms are the same as those in both the determined and underdetermined
matrix algorithms written earlier. The matrix formulation requires some additional
weighting function to allow for the fact that the logging measurements are recorded
in radically different units. Without any weighting, the error minimization is
predicated on equal units and results in a solution which preferentially honors logs
with the highest data ranges. The modified least-squares algorithm is then:

V=(C'WC)™'C'WL

where W is a diagonal matrix that contains the elements of a weight vector (Harvey
et al. 1990). The weights may be assigned based on physical first principles or by a
standardization scheme, such as transformation from the original measurement to a
scale anchored to the mean and counted in standard deviation units.

For any given zone, the sum of squares error is given by:

where L is the vector of log responses associated with the least-squares solution.
The error term can be plotted as a monitor log to highlight zones where there are
striking inconsistencies between the model and the log responses. The overall
performance of an algorithm may be judged from the standard error, computed from
the summed zone errors as:

e

=\ =m=1)

where n is the number of observations and m is the number of logs.



24 Mathematical Minerals: A History of Petrophysical Petrography 473

24.4 Optimization Methods

Current compositional analysis procedures has moved beyond simple inversion
algorithms described, so that constraints and tool error functions have been
incorporated as part of the solution process. The methodology was first developed
by Mayer and Sibbit (1980) who applied modified steepest-descent strategies to
hunt for an optimal solution that minimized the “incoherence” between the logs and
their predicted values. For any given log, the incoherence function is given by:

. a-a

AT (of\ + rf‘)

where I, is the incoherence for log A, a is the log response for the zone and 4 is its
prediction, 63 and 73 are the uncertainties associated with the log measurement and
the response equation, respectively.

The uncertainty term for each log measurement is compounded from the sources
of sensor error, data acquisition, and the dispersions associated with environmental
corrections. Response equation dispersion represents the uncertainties introduced
by linear approximations, erroneous choices of component log responses, and
hidden factors such as the influence of textural parameters. It seems reasonable to
suppose that these two types of uncertainty are independent, so that they can be
summed as one total error term for each tool:

2_ 2 2
Uy =0, +7Ty

The total log incoherence for any particular depth zone is the sum of the separate
log incoherences:

L=I4+1Ig+1c+ -

The form of the equations shows that the solution will tend to be most strongly
influenced by the logs to which the most confidence can be attributed. Logs with
large errors will have greater incoherences and will contribute more to the total
incoherence term.

Constraints are also included and take the general form of:

gi(vi) 20

where gi is some function that constrains the value of the unknown proportion of
the ith component. Rigid, mathematical constraints are those that preclude the
occurrence of proportions that are negative or those that exceed unity. Geological
and local constraints incorporate relations that conform to general geological
principles or prior knowledge of local geology. These geological constraints are
more generalized, so that appropriate uncertainties are assigned to them. The
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constraint dispersions generate additional incoherence terms to be considered.
A combined incoherence function is then the sum of the log and constraint
incoherences:

-y (“i—&i)z_l_ Zg,-(v‘)z

=
6,»2 +‘L'i2 Tf

Notice that if the system is fully determined, then the total incoherence will be
zero, provided that no constraints are violated. This special situation is the limiting
case of applications which are otherwise presumed to be overdetermined. In a
routine application of the optimization algorithm, the number of logs would be
expected to exceed the number of components. In part, this is feasible because the
bulk of rock compositions tend to be dominated by relatively few components. In
addition, the range of wireline measurements used today typically extends beyond
the traditional porosity logs to resistivity, spectral gamma ray and geochemical logs.

The optimization method of Mayer and Sibbit (1980) is an iterative search
procedure. The system model of input logs and output components are first defined.
The incoherence values associated with each log type are entered, together with the
constraints to be met. For each zone, an initial composition is estimated by an
approximate method and used as the starting point for a sequence of intermediate
solutions. At each step, the incoherence is calculated between the input log
responses and those predicted from the solution. A gradient is also computed as the
means to generate the next solution, using a steepest descent technique. The process
terminates when it is determined that convergence has been satisfied, at which time
there is no appreciable difference between successive solutions. The final solution
will be approximate, but the total incoherence between the logs and the composi-
tional estimate will be the minimum possible. The combined display of real and
theoretical logs is invaluable as a quality control mechanism to alert the user to
problem zones which may be optimal, but are flatly wrong. The generality of the
approach allows alternative and remedial attempts to be made without major
difficulty.

In further refinements, Gysen et al. (1987) described an extension of the method
to the simultaneous optimization of component proportions and response parame-
ters. Moss and Harrison (1985) also reported a technique to solve for the uncer-
tainty multipliers which contain the total error associated with each tool. Although
the errors cannot be solved for every depth zone, they can at least be estimated for
selected intervals and assumed to be effectively constant between zones.

Phyllosilicate minerals pose a difficult problem because their composition is so
variable. However, the clay mineral properties listed provide a useful reference
standard in the estimation of hypothetical composition volumes in the absence of
explicit information keyed to the formation that is analyzed. The estimates can be
considered as normative, as contrasted with modal predictions of clay mineral
proportions based on X-ray diffraction analyses from core.
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Optimal, minimum error solutions are worthless if the component model is
incorrectly specified. Meaningful results are best obtained by patient geological
evaluation of a sequence of solutions where the results of each are used to an
improvement of the successive solution. Modern compositional analysis software
utilizes the power of the error minimization method, but allows user interaction so
that alternative geological models can be compared.

Quirein et al. (1986) described the use of quadratic programming techniques and
linearized response equations, as an improvement on the penalty constraint
approach used by earlier methods. In addition, they incorporated a program to solve
for poorly known log responses of a component subset, as an optimization pro-
cedure applied to specific depths that could be used for calibration. These cali-
bration intervals are those where both logs and compositions are known and are
most typically those that have been cored. In addition, knowledge of composition
could be utilized from other sources. Not all component log responses need to be
estimated since their properties are restricted to a limited range. However, a subset
of mineral components have ambiguous and locally variable properties. The most
notorious example of such components are clay minerals, and these will be dis-
cussed more fully in the following section.

In common with earlier optimization methodologies, the system is assumed to be
either determined or overdetermined. The use of multiple alternative models then
allows a more realistic treatment of this assumption, in which common associations
can be modeled in parallel and a final selection made between them at any depth.
Wherever possible, each separate model is designed to be close to fully determined
in an attempt to find a good match and to sidestep problems associated with the
estimates of log and equation dispersions (Marett and Kimminau 1990). The
appropriate logs for each model are clearly those that discriminate well between the
separate components. If a poor choice of logs is made, then the model is
ill-conditioned. The model structure can be checked through the computation of the
condition number of:

Cc'DC

where C is the matrix of component log responses and D is a matrix of uncertainty
values. The condition number is higher for ill-conditioned models and gives a
measure of the sensitivity of proportion estimates to small changes in component
log responses (Quirein et al. 1986). The choice between alternative models for
any zone can be made by the user based on an assessment of the relative inco-
herence of the solutions and their feasibility as reasonable geological descriptions.
Alternatively, the decision can be made on the basis of probability established either
from comparison of alternative solutions or the use of a Bayesian prior probability.

While generally still applied to an overdetermined system, the multiple models
are not far removed from determined matches of components and logs. Where a
model becomes determined, the solution is that of a simple and fast matrix inversion
with zero incoherence, provided that the non-negative constraint is not violated.
The analysis of the relative conditioning of the model system is a valuable
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mathematical contribution to the determination of which logs provide the maximum
discrimination of model components that will lead to the most stable estimates of
volumetric proportions.

24.5 Clay Component Estimation

Shales are composed typically of a mixture of clay minerals, quartz, carbonates, and
iron minerals, as well as other accessory components. Clay minerals are markedly
different from other rock-forming minerals in terms both of their complexity and
variability. Shales present special problems for log interpretation and while many
algorithms have been designed for their volumetric estimation, the meaning and
limitations of their results should be understood.

In more detailed work, the older and broader methods of shale evaluation have
been expanded to the quantitative assessment of clay mineral species. Clay minerals
show differing degrees of variability, but are generally subdivided between four
major types: illite, smectite, kaolinite, and chlorite. Clay mineral typing is based on
several log criteria which must be considered carefully and collectively. Ellis (1987,
pp- 460—461) noted that the four principal clay mineral types could be combined
into two types, based on their hydroxyl content. Kaolinite and chlorite have eight
hydroxyls, as contrasted with four for smectite and illite. The neutron log is sen-
sitive to this difference, which can be used as one diagnostic guide, through
comparison of the neutron and density porosities when they are both scaled with
respect to a quartz matrix. The photoelectric factor is also a useful clay discrimi-
nator because of its control by the aggregate atomic number. Ellis (1987,
pp. 451-454) pointed out that iron-free aluminosilicate clays would have photo-
electric absorption characteristics that are virtually the same as for quartz. There-
fore, variations in the photoelectric factor within shales are primarily a reflection of
iron content. Overall, there is a tendency for a progressive increase in iron from low
values in kaolinite, through smectite and illite, to high values for iron-bearing
chlorite. Distinctions between clay minerals can also be made on the basis of
spectral gamma-ray logs, particularly in the differentiation of relatively potassium—
rich illites from low-potassium kaolinite and chlorite.

The quantitative estimation of clay mineral abundances from the neutron, den-
sity, photoelectric factor, and spectral gamma ray measurements is fraught with
difficulties. Wide compositional changes within clay mineral groups pose special
problems. Useful quantitative models are not easy to define and are frequently
ambiguous in their interpretation. The most realistic approach would be to coor-
dinate log measurements with laboratory analyses of core samples. The core values
may be idealized as a calibration standard in the development of a statistical pre-
diction model for clay minerals from logs. Even this strategy must be considered
thoughtfully and honestly. The most widely used laboratory method to estimate
quantities of clay minerals is that of X-ray diffraction. Even with careful sample
preparation procedures, the error of clay mineral estimates from X-ray diffraction
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can be routinely expected to be 50% or more of the reported value (Eslinger and
Pevear 1988, p. A-24). Nevertheless, an important result is that at least the
appropriate mineral subset can be identified with some confidence. This ensures that
the correct components will be selected for compositional analysis from logs.
Reconciliation of the log estimates with X-ray diffraction analyses should then be
made within a model that attributes appropriate error magnitudes to both data
sources.

24.6 Normative Estimation by Geochemical Logs

Geochemical logging tools measure induced gamma-ray spectra that are created
when a formation is bombarded by high energy neutrons from an electronic pulsed
source. A matrix inversion spectral fit algorithm then separates the spectrum into
individual elemental sources. The major rock composition elements of silicon,
calcium, magnesium, iron, sulfur, titanium and carbon are estimated together with
the rare earth, gadolinium. In addition, potassium, thorium, uranium can be esti-
mated from the natural gamma rays emitted by formations and measured by the
spectral gamma-ray log. As a consequence of the direct relationship between ele-
mental data and mineral compositions more realistic mineral transforms have been
developed that are a major improvement on models based on mineral properties.
However, a distinction must be made between normative minerals that are com-
puted from transforms of elemental data and modal minerals that are observed
visually or by petrographic laboratory methods such as X-ray diffraction or
infra-red spectroscopy. Clearly, the fundamental goal of an effective transform is to
provide a close match between normative mineral solutions and modal mineral
suites.

“Normative” minerals calculated from oxide analyses have been a standard
procedure in igneous petrology since the CIPW (Cross-Iddings-Pirsson-
Washington) norm was introduced by Cross et al. (1902). These normative min-
erals are contrasted with modal compositions that are commonly measured by
point-counting of minerals in thin-sections of rock. The normative concept has also
been extended to sedimentary rocks in attempts to compute realistic mineral
assemblages. Krumbein and Pettijohn (1938) pp. 490-492 explained the molecular
ratio method to calculate the probable mineral composition of a rock, based on
chemical analyses of oxide percentages. As a first step, the minerals to be resolved
are first identified from thin-section observation or other sources of information.
The molecular ratios are then assigned in a stepwise fashion to the minerals. The
process consists of a logical order of steps that first accommodates unique asso-
ciations between oxides and certain minerals, and then allocates the remainder to
other components. Imbrie and Poldervaart (1959) described a commonly used
method of sedimentary normative analysis and then compared the results with
modal estimates of mineralogy. From a detailed study of the Permian Florena Shale,
they concluded that estimates of the chert, calcite, dolomite, and clay had errors of
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less than 5%. However, there was little agreement between computed clay mineral
proportions and those produced from X-ray diffraction analysis. Imbrie and
Poldervaart (1959) were not surprised by this discrepancy, but attributed it to the
known high variability of clay mineral compositions through isomorphous
substitution.

Essentially the same problems are tackled in the computation of sedimentary
normative minerals, when based on elements measured by geochemical logs
(Herron 1986). However, many of the older normative methods predated com-
puters. The classical norm calculation is subtractive, deterministic and rigidly
leveraged. As discussed by Harvey et al. (1990), the method can be useful when
certain elements can be assigned totally to single individual minerals. These
assignations can then be made in an ordered protocol of analysis partition between
mineral species. Otherwise, the use of simultaneous equations to link mineral
compositions with elemental measures is a much more general and powerful
method. The speed of modern software also allows real-time interaction between
petrophysicist and machine, so that alternative models can be evaluated quickly and
decisions made that blend mathematical optimality with geological credibility. Any
analysis should be preceded by some notion of what constitutes a fit-for-purpose
estimation. Less accuracy is needed if the intent is for a generalized
semi-quantitative description of variation rather than more rigorous estimates for
use in quantitative basin modeling or physical property predictions (Harvey et al.
1998).

The model that links minerals with elements can be set up as a fully determined
system and solved by standard matrix inversion using methods described earlier.
Whenever the components are computed as positive proportions, then the com-
positional solution is rational and honors the analysis perfectly. However, in
common with the normative model, any apparent precision read into the result is
illusory because the determined system makes no allowance for analytical error. It
is usually practical to model a rock with a set of minerals that are fewer in number
than the elements available from geochemical logging. The system is then
overdetermined and can be resolved by one or other of a variety of optimization
techniques. The additional complexity in computation is offset by several distinct
advantages. The overdetermination allows constraints and error functions to be
incorporated, both for optimal solution control and diagnostic evaluation of sources
of analytical error. The choice of an overdetermined system also provides better
assurance of a stable solution in situations where the mineral response matrix
becomes sparse or there are potential compositional colinearities that link some of
the mineral subsets (Harvey et al. 1990).

Strictly speaking, there will almost always be more minerals than elements to
solve for them, so that the problem is always underdetermined. However, as Herron
(1988) noted, the overwhelming majority of sedimentary rocks are composed of
only ten minerals: quartz, four clays, three feldspars, and two carbonates. In
practice, reasonable compositional solutions can be generated using relatively small
mineral sub-sets, provided that they have been identified correctly and that the
compositions used are both fairly accurate and constant. Alternatively, the inversion
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procedure can be run as an unconstrained procedure and components with negative
proportions eliminated from the model. Harvey et al. (1998) found this approach to
be successful, but cautioned that negative components should be eliminated one at a
time, starting with the largest negative component, because of interactions between
the components.

Mineral solutions may be calculated by two alternative strategies. In the first, the
average chemical compositions of minerals drawn from a large data-base are used
as endmember responses and resolved by standard matrix inversion procedures.
This result is normative and generic in the sense that it is based on a sample drawn
from a universal mineral reference set and applied to a specific sequence where
local mineral compositions may deviate from the global average. The result is
hypothetical, but has the particular advantage that comparisons can be made
between a variety of locations and do not require expensive ancillary core mea-
surements. New methods of classification may also be necessary as discussed by
Herron (1988) in his study of terrigenous sands and shales in terms both of core and
geochemical log data.

In a second approach, the solution is calibrated to core data, where laboratory
determinations of mineralogy and elemental geochemistry are analyzed by multiple
regression techniques to determine local mineral compositions. This result is linked
to petrography and so is philosophically closer to an estimated modal solution,
rather than the more hypothetical normative model. As mentioned earlier, realistic
statistical calibration models should incorporate error terms from all sources of
measurement. When geochemical logging was first introduced, several detailed
studies were made to assess the strengths and limitations of borehole geochemistry
through exhaustive comparisons with core elemental and mineralogical analyses.
These included comparisons in the Conoco Research well, Ponca City, Oklahoma
by Hertzog et al. (1987); the discussion of the results from an Exxon research well
which penetrated Upper Cretaceous siliciclastic rocks in Utah by Wendlandt
and Bhuyan (1990); and an assessment of data from three Shell wells in the
Netherlands, Oman, and the U.S. by van den Oord (1990).

There are several ways to assess modal mineralogy, so which constitutes the
most accurate method to use as a standard for the real mineral composition? Harvey
et al. (1998) addressed this problem when they compared core data from the
spectral measurements of quantitative X-ray diffraction and infrared spectroscopy,
as well as micrometric analysis from thin section point counts. Overlapping peaks
and poor resolution at low resolution pose special problems for the spectral
methods, while appropriate sample sizes must be observed for robust statistics in
micrometric analysis. Also, the distinction between volume percentage and weight
percentage must be observed when interrelating modal and normative composi-
tions. Harvey et al. (1998) concluded that the results of their study did not favor one
method over another, but pointed out that their comprehensive analysis demon-
strated the difficulty of obtaining accurate modal estimates and even the notion of
what constitutes the “real” mineral composition. This is certainly worth bearing in
mind when making a judgement about the “accuracy” of a normative mineral
solution from inversion of log responses. So, for example, mismatches in clay
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mineral estimates by log inversion represents a failure to reproduce the results of
quantitative X-ray diffraction which are themselves only estimates of the true
composition.

A major obstacle to the production of unique mineral transformations from
element concentrations has been the problem of compositional colinearity. If pre-
cisely colinear, then an infinite range of solutions is possible, causing a matrix
singularity and a breakdown of an inversion procedure. If average mineral com-
positions are used, a solution becomes possible, but may be unstable (Harvey et al.
1998). Wendlandt and Bhuyan (1990) found that the use of silicon, potassium and
aluminum tended to result in overestimates of kaolinite; the use of iron to predict
illite content caused underestimates of kaolinite. However, effective discrimination
between illite and kaolinite contents became possible when dry density was applied
as an extra constraint.

24.7 Conclusion

The estimation of mineral composition from petrophysical logs is now a standard
feature on any log analysis software package. However, the degree to which these
estimates match reality is highly variable and requires a knowledgeable and
experienced user to work with powerful procedures. The identification of the major
mineral suite that actually occurs in the rock is an important first step. As the old
Chinese proverb says, “The beginning of wisdom is calling a thing by its right
name.” In the end, the solution of “mathematical minerals” will often come down to
a choice between an acceptable estimate of an unreachable modal mineralogy or the
realization of a useful, but hypothetical, normative assemblage.
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