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Abstract Proximity regression is an exploratory method to predict multielement
haloes (and multielement ‘vectors’) around a geological feature, such as a mineral
deposit. It uses multiple regression directly to predict proximity to a geological
feature (the response variable) from selected geochemical elements (explanatory
variables). Lithogeochemical data from the Ben Nevis map area (Ontario, Canada)
is used as an example application. The regression model was trained with geo-
chemical samples occurring within 3 km of the Canagau Mines deposit. The
resulting multielement model predicts the proximity to another prospective area, the
Croxall property, where similar mineralization occurs, and model coefficients may
help in understanding what constitutes a good multielement vector to mineraliza-
tion. The approach can also be applied in 3-D situations to borehole data to predict
presence of multielement geochemical haloes around an orebody. Residual prin-
cipal components analysis is another exploratory multivariate method. After
applying a conventional principal components analysis, a subset of PCs is used as
explanatory variables to predict a selected (single) element, separating the element
into predicted and residual parts to facilitate interpretation. The method is illustrated
using lake sediment data from Nunavut Territory, Canada to separate uranium
associated with two different granites, the Nueltin granite and the Hudson granite.
This approach has the potential to facilitate the interpretation of multielement data
that has been affected by multiple geological processes, often the situation with
surficial geochemical surveys.
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23.1 Introduction

Proximity to selected spatial features on geological maps has been used in the
analysis of multivariate data in several ways, but usually as a weighting function
not as a variable to be directly predicted. For example, Cheng et al (2011) describe
“spatially weighted principal component analysis” to emphasize proximity to
selected intrusions in the analysis of geochemical patterns. This involves using
spatial weights (in range 0-1) to calculate weighted correlation coefficients, before
the usual eigenvector determinations of principal components analysis. The
resulting weighted principal component scores were mapped to predict element
associations related to intrusions. Brunsdon et al. (1998 and other papers) have used
“geographically weighted regression” to analyze long-term illness data from a UK
census. This approach recognizes that a regression may often not be spatially
stationary, but will show changes geographically. Again, the regression equations
use spatial variables as weights. In both these examples, proximity to some feature
is introduced as a spatial weight, not as a response variable for direct prediction.
In the first part of this chapter we suggest that proximity to a geological feature
can be more directly studied by using proximity itself as a response variable in a
regression using a collection of geochemical elements as explanatory variables. In
regional geochemical surveys, one may be interested in understanding which
variables are good predictors of proximity to a mineral deposit, or to some other
selected feature with known location. This is frequently referred to in mineral
exploration as finding good ‘vectors’ to mineralization, but as far as we are aware
direct prediction of proximity from multielement data has not been published,
although plots of single elements, or element ratios, on profiles showing distance to
known mineralization are often used. If a good predictive suite of elements can be
determined (either from understanding a genetic model or from empirical tests) and
based on a training set of samples relatively close to the geological feature of
interest, the resulting predictive equation can be used to look for similar associa-
tions outside the training area. If the feature of interest is a mineral deposit, this
approach may be useful in finding new deposits. This may be used both for 2-D
regional geochemical surveys, and in 3-D geochemical data from borehole data.
The second part of the chapter is about using residual principal components
analysis (PCA) of multielement geochemical data. PCA has been widely used by
exploration geochemists and others to understand multielement geochemical pro-
cesses, particularly in surficial geochemical surveys, but also in lithogeochemical
data collected at surface or in boreholes. This literature is large, and here we refer as
an example to a study of soil geochemistry as measured along two continental scale
transects of North America. PCA of logratio-transformed variables revealed the
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effects of soil-forming processes, including soil parent material, weathering, and
soil age as interpreted from PCs (Drew et al. 2010). There are many examples of
successful geological interpretations by PC analysis. Individual PCs can often be
interpreted both from variable loadings, from biplots and from spatial patterns seen
by mapping PC scores (e.g. Grunsky 2010).

Sometimes, however, one may be interested in the spatial distribution of a single
geochemical element, and it is desirable to remove the effect of some particular
geological process or processes that are reflected in one or more PCs. For example,
in the analysis of till geochemical surveys, the first PC is often interpreted as due to
the effect of till transport. Thus it may be desirable to look at the element distri-
bution after removing PC1. Usually this is carried out by progressively examining
element loadings and the spatial patterns seen by mapping PC scores. However,
there may be situations where it is helpful to examine spatial patterns of a single
element after removing PC1 (or several PCs). This can be achieved what we are
terming here as “principal component regression”. This is a straightforward
regression using the selected element as the response variable, and PC1 (or PC
combination) as the explanatory variable(s). The residuals (the observed response
variable minus the predicted response variable) provide the desired element dis-
tribution after removing the effect of PC1 (or PC combination). If PC1 is interpreted
as due to till transport, then the residuals represent the element values after
removing the effect of till transport.

This approach represents a process that is somewhat analogous to a geochemical
selective leach separating a mineral phase or perhaps several mineral phases.
A ‘total’ analysis is designed to dissolve all mineral phases, whereas a partial leach
targets a selected mineral phase. The element under study can thereby be partitioned
into phases by selective leaching. Residual PCA also separates the element under
study into parts, although the partitions are not the same as those targeted in
selective leaches. The partitions in residual PCA are related to proportions of an
element quantity that can be ‘explained’ by different multivariable associations as
determined by PCA. Residual PCA was first used by Bonham-Carter and Hall
(2010) in a study of uranium in soils in the Athabasca Basin. Residual U, after
removing the effect of till transport (as determined by PCA), was a better predictor
of buried mineralization than raw U values in A-horizon soils.

In this chapter, we use a lithogeochemical dataset from the Ben Nevis area of
Ontario to illustrate proximity regression, and a lake-sediment dataset from
southern Nunavut to illustrate residual principal components analysis.

23.2 Method 1: Direct Prediction of Spatial Proximity

Suppose we have an array of geochemical data, with rows being samples, and
elements as columns. In addition, we have distance measurements for each sample
reflecting the shortest distance from the sample to some geological feature (mineral
deposit, an intrusion, a fault, etc.). Before multivariate analysis, it will be important
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to transform the element variables by a centred logratio, to overcome the effects of
closure (Aitchison 1986; Buccianti et al. 2006; and many other papers).

Although distances may be used directly, we have found that transforming
distance to proximity gives somewhat better predictions. If for example the goal is
to model the dispersion ‘halo’ around a deposit, the decay of the halo effect with
distance from the contact may be exponential, or may follow a power law. Thus,
instead of using distance as a response variable, we often get better results by
transforming distances inversely to proximities. Here we have used a simple
exponential decay of proximity with distance, that assumes that the rate of decay of
proximity with distance is constant, similar to the familiar model of decay of a
radioactive element with time. Let distance be denoted as Z (metres from feature)
and proximity by Y (in range 1, O where 1 is at zero distance decreasing to zero at
infinitely large distances), then the rate of decay of proximity with distance is
assumed to be a constant

dy

—=—a 23.1
z- ¢ (23.1)

Integrating (23.1) from distance O to Z leads to:
Y(Z)=Y(0)e™*. (23.2)

The value of proximity at zero distance Y(0) = 1, so this term drops out. It is
also convenient to define the ‘half distance’ Z; 5 where proximity Y equals 0.5, then
by rearranging Eq. 23.2 we can express « in terms of the half-distance:

~ 105
a= 222 (23.3)
Zos

Substituting for a in (23.1), distance can then be transformed to proximity from

Y(Z) = exp (1235'5 -z) (23.4)

We note that an alternative approach was used by Cheng et al. (2011) in the
spatially weighted principal components to determine spatial weights W (equivalent
to proximities) using a power relation:

W= (1 _Z)y (23.5)

Zmax

where y is a power parameter, and Z., is a selected maximum distance for
modelling. For y = 0, all weights = 1, with y = 1, weights are a linear inverse of
distance, but positive values of gamma such as 2, 8, 16 define a power-law decrease
of proximity with increasing distance.
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Fig. 23.1 Left. Example of relationship between proximity and distance using exponential decay
with a ‘half-distance’ parameter. Proximity = 1 at distance = 0, proximity = 0.5 at dis-
tance = half-distance. Right. Similar to left diagram, but using power law model with gamma
parameter

Typical exponential curves and power law curves using Eqs. 23.4 and 23.5 are
shown in Fig. 23.1.

We now model proximity with a training set of samples (chosen within some
arbitrary but reasonable distance from the selected feature) using selected geo-
chemical variables.

Then let X be the matrix of CLR-transformed element values, with rows as
samples, columns as elements. The geochemical elements are the explanatory
variables, and the column vector Y contains the proximity values, the response
variable. The geochemistry is used to ‘explain’ the response. Here we used multiple
linear regression to model this relationship, although other approaches could be
taken.

Y=Xp+ € (23.6)

where f is a column vector of coefficients to be determined by least squares, and € is
the vector of errors. The coefficients are solved from the normal equations

p=(X'X) " (XY) (23.7)
where X’ is the transpose of X and (X'X)™" is the inverse of X'X.
If inspection of the coefficients and goodness of fit are satisfactory, the predicted

values of proximity, Y, are calculated from

¥ =Xp. (23.8)
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23.2.1 Application of Proximity Regression with Ben Nevis
Lithogeochemical Data

23.2.1.1 Background Geology

The Ben Nevis Township area is part of the Blake River Group (Fig. 23.2) a
calc-alkaline volcanic sequence. The same sequence extends eastward to the Nor-
anda area of Quebec where major Cu-Zn-Ag deposits are located. Extensive
alteration and mineralization was recognized in the Ben Nevis area (Jensen 1975;
Wolfe 1977), which led to a later geochemical study by Wolfe (1977) with
emphasis on the metal distribution of stratiform volcanogenic sulphide deposits in
Archean volcanic rocks. Lithogeochemical sampling was undertaken across the
area by Jensen (1975) and Wolfe (1977) followed by additional sampling by
Grunsky (19864, b). Grunsky and Agterberg (1988) and Grunsky (1986a, b) carried
out a detailed a multivariate geostatistical investigation of these data. A regional
multi-element geochemical study over the Abitibi Greenstone Belt was later
undertaken by Grunsky (2013) in which multivariate statistical methods were
applied to recognize lithological variation, areas of alteration and potential
base-metal mineralization.

The principal lithologies of the study area are basaltic pillowed flows, pillow
breccias and breccias of calc-alkaline affinity (Grunsky 1986a). Two felsic volcanic
units comprised of tuff, tuff breccia and flows of rhyolitic and dacitic composition
occur within the basaltic sequence. The volcanic sequence has been intruded by
tholeiitic gabbroic and diorite bodies throughout (Fig. 23.3). More recent studies of
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Fig. 23.2 Location map of Ben Nevis study area adapted from Grunsky (1986a)
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Fig. 23.3 Geology of Ben Nevis area, adapted from Grunsky (1986a). Note locations of Canagau
Mines deposit and Croxall property. Figure from Grunsky (1986b)

the volcanic assemblage in the context of the Abitibi Greenstone Belt are described
by Pelogquin et al. (2008).

Within the area, the two most significant mineral occurrences are the Canagau
Mines deposit and the Croxall property. The Canagau Mines deposit is dominated
by strongly carbonatized, sericitized, and silicified mafic and felsic volcanic rocks.
Mineralization consists of sphalerite, gold, silver, galena, chalcopyrite, and pyrite
within east-trending fractures and shear zones that dip 40-60° south. Tonnages are
unknown, and the grade is as high as 11 ppm gold and 22 ppm silver. The area was
extensively explored by Wallbridge Mining in 2004 (Wallbridge 2004) and a report
on exploration activities by Meyer et al. (2004). The deposit is currently considered
to be uneconomic. The Au-Ag-Cu-Pb-Zn style of mineralization is typical of an
epithermal system.

The Croxall property consists of a zone of brecciated and sheared rhyolite with
interstitial pyrite, chalcopyrite, chlorite, calcite and quartz. Gold assays have been
reported up to 1 ppm.

Grunsky (1986a, b) showed that multivariable data analysis techniques distin-
guish the altered from unaltered volcanic rocks.
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23.2.1.2 Application

The purpose of this application is to determine whether a multielement signature
can be identified related to proximity to the Canagau Mines deposit, then use this
signature to look for other places with similar patterns.

The distances between each sample and the Canagau Mines deposit was cal-
culated using the eastings and northings associated with each sample, plus the
known location of the deposit. Distances were converted to proximities using
Eq. (23.4). Different proximity vectors were calculated for half-distances of 100,
300, 500, 800, 1000 and 1500 m so that an optimal half distance parameter could
be determined. Figure 23.4 shows the sample points with proximity (half distance
equal to 800 m) classified by colour and dot size. The training set comprises all
points lying within 3 km of the deposit (equivalent to points with proximity greater
than exp(In(0.5) * 3000/800) = 0.074).

There are 26 geochemical variables in the dataset—a mixture of trace elements
and major oxides. After converting all elements to a common unit of measurement
(ppm), all chemical variables were transformed by centred logratios (CLR) to avoid
the problem of closure. Using the training samples, correlation coefficients were
calculated between each element (CLR-transforms) and proximity. These correla-
tions were sorted by magnitude and used to reduce the number of elements selected
to predict proximity by multiple regression analysis. Elements were selected for
Model 1 if the absolute value of correlation (Pearson’s r) with proximity was greater
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Fig. 23.4 Map showing locations of lithogeochemical samples, with size and colour of dots
related to proximity to Canagau Mines deposit (Fig. 23.3). Training set for regression model
includes only those samples within 3 km of deposit (within circle)



23  Two Ideas for Analysis of Multivariate Geochemical Survey Data ... 455

Table 23.1 Result of multiple linear regression. Variables selected for regression against
proximity (Model 1) by selecting those with abs (correlation coefficient) > 0.2. The explanatory
variables are CLR-transformed geochemical element values, the response variable is proximity to
the Canagau Mines deposit, using n = 278 samples that lie within 3 km of the deposit for training.
Variables selected for Model 2 based on p-values < 0.03 from Model 1

Correlation coefficient, r Model 1 Model 2
Element Proximity Coefficient | p-value | Coefficient | p-value
Co-CLR -0.34 0.0489 0.3242
Li-CLR 0.35 0.0285 0.2841
Ni-CLR —-0.26 —0.0164 0.5226
Pb-CLR 0.38 0.0081 0.5816
Sr-CLR -0.23 —-0.0227 0.2633
V-CLR —-0.35 —0.0681 0.0101 —0.0646 0.0001
CaO-CLR —0.48 —0.1100 0.0000 —0.1206 0.0000
Na20-CLR —0.30 —0.0728 0.0000 —0.0801 0.0000
K20-CLR 0.26 —0.0285 0.0205 —0.0287 0.0046
TiO2-CLR -0.43 —-0.0721 0.2082
CO2-CLR 0.26 0.0330 0.0012 0.0417 0.0000
S-CLR 0.24 —0.0123 0.2411
Constant 1.1344 0.0000 0.8083 0.0000
Adjusted R? 0.3991 0.3942

than 0.2 (Table 23.1). This reduced the number of elements to be used as
explanatory variables from 26 to 11.

CLR variables were not further transformed, and the coefficients and associated
probabilities obtained by using Eq. (23.7) are shown in Table 23.1. Note that Co,
Li, Pb and CO, have positive coefficients, whereas Ni, Sr, V, CaO, Na,0, K,O,
TiO, and S have negative coefficients. This model has a goodness-of-fit of about
40% (adjusted R? = 0.399). A second model was then run to remove those vari-
ables in Model 1 with p-values greater than 0.03. In Model 2, CO, is the only
variable with a positive coefficient, and V, CaO, Na,O and K,O have negative
coefficients. The goodness-of-fit of Model 2 is almost the same as Model 1, with
adjusted R* = 0.394. Although not shown here, a plot of predicted values from
Model 1 and Model 2 are highly correlated, and maps of each are virtually
indistinguishable.

The predicted values of proximity are shown in Fig. 23.5 for both the training
and non-training samples. As expected, the Canagau Mines deposit shows up as a
‘bullseye’ at the centre of the training sample area. Notice that the Croxall property
shows as another less prominent bullseye to the west, in the non-training sample
area. Other high values of predicted proximity to the south of the Canagau Mines
deposit and northeast of the Croxall property are associated with known sulphide
occurrences as shown in Fig. 23.3. Thus, we can conclude that proximity regression
led to the selection of a suite of useful explanatory variables that, after training on
the Canagau Mines deposit, was able to ‘discover’ the Croxall property.
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Fig. 23.5 Map showing predicted proximity to Canagau Mines deposit. Plot includes both points
used in training (those within 3 km of deposit) and other sample points. Croxall property is
identified with large proximity values by this model
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Fig. 23.6 Plot of observed proximity versus predicted proximity, with best fit line, training points
only. In general, fit is noisier at lower values of proximity. Points with proximity >0.5 (i.e. within
the ‘half-distance’ of 800 m of the Canagau Mines deposit) show a stronger relationship
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Fig. 23.7 Variation in goodness of fit (adjusted R?) with changes in ‘half distance’, the parameter
used to control rate of exponential decay of proximity with increasing distance (23.4). Note that
curve shows that relationship is strongest using half-distance parameter = 800 m

A bivariate plot of observed versus predicted proximity, training points only,
(Fig. 23.6) shows that the relationship is noisier far away from the deposit than
closer to it, consistent with the proximity response weakening at increasing

distance.

Experimental results show that an optimum half distance for modelling prox-
imity as an inverse function of distance is 800 m, although the results are not very
sensitive to changes in the 300-1000 m range (Fig. 23.7). It is not clear how useful
this parameter might be in describing the geometry of the ‘halo’ effect around the

deposit.

23.3 Method 2: Principal Component Residuals

Many geochemical survey data are difficult to interpret, because multiple over-

lapping processes affect element levels in space and time. In some situations, a
principal component will show a composition (based on element loadings) and a
spatial pattern reflecting an interpretable geological process, but usually interpre-

tation is complex because of interacting processes.
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Residual principal components analysis is an exploratory approach that can
sometimes be helpful in sorting out complex multielement interactions. The method
is a straightforward extension of applying principal components, followed by a
series of multiple linear regressions. As with the proximity regression method, it is
important first to carry out a centred log ratio transform of all the elements,
otherwise distortions may occur in principal component (and subsequent multiple
regression) results due to constant sum ‘closure’ effects.

Regular PCA is carried out in the usual way on the correlation matrix calculated
from CLR-transformed element variables (e.g. Davis 2002, ch. 6).

Inspection of the eigenvectors for each PC, inspecting biplots, and mapping PC
scores for the at least the first few PCs can then lead to an interpretation of PCs in
terms of geological processes (Grunsky 2010). Here the objective is to focus on a
selected element to separate out (‘partition’) this element compositionally and
spatially using the principal component results.

For the element of interest, the next step is to inspect the corresponding row of
the eigenvector matrix (the ‘loadings’) to understand better in which components
the element occurs. It may be decided to predict the element from PC1 only, or from
PC1 and PC2, or PC1, PC2 and PC3, and so on. For each of these selections, a
multiple regression is carried out with the selected PCs as explanatory variables,
and the chosen element as the response variable. For example, if the response
variable is V and the explanatory variables are PCs 1 to PC3, then

V=By+B,PCi +B,PC,+P3PC5+ € (23.9)

can be solved as before for the coefficients p by least squares. If the predicted values
of V are V*, then the residuals Vj are simply

Ve=V—V* (23.10)

computed over all sample locations.

The choice of PCs in Eq. (23.9) may be as simple or as complex as needed. We
have had good results by successively adding PCs, inspecting the goodness of fit at
each stage and mapping the predicted and residual values at each step. Inspection of
residual patterns may reveal, spatially, where concentrations of that particular
element are distributed, facilitating interpretation.

In this method, there is no training set, calculations are carried out on all
samples.
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23.3.1 Application to Nunavut Lake Sediment Data

23.3.1.1 Geological Background

The lake sediment survey was carried out over three 1:250,000 scale map areas
(NTS 65A, 65B, 65C) in southern Nunavut Territory, Canada (McCurdy et al.
2012). The geology of two of the NTS sheets (65A, 65B) were mapped by Eade
(1973) and is shown in Fig. 23.8. Of particular interest to this study, we notice that
there are two important granitic intrusion types: the Hudson granite (1.83 Ga) and
the Nueltin granite (1.75 Ga) suites as identified and characterized by Peterson et al.
(2015).

This area lies within the southern Hearne Province, a poorly understood terrane.
The domain is dominantly comprised of Archean tonalitic and charnokitic gneisses,
approximately 2.8 Ga in age. However, strong evidence for fragments of much
older crust, up to 3.3 Ga, has been found in the form of inherited Archean zircons
and Sm-Nd model ages obtained from Proterozoic post-orogenic plutons of the
Hudson granite, intruded at about 1.83 Ga. Nueltin rapakivi granite (ca. 1.75 Ga) is
also present in the area.

A comprehensive multielement study of the lake sediment data was carried out
by Grunsky et al. (2012a, b), and by Grunsky and Kjarsgard (2016). One of the
results of those studies was to show that the multivariate geochemistry could be
used to map the various rock types using a variety of methods including PCA.

450000 500000 550000 600000 650000

6750000

6700000

6650000

450000 500000 550000 600000 650000

Fig. 23.8 Geological map of NTS sheets 65A, 65B and 65C, with coordinates shown for UTM
Zone 14, Nunavut Territory, adapted from Grunsky et al. (2012a, b). Two units noted in text are
Nueltin granite (Pp-Ng shown in orange) occurring in west and Hudson granite (Pp-Hgr shown in
light pink) occurring in east
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23.3.1.2 Application

The data consists of 1611 samples and 48 geochemical elements—both major and
traces. Prior to CLR transformation, all variables were converted to ppm. PCA was
carried out on all 48 elements. The objective was to understand better how uranium
is partitioned between the two granites: the Nueltin and the Hudson.

PCA analysis was calculated on all 48 CLR transformed variables. A scree plot
(Fig. 23.9a) shows that the first 15 PCs (out of the full 48) account for almost 85%
of the total variation in the data, and the first 5 PCs account for over 60%.
Inspection of the uranium loadings (Fig. 23.9b) shows that PCs 2 and 3 both have
high positive loadings, whereas PC 5 has a strong negative loading. Multiple
regressions were carried out (using U-CLR, not untransformed U) starting with

(a) 9
80
70
60
50
40

30

Cumulative % Varaition

20
10

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Principal Components

(b) 0.5
0.2

0.15

0.05 I I I I
. ) N i
.05 I 2 3 4 I 7 9 10 11 12 13 14 15
0.1

Loading

-0.15

-0.2

-0.25

-0.3
Principal Components

Fig. 23.9 a Scree plot showing cumulative variation explained by first 15 PCs. b Values of
loadings for U-CLR on first 15 PCs
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Fig. 23.10 Goodness of fit
(R?) for successive multiple
regressions with U-CLR as
response variable and an
increasing number of PCs as
explanatory variables. Note
that after adding PC 5, there is
little change in R? values
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PC1, then successively adding PCs up to 12. For each regression, predicted U and
residual U were calculated and mapped (not shown here), and a record made of the
goodness of fit (Fig. 23.10). This graph shows that PC1 does not account for much
U variation, but PCs 2 and 3 show marked increases in goodness of fit. PC 4 shows
a minor increase, and PC5 shows a major increase. After PC5, improvements in
goodness of fit are minor.

Figure 23.11 shows maps of U-CLR predicted from PCs 1-5, and U-CLR
residuals. Not shown is the unmodified U-CLR map (which sums these two parts).
Notable here is that the predicted map shows a pattern strongly correlated with the
Nueltin granite, whereas the residual map is strongly correlated with the Hudson
granite. PCs 1-5 ‘explain’ the uranium in the Nueltin granite, whereas the residual
uranium is that which occurs in the Hudson granite. The residual PC analysis has
partitioned uranium into two parts that have a distinct geological interpretation.

This is confirmed in Fig. 23.12 which shows for the successive regressions
results of t-tests on the mean U-residual in the Nueltin and Hudson granites. The
value of t increases up to PC5, then decreases. This confirms that, for partitioning
uranium between the two granites, regression against PC1-5 gives the best result.

U-Predpet-5 un . Resid_U-CLRpet-5

Herhing
Horting
L]

Easting B Eastng ey

Fig. 23.11 Left. Map of U-CLR predicted from PCs 1-5 using lake sediment data. Right. Map of
residual U-CLR unexplained by PCs 1-5. Predicted uranium is strongly related to presence of
Nueltin granite, whereas residual uranium is strongly related to presence of Hudson granite. Map
of total U-CLR does not distinguish between these two granites
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Fig. 23.12 t-test values for =
U-CLR residuals obtained / nm
from successive regressions 4 Tl _n
with U-CLR as response
variable and increasing
number of PCs as explanatory
variables. These are
‘2-sample’ t-tests comparing
means between two groups:
Nueltin granite samples and
Hudson granite samples. Note
that regression to predict
U-CLR using PCs 1-5 gives
best separation of two granites
by U residuals. Adding more [ i ; : : :
P'Cs'reduces t-va.lue and 2 4 6 8 10 12
significance of difference

between U residual means Number of Principal Components

t-value

23.3.2 Discussion

These two methods add to the already large basket of multivariate methods useful
for interpreting regional geochemical surveys.

With the wide use of GIS, spatial information is now easily determined for many
features of map data. Distance calculations from points to points, points to lines and
points to polygons are now routine, allowing the spatial characterization of prox-
imity of geochemical samples to mineral deposits (points—depending on map
scale), to faults of specified contacts (lines), or to rock units (polygons). In 3-D,
proximity of geochemical samples to an orebody using borehole data is also
straightforward. There are therefore many potential applications of proximity
regression for a variety of situations involving multivariate geochemical data.

One particular idea that may be worthy of investigation is the application of this
approach to prospectivity mapping. Instead of treating known mineral occurrences
as binary points to be predicted from a series of evidential layers (weights of
evidence, logistic regression, neural networks, etc.), a response variable could be
constructed showing distance (or proximity) to the nearest mineral occurrence. The
explanatory variables can be various evidential layers, as usual. The result would
not be the probability of occurrence of a mineral occurrence, but rather the pre-
dicted proximity to the nearest mineral occurrence.

It should also be noted that proximity regression as described here has used
ordinary multiple linear regression, so although the observed proximity measure in
in the range (0, 1), predicted proximities are unconstrained and may be greater than
1 or negative. There might be some advantage to using logistic regression, that
would automatically constrain the expected proximity to the range (0, 1), and would
also allow the use of non-numeric explanatory variables (e.g. presence/absence of
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geological units, etc.). Alternatively, there are several neural network approaches
that could also be tried for predicting proximity.

It should be noted that when doing a residual PCA on geochemical data, that
logratio transforms are essential, because the effect of closure for introducing
artefacts in PCA results is well known. Experience has also shown that residual
analysis requires that the geochemical element used as a response variable must also
be CLR transformed, as regression results are poor if untransformed response
variables are used in the analysis.

In the separation of uranium between the Nueltin and Hudson granites, it would
be most interesting to determine whether this partition was also related to isotopic
differences. But this would require isotopic analyses of the lake sediment samples,
an expensive proposition.

23.4 Conclusions

Proximity analysis allows for the use of multielement geochemical data for direct
prediction of proximity to geological features, such as mineralization, faults and
intrusions.

Application of proximity analysis to lithogeochemical data from the Ben Nevis
area showed that a suite of elements provided a good prediction of proximity to the
Canagau Mines deposit, and that this model also predicted the Croxall property and
other nearby sulphide occurrences.

Residual principal components analysis is a useful way to partition particular
geochemical elements that can facilitate geological interpretation.

For example, uranium in a lake sediment survey could be partitioned into two
groups based on PCs. Uranium associated with PCs 1-5 is strongly correlated with
the Nueltin granite, whereas, residual uranium, after removing the effects of PC 1-5,
is strongly correlated with the Hudson granite.
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