Chapter 22 )
Solving the Wrong Resource Assessment ki
Problems Precisely

Donald A. Singer

Abstract Samples are often taken to test whether they came from a specific
population. These tests are performed at some level of significance (o). Even when
the hypothesis is correct, we risk rejecting it in o percent of the cases—a Type |
error. We also risk accepting it when it is not correct—a Type II error at  prob-
ability. In resource assessments much of the work is balancing these two kinds of
errors. Remarkable advances in the last 40 years in mathematics, statistics, and
computer sciences provide extremely powerful tools to solve many mineral
resource problems. It is seldom recognized that perhaps the largest error—a third
type—is solving the wrong problem. Most such errors are a result of the mismatch
between information provided and information needed. Grade and tonnage or
contained models can contain doubly counted deposits reported at different map
scales with different names resulting in seriously flawed analyses because the
studied population does not represent the target population of mineral resources.
Among examples from mineral resource assessments are providing point estimates
of quantities of recoverable materials that exist in Earth’s crust. What decision is
possible with that information? Without conditioning such estimates with grades,
mineralogy, remoteness, and their associated uncertainties, costs cannot be con-
sidered, and possible availability of the resources to society cannot be evaluated.
Examples include confusing mineral occurrences with rare economically desirable
deposits. Another example is researching how to find the exposed deposits in an
area that is already well explored whereas any undiscovered deposits are likely to
be covered. Some ways to avoid some of these type III errors are presented. Errors
of solving the wrong mineral resource problem can make a study’s value negative.
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22.1 Introduction

Howard Raiffa (1968, p. 264) noted that statistics students learn the importance of
constantly balancing making an error of the first kind (that is, rejecting the null
hypothesis when it is true) and an error of the second kind, that is, accepting the null
hypothesis when it is false (Fig. 22.1). Raiffa thought it was John Tukey who
suggested that practitioners all too often make errors of a third kind: of solving the
wrong problem. Raiffa nominated a candidate for the error of the fourth kind:
solving the right problem too late. John Tukey believed that it was better to find an
approximate answer to the right question, than the exact answer to the wrong
question, which can always be made precise. More recently, Mitroff and Silvers
(2009) focused mostly on social questions where type III errors occurred and
provided many examples of developing good answers to the wrong questions (type
IIT error). Unfortunately concerns of Raiffa, Tukey, Mitroff, Silvers, and others are
appropriate for mineral resource assessments. And the concerns should not be
limited to classical statistics.

Supply of minerals to society is dependent not only on the total amount of
mineral material but also on quality or concentrations, spatial distributions or how
scattered the material is, whether it has been found, whether it is remote from
infrastructure, and a whole host of other issues such as government policies, pro-
duction technologies, and market structures. Decision-makers, whether concerned
about development of a technology, development of a region, exploration, or land
management, are faced with the dilemma of obtaining new information, or allowing
or encouraging others to obtain it, and the possible benefits and costs of develop-
ment if mineral deposits of value are discovered. Decisions about exploration for
these resources and their possible development require awareness of various kinds
and the import of errors that can be made by analysts in their studies.

A type I error is the rejection of the null hypothesis when it is true. In some fields
a type I error is called a false positive. The risk of this error is a, the level of
significance. A type II error is the acceptance of the null hypothesis when it is false,
also known as a false negative error. The probability of making a Type II error, p,
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Fig. 22.1 Type I error is the rejection of the null hypothesis (Ho) when it is true. The risk of this
is a, the level of significance. Type II error is the acceptance of the null hypothesis when it is false
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depends on the alternative value and its distribution. The most important question
of the analyst and decision-maker should be: Are we solving the right problem? It is
the need to consider this source of error in mineral resource studies that is the focus
of this chapter. Common to many of the errors of solving the wrong problem is a
mismatch of the studied population and the population that is central to the deci-
sions—this topic is presented first. Next, effects of mismatches of populations to
some mineral resource assessments are discussed. Possible ways to avoid some of
these type III errors are finally presented.

22.2 Target Population

Type III errors are fundamental and should be considered before errors of types I
and II. Type III errors stem from improper definition of the problem and therefore
are not strictly a statistical issue, but one of critical thinking. It does no good to
minimize the expected costs of type I and type II errors if the wrong problem is
being solved. In mineral resource assessments, careless problem definition is the
primary source of type III errors. For almost all resource assessment problems, the
fundamental sample is the mineral deposit.

The idea of a mineral resource involves both geologic and economic aspects and
because knowledge about the earth and future economic conditions is limited,
should recognize uncertainty. Mineral deposits are the geologic entities containing
resources. Mineral deposits and their contents are the fundamental target popula-
tions that are estimated. So what is a mineral deposit? Mineral deposits are defined
as mineral occurrences of sufficient size and grade that they might, under favorable
circumstances, be economic.

A map of some volcanogenic massive sulfide deposits from Northern Japan is
used to clarify our understanding of what is a deposit (Fig. 22.2). From this plot one
can see that some of the deposits are just a few meters apart from each other. Grade
and tonnages are available for 23 of these named deposits from the western part of
the Hokuroku district, Japan (Ohmoto and Takahashi 1983). It is important that if a
different map scale were used, this part of the district might have three or four
named deposits with grades and tonnages. This well-studied district has more
detailed maps than many other volcanogenic massive sulfide districts around the
world. If one gathered all available data on the names and grades and tonnages of
volcanogenic massive sulfide deposits and built grade and tonnage or contained
metal models, the models would contain metals double counted from deposits
reported at different map scales and from the same deposits with different names
due to grouping. To have a consistent sampling unit that can be applied in statistical
analysis and in assessments of undiscovered deposits it is necessary to have spatial
rules to help define a deposit. In addition, mine names and deposit names do not
always match, mine names sometimes change over time, and district and deposits
can be reported with different names and numbers. For example, careless data
gathering might contain the grades and tonnage of the total Sudbury Ni-Cu District



440 D. A. Singer
N\
L
® “w 0\
X .
. L
' sh
() akanai 1
4° J
“] ”
§ ¢ Doyashik o8 S3
)
Y Yo
(Y Matsumine /
0 1 km

Il Kuroko deposits

Western Hokuroku district, Japan

\ S-7
Matsuk| .

Fig. 22.2 Kuroko volcanogenic massive sulfide deposits of the western part of the Hokuroku

district in Northern Japan (after Ohmoto and Takahashi 1983)

in Canada and also contain grades and tonnages of the many mines thus double
counting and generating biased metal statistics and frequency distributions of
questionable value. There are databases in which spatial rules for combining
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adjacent deposits have been consistently applied and multiple names have been
eliminated (e.g., Mosier et al. 2009). Compilations that use the above sources
combined with other sources of data on, for example, volcanic-hosted massive
sulfide deposits very likely contain deposits and prospects counted twice (e.g.,
Patifio-Douce 2016), resulting in statistical analyses that are seriously flawed
because the studied population does not represent the target population of mineral
resources. Operational rules defining deposits need to account for these map scale
effects and for the fact that some deposits have multiple names, mines and separate
reported tonnages (Singer 2017).

Mineral occurrences or prospects which are the focus of prospectivity analysis
do not qualify as economic mineral deposits because they are typically quite small
and incompletely explored. Because number of undiscovered deposits estimates
must be defined in a way that is linked to the grade-tonnage or contained metal
models, estimates of number of deposits made using models based on such flawed
grade-tonnage models must also be a mismatch with the target population.

22.3 Examples of Mismatches in Assessments

Solving the wrong problem due to mismatches of the target population with the
studied or estimated population abound in mineral resource assessments. Examples
of mismatches include issues of not understanding where the undiscovered
resources might exist and estimating something other than mineral deposits that
might be economic to mine (De Young and Singer 1981).

In one example, five or more epithermal gold vein deposits were estimated at the
90% level but no grade-and-tonnage model was provided, so the estimated deposits
could be any size (Singer and Menzie 2010). To provide critical information to
decision-makers, a grade-and-tonnage or contained metal model is key, and the
estimated number of deposits that might exist must be from the linked
grade-and-tonnage frequency distributions. Estimates of number of undiscovered
deposits are completely arbitrary unless tied to a grade-and-tonnage or contained
metal model that has been defined in a consistent operational manner.

In an unpublished study, four geoscientists made subjective probabilistic esti-
mates of the number of undiscovered hot-spring mercury deposits in a 1:250,000
scale quadrangle in Alaska. They made independent estimates at the 90th, 50th, and
10th percentiles (Table 22.1). The 10th percentile, for example, is the number of
deposits for which there is at least a 10% chance of that number of deposits or more
exist.

It was pointed out to participant D that because the number of deposit estimates
must be consistent with the grade and tonnage model, his estimates imply that there
is more undiscovered mercury in this quadrangle than has been found in the world
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Table 22.1 Independent estimates by four scientists of the number of undiscovered hot-spring Hg
deposits in a quadrangle in Alaska

Participant A B C D

90% chance of at least 1 1 2 9,000 Deposits
50% chance of at least 3 2 4 10,000 Deposits
10% chance of at least 6 6 7 11,000 Deposits

in this deposit type. He responded that he was estimating wisps of cinnabar, not
deposits consistent with the grade and tonnage model. In this case, the population
considered by participant D did not match the target population. Using a variety of
different guidelines such as deposit densities (Singer 2008) for estimates of the
number of undiscovered deposits provides a useful crosscheck of assumptions that
may have been relied upon and discourages mismatches between target and esti-
mated populations. In these examples of errors in estimating the number of
undiscovered deposits, the key is the difference between the understanding of what
was being estimated and the population of interest.

In Harris’s landmark study (1965), multiple discriminate analysis was used to
predict value of mineral production—among the best predictors was geologic cover
with a negative value. In a study by Singer (1971), multiple regression was used to
predict mineral production and again, cover with a negative value was an important
variable. Unlike in petroleum exploration, minerals exploration under cover is a
developing technology. Most commonly, mineral exploration under cover results
from trying to extend known deposits, that is, additions to reserves. More difficult
discovery and higher costs relative to exposed deposits, tend to reduce interest in
covered areas. Covered areas tend to be poorly explored and, consequently,
deposits under cover tend to be underreported.

In situations where resource assessments are made based on local information,
the possibility of solving the wrong problem is high. For example, if the mapped
geology were used to predict where and how many undiscovered orogenic gold
deposits might in the Bendigo Zone of Victoria Australia, one would conclude that
deposits are clustered in space and gold deposits are related to older rocks and
covered areas would be worst place to look (Fig. 22.3). Even if we use some
modern tools like weights of evidence or neural networks, we would predict no
undiscovered deposits under cover. Yet, because geology permissive for the gold
deposits is known under cover, and exposed permissive geology is thoroughly
explored, most experts would recommend exploration under cover (Lisitin et al.
2007).

Each of these examples demonstrates mismatches of the target population and
the studied population. Type III errors in these cases could produce useless or, even
worse, misleading assessments.
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Fig. 22.3 Geology and known orogenic gold deposits (black) in the Bendigo Zone of Victoria,
Australia (modified after Lisitsin et al. 2007)



444 D. A. Singer

22.4 How to Correct Type III Errors

The problems of mineral resource assessment can only be solved if they are for-
mulated in a way consistent with the decision-maker’s language and understanding
of the problem. The questions need to be asked: Why perform an assessment? Who
is the study being done for and what are the problems they are trying to resolve?

We start with the question of what kinds of issues decision makers are trying to
resolve and what types and forms of information would aid in resolving these
issues. Unfortunately, the decision-maker may not be available for the needed
insight or may not be able to clearly state the information needs. Because the
primary purpose of the kinds of assessments recommended here is to help
decision-makers determine consequences of economic and policy decisions about
tracts of land, regions, countries, or the earth, it is critical that the assessments be
unbiased. For example, if the question concerns the long-term supply of a metal, the
data used should not contain biased information such as grades and tonnages on
multiple versions of the same deposits. These situations require care in compiling
data and using sources that report locations, other names of deposits and names of
deposits that have been combined with the primary deposit to meet spatial com-
bination rules. A reliable source (e.g., Mosier et al. 2009) has specific information
about locations, rules used to combine deposits and specific names that were
combined for each deposit. These kinds of data provide a reliable basis for testing
statistical distributions of metals in mineral deposits such as the lognormal distri-
bution (Singer 2013).

It is important to recognize that success of assessments depends on the assess-
ments following an integrated approach. This means that no part of the models and
methods of estimation have any meaning in isolation. For instance, estimates of
number of undiscovered deposits are completely arbitrary unless tied to a grade and
tonnage or contained metal model. The goal should be to make explicit the factors
that can affect a mineral-related decision so that the decision-maker can clearly see
what are the possible consequences of decisions (Singer and Menzie 2010).

To avoid situations where occurrences are the basis of information used to
discriminate barren areas from the economic deposits sought, it is necessary to
construct models based on the economic deposits sought. Mineral deposit models
can be based on data gathered from well-explored deposits of each type from
around the world. This would allow the determination of how commonly different
attributes and combinations of attributes occur. Quantifying mineral deposit attri-
butes is the necessary and sufficient next step in statistically classifying known
deposits by type. Quantified deposit attributes also can provide a firm foundation to
identify which observations on geologic and other maps should be effective in
delineation of tracts and perhaps identifying sites for detailed exploration. The kind
of digital models advocated here would require the recording of both absolute time
units and the relative time units of spatially related mineral deposits, rocks, geo-
chemistry, geophysics, and tectonics. The scale of the observations is critical to
proper application of such models. This is required to properly apply the models in
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new geologic settings. Information in these models about the attributes associated
with known deposits is necessary but not sufficient to discriminate barren from
mineralized environments; quantifying the attributes of barren environments also is
necessary for this task. Such digital models could be the foundation for identifying
the discriminating functions that could remove many type III errors in assessments.

The exploration department of a major zinc producer found it essential to doc-
ument a robust decision-making process to maintain internal and investor support
(Penney et al. 2004). Zinc deposits from around the world were classed by type,
grade, and tonnage models developed for each, cost filters were applied to each, and
tracts around the world were delineated where the types could occur (Penney et al.
2004). This study was designed to aid the exploration decision-makers plan the
search for economic deposits. Their process was the same as that recommended in
three-part assessments (Singer and Menzie 2010), with the exception that they
ranked or scored tracts rather than estimating the number of undiscovered deposits.

22.5 Conclusions

Errors of solving the wrong mineral resource problem can make a study’s value
negative. Type III errors, solving the wrong problem, can be avoided by using care
in matching the information needed to solve the decision-maker’s problem with
information provided in the study. In some cases, we know how to solve the wrong
problem but not the real one. It is not uncommon to get rewarded for publishing an
answer—not THE answer. With some care and critical thinking in the planning
stages, it is possible to provide information useful to decision-makers and to be
rewarded for a publication.
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