
Chapter 19
Advances in Sensitivity Analysis
of Uncertainty to Changes in Sampling
Density When Modeling Spatially
Correlated Attributes

Ricardo A. Olea

Abstract A comparative analysis of distance methods, kriging and stochastic
simulation is conducted for evaluating their capabilities for predicting fluctuations
in uncertainty due to changes in spatially correlated samples. It is concluded that
distance methods lack the most basic capabilities to assess reliability despite their
wide acceptance. In contrast, kriging and stochastic simulation offer significant
improvements by considering probabilistic formulations that provide a basis on
which uncertainty can be estimated in a way consistent with practices widely
accepted in risk analysis. Additionally, using real thickness data of a coal bed, it is
confirmed once more that stochastic simulation outperforms kriging.

19.1 Introduction

In any form of sampling, there is always significant interest in establishing the
reliability that may be placed on any conclusions extracted from a sample of certain
size. In the earth sciences and engineering, such conclusions can be the extension of
a contamination plume or the in situ resources of a mineral commodity. Increases in
sample size result in monotonic improvements with diminishing returns: up to
measuring the entire population, the benefits increase with the number of obser-
vations. In the classical statistics of independent random variables, the number of
observations is all that counts. In spatial statistics, however, the locations of the data
are also important.

Early on in spatial sampling, it was recognized that sampling distance was a
factor in determining the reliability of estimations. However, insurmountable dif-
ficulties of incorporating other factors led to the reliability of spatial samplings
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being determined solely by geographical distance, particularly for the public dis-
closure of mineral resources (e.g., USBM and USGS 1976).

Significant advances in the determination of spatial uncertainty did not take
place until the advent of digital computers and the formulation of geostatistics (e.g.,
Matheron 1965). Geostatistics introduced the concept of kriging variance, which
was a significant improvement over the relatively simplistic distance criteria for
determining reliability. The third generation of methods to determine reliability of
spatial sampling came with the development of spatial stochastic simulation shortly
after the formulation of kriging (Journel 1974).

Although there are several reports in the literature about applications of distance
methods (e.g., USGS 1980; Wood et al. 1983; Rendu 2006) and kriging (e.g., Olea
1984; Bhat et al. 2015), the mere fact that distance methods are still being used
indicates that the merits of the geostatistical methods remain unappreciated. This
chapter is an application of the three families of methods for conducting sensitivity
analyses on the reliability of the assessment of geologic resources due to variations
in sample spacing. The simulation formulation given here is novel as it is an
illustrative example used for comparing all three approaches.

19.2 Data

The data in Fig. 19.1 and Table 19.1 of the Appendix will be used to anchor the
presentation. They are thickness measurements for the Anderson coal bed in a
central part of the Gillette coal field of Wyoming taken from a more extensive study
(Olea and Luppens 2014). A conversion factor could have been used to transform

Fig. 19.1 Measurements of thickness for the Anderson coal bed in a central part of the Gillette
coal field, Wyoming, USA: a posting of values; b histogram
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all the thickness values to tonnage, but it was decided to perform the analysis in
terms of the attribute actually measured. The reader may want to know, however,
that a density of 1,770 short tons per acre-foot for subbituminous coal is a good
average value to estimate tonnage values and that the cell size used here is 400 ft by
400 ft.

With resources of more than 200 billion short tons of coal in place, the Gillette
coal field is one of the largest coal deposits in the United States (Luppens et al.
2008). There are eleven beds of importance in the field. The Anderson coal bed, in
the Paleocene Tongue River Member of the Fort Union Formation, is the thickest
and most laterally continuous of the six most economically significant beds. This
low sulfur, subbituminous coal has a field average thickness of 45 ft. Hence, it is the
main mining target.

19.3 Traditional Uncertainty Assessment

For a long time, the prevailing practice has been the determination of uncertainty in
mining assessments based on distance between drill holes. Figure 19.2 shows an
example following U.S. Geological Survey Circular 891 (Wood et al. 1983),
hereafter referred to as Circular 891. This example uses the drill holes in Fig. 19.1a
after eliminating the holes along the diagonal. Circular 891 classifies resources into
four categories according to the distance from the estimation location to the closest
drill hole:

• 0 to ¼ mi: measured
• ¼ to ¾ mi: indicated
• ¾ to 3 mi: inferred
• More than 3 mi: hypothetical

Fig. 19.2 Classification of
in situ resources according to
Circular 891 for the data in
Fig. 19.1a after eliminating
the drill holes along the
diagonal
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Classification schemes like this are fairly simple and gained popularity prior to
the advent of computers. Evaluating the degree of uncertainty of a magnitude or an
event is the domain of statistics (e.g., Caers 2011). The standard approach for
analyzing uncertainty consists of listing all possible values or events and then
assigning a relative frequency of occurrence. A simple example is the tossing of a
coin, where the outcomes are head and tail. For a fair coin, these two events occur
with the same frequency, which is called probability when normalized to vary from
0 to 1. The same concept can be applied to any event or attribute, including coal bed
thickness. For example, the outcome at a site not yet drilled could be modeled as the
following random variable:

• 5–10 ft, probability 0.3
• 10–15 ft, probability 0.4
• 15–21 ft, probability 0.2
• 21–28 ft, probability 0.1

Note that the sum of the probabilities of all possible outcomes is 1.0. Random
variables rigorously allow answering multiple questions about unknown magni-
tudes, in this case, the likely thickness to penetrate. A sample of just three assertions
would be: (a) coal will certainly be intersected because the value zero is not listed
among the possibilities; (b) it is more likely that the intersected thickness will be
less than 15 ft than greater than 15 ft; and (c) odds are 6 to 4 that the thickness will
be between 10 and 21 ft, or to put it differently, the 11 ft interval between 10 and 21
ft has a probability of 0.6 of containing the true thickness. These are the standard
concepts and tools used universally in statistics to characterize uncertainty.

The classification system established by Circular 891 does not use probabilities
and lacks the predictive power of a random variable approach. In particular,

• The classification uses an ordinal scale (e.g., Urdan 2017), supposedly ranked,
but the classification does not indicate how much more uncertain one category is
relative to another. In practice, it has been found that errors may not be sig-
nificantly different among categories (Olea et al. 2011).

• The results of a distance classification are difficult to validate. The tonnage in a
class denotes an accumulated magnitude over an extensive volume of the
deposit. The entire portion of the deposit comprising a class would have to be
mined in order to determine the exact margin of error in the classification for
such a class. In practical terms, the classification is not falsifiable, thus it is
unscientific (Popper 2000). Moreover, there is little value in determining the
reliability of a prediction post mining.

• The classification fails to consider the effect of geologic complexity. Coal
deposits ordinarily contain several geologically different beds that may be
penetrated drilling a single hole. When all beds are penetrated by the same
vertical drill holes, the drilling pattern is the same for all beds. Using the
Circular 891 classification method, the areal extension of each category is the
same for the resources of each coal bed separately and for the accumulated
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resources considering all coal beds, while logic indicates that the extension of
true reliability classes should be all different.

• For similar reasons, in a multi-seam deposit, increasing the drilling density
results in the same reduction in uncertainty for all coalbeds, which is also
unrealistic.

• The number of methods for estimating resources is continuously growing,
hopefully for the better. Considering that not all methods are equally powerful,
independently of the data, different methods offer varying degrees of reliability.
The uncertainty denoted by the Circular 891 classification is insensitive to the
methods used in the calculation of the tonnage. For example, inferred resources
remain as inferred resources independently of the nature and quality of the
methods used in the assessment.

Despite these drawbacks and the formulation of the superior alternatives below,
Circular 891 and similar approaches remain the prevailing methods worldwide for
the public disclosure of uncertainty in the assessment of mineral resources and
reserves (JORC 2012; CRIRSCO 2013).

19.4 Kriging

Kriging is a family of spatial statistics methods formulated for the improvement in
the reporting of uncertainty and in the estimation of the attributes of interest
themselves. Although it is possible to establish links between kriging and other
older estimation methods in various disciplines, mining was the driving force
behind the initial developments of kriging and other related methods collectively
known today as geostatistics (Cressie 1990).

Kriging is basically a generalization of minimum mean square error estimation
taking into account spatial correlation. Kriging provides two numbers per location
ðsoÞ conditioned to some sample of the attribute ðzðsiÞ, i=1, 2, . . . ,NÞ: an estimate
of the unknown value ðz*ðsoÞÞ and a standard error ðσðsoÞÞ. The exact expression
for these results depends on the form of kriging. For ordinary kriging, the most
commonly applied form and the one used here, the equations are:

z*ðsoÞ= ∑
n

i=1
λi ⋅ zðsiÞ ð19:1Þ

σ2ðsoÞ= ∑
n

i=1
λi ⋅ γ so, sið Þ

� �
− μ ð19:2Þ

where:

n≤N is a subset of the sample consisting of the observations closest to so;
γðdÞ is the semivariogram, a function of the distance d between two locations;
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λi is a weight determined by solving a system of linear equations comprising
semivariogram terms; and

μ is a Lagrange multiplier, also determined by solving the same system of
equations.

The method presumes knowledge of the function characterizing the spatial
correlation between any two points, which is never the case. A structural analysis
must be conducted before running kriging to estimate this function: a covariance or
semivariogram. The semivariogram can be regarded as a scaled distance function.
The weights and the Lagrange multiplier depend on the semivariogram for multiple
drill-hole to drill-hole distances and estimation location to drill-hole distances. For
details, see for example Olea (1999).

The two terms, z*ðsoÞ and σ2ðsoÞ, are the mean and the variance of the random
variable modeling the uncertainty of the true value of the attribute zðsoÞ, terms that
are compatible with all that is known about the attribute through the sample of size
N. Variance is a measure of dispersion, in this case, dispersion of possible values
around the estimate, which is the most likely value. Hence, changing the sample, a
sensitivity analysis of kriging variance is a sensitivity analysis of variations in
uncertainty due to changes in the sampling scheme. From Eq. 19.2, the kriging
variance does not depend directly on the observations. The dependence is only
indirect through the semivariogram, which is based on the data. Considering that
there is one true semivariogram per attribute, changes in adequate sampling should
not result in significant changes in the estimated semivariogram, which is kept
constant. This independence between data and standard error facilitates the appli-
cation of kriging to the sensitivity analysis in the reliability of an assessment due to
changes in sampling strategy because mathematically actual measurements are not
necessary to calculate standard errors; the modeler only has to specify the semi-
variogram and the sampling locations.

Figure 19.3 shows the set of estimated semivariogram values obtained using the
sample in Fig. 19.1 plus a model fitting the points for the purpose of having valid
semivariogram values for any distance. In this case, the fitted curve is called a
spherical model with a nugget of 20 sq ft, sill of 595 sq ft and a spatial correlation
range of 88,920 ft. Geologically, the nugget is related to the variance of short scale
fluctuations; the sill is of the same order of magnitude as the sample variance, and
the correlation range is equal to half the average geographical size of the anomalies.
For details on structural analysis, see for example Olea (2006).

Figure 19.4 shows the results of applying ordinary kriging to the sample in
Fig. 19.1a and Table 19.1 in the Appendix. As expected, the standard error is zero at
the drill holes because there is no uncertainty where measurements have been taken.

Although kriging can analyze any configuration, Fig. 19.5 only relates to
additions or eliminations to the basic sample in Fig. 19.1a. Values along the
diagonal were used only for modeling the semivariogram and producing Fig. 19.4.
Figure 19.5a also has every other row and column eliminated. Estimates could be
produced for the first two configurations because thickness is known at each drill
hole. The other maps were produced by interpolating locations in the sample with
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Fig. 19.4 Ordinary kriging maps for the Anderson coal bed in a central part of the Gillette coal
field (Wyoming) using the sample in Fig. 19.1: a thickness; b standard error

Fig. 19.3 Semivariogram for the Anderson coal bed thickness. The crosses denote estimated
values and the curve is a model fitting the values
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Fig. 19.5 Ordinary kriging standard error for the same configuration in Fig. 19.2 for several
average spacings: a 6 mi; b 3 mi; c 1.5 mi; d 3/4 mi; e 3/8 mi
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the next largest spacing; it is only possible to produce the standard error map for
Fig. 19.5c–e.

The similarity between Figs. 19.2 and 19.5b may lead to incorrect conclusions.
Although the location and extension of similar colors are approximately the same,
what is important is the meaning of the colors. Figure 19.2 does not provide any
numerical information that can be associated with the accuracy and the precision of
the estimated values. In Fig. 19.5b the numbers are standard errors, a direct mea-
surement of estimation reliability. In other more irregular configurations, there will
not be similarity in color patterns no matter how the colors are selected. For
example, by expanding the boundary of the study area, Fig. 19.6 shows how the
Circular 891 classification is totally insensitive to the fact that, along the periphery,
there is an increase in uncertainty because the data are now to one side, not sur-
rounding the estimation locations. Instead, kriging accounts for the fact that
extrapolation is always a more uncertain operation than interpolation, an important
capability when accounting for boundary effects.

Kriging is able to provide random variables for the statistical characterization of
uncertainty if the modeler is willing to introduce a distributional assumption. z*ðsoÞ
and σ2ðsoÞ are the mean and the variance of the distribution of the random variable
providing the likely values for zðsoÞ. These parameters are necessary but not suf-
ficient to fully characterize any distribution. However, this indetermination can be
eliminated by assuming a distribution that is fully determined with these two
parameters. Ordinarily, the distribution of choice is the normal distribution, fol-
lowed by the lognormal. The form of the distribution does not change by sub-
tracting zðsoÞ from all estimates. As the difference z*ðsoÞ− zðsoÞ is the estimation
error, the distributional assumption also allows characterizing the distribution for
the error at so.

Fig. 19.6 Comparison of results when expanding the boundaries of the study area: a Circular 891
classification; b ordinary kriging standard error
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Kriging with a distribution for the errors overcomes all the disadvantages of the
distance methods listed in the previous section:

• It is possible to calculate the probability that the true value of the attribute lies in
any number of intervals. Probabilities are a form of a ratio variable, for which
zero denotes an impossible event and, say, a 0.2 probability denotes twice the
likelihood of occurrence of an event than 0.1.

• Validation is modular. An adequate theory assures that, on average, z*ðsoÞ and
σ2ðsoÞ are good estimates of reality. Yet, as illustrated by an example in the last
Section, if going ahead with validation of the uncertainty modeling primarily to
check the adequacy of the normality assumption, it is not necessary to validate
all possible locations throughout the entire deposit to evaluate the quality of the
modeling.

• The effect of complexity in the geology is taken into account by the
semivariogram.

• In general, the thickness of every coal bed or the accumulated values of
thickness for several coal beds has a different semivariogram. Thus, even if the
sampling configuration is the same, the standard error maps will be different.

• The characterization of uncertainty is specific to the estimation method because
the results are valid only for estimated values using the same form of kriging
used to generate the standard errors.

Figure 19.7 summarizes the results of the maps in Fig. 19.5. Display of the 95th
percentile is based on the assumption that all random variables follow normal
distributions. The curves clearly outline the consequences of varying the spacing in

Fig. 19.7 Sensitivity of
ordinary kriging to spacing of
mean standard error, its 95th
percentile, and the maximum
standard error based on the
Fig. 19.5 configurations
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a square sampling pattern from 2,000 to 32,000 ft. So, for example, if it is required
that all estimates in the study area must have a standard error less than 10 ft, then
the maximum spacing must be at most 12,500 ft. The validity of the results,
however, is specific to the attribute and sampling pattern: thickness of the Anderson
coal bed investigated with a square grid. Any change in these specifications requires
preparation of another set of curves.

19.5 Stochastic Simulation

Despite limited acceptance, the kriging variance has been in use for a while in the
sensitivity analysis of uncertainty to changes in sampling distances and configu-
rations (e.g., Olea 1984; Cressie et al. 1990). Kriging, like any mathematical
method, has been open to improvements. One result has been the formulation of
another family of methods: stochastic simulation.

Relative to the topic of this chapter, stochastic simulation offers two improve-
ments: (a) it is no longer necessary to assume the form for the distribution providing
all possible values for the true value of the attribute zðsoÞ; and (b) the standard error
is sensitive to the data.

As seen in Fig. 19.4, for every attribute and sample, kriging produces two maps,
a map of the estimate and a map of the standard error. The idea of stochastic
simulation is to characterize uncertainty by producing instead multiple attribute
maps, all compatible with the data at hand and each representing one possible
outcome of reality—realization, for short. From among the many available methods
of geostatistical simulation, sequential Gaussian simulation has been chosen for this
study because of its simplicity, versatility and efficiency (Pyrcz and Deutsch 2014).
Figure 19.8 shows four simulated realizations, each of which is a possible reality in
the sense that the values have the same statistics and spatial statistics (semivari-
ogram) and the simulation reproduces the known sample values (i.e., the sample
used to prepare Fig. 19.5b).

Generation of significant results needs preparation of more realizations than the
four in Fig. 19.8. An estimation of uncertainty requires summarizing the fluctua-
tions from realization to realization, either at local or global scales. Figure 19.9 is
an example of local fluctuation summarizing all values of thickness at the same
location for 100 realizations. This histogram is the numerical characterization of
uncertainty through a random variable. There is one random variable for each of the
57,528 pixels (cells) comprising each realization. As clearly implied by the selected
values in the tabulation, this collection of 100 maps provides multiple predictions of
the true thickness value that should be expected at this location. For example, the
most likely value (mean) is 65.75 ft; the standard error is 13.47 ft; and there is a
0.95 probability that the coal bed will be less than 87.8 ft thick.

Maps can be generated for various statistics across the study area to display
fluctuations in their values. Figure 19.10 shows a map of the mean and a map of the
standard error. Note that the map for the mean is quite similar to the ordinary
kriging map in Fig. 19.4a. More importantly, the maps for the standard errors in
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Figs. 19.5b and 19.10b are significantly different. The differences in the standard
errors are primarily the result of the dependency of the standard error not only on
the semivariogram and the drill hole locations, but also on the values of thickness as
well. For example, comparing Figs. 19.1a and 19.10b, despite the regularity in the
drilling, there is less uncertainty in the southwest corner where all values are low as
well as in the south central part where all values are consistently high.

Production of a display of the standard error equivalent to that in Fig. 19.5 is
more challenging now that the standard deviation must be extracted from multiple
realizations and the preparation of each realization requires a value at each drill hole

Fig. 19.8 A sample of four sequential Gaussian realizations using the same data used in the
preparation of Fig. 19.5b
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in the configuration of interest to complete the analysis. Figure 19.11 shows the
equivalent results to Fig. 19.5 for the same drill holes, but now produced after
applying sequential Gaussian simulation. The additional data necessary to prepare
the maps in Fig. 19.11c–e where obtained by randomly selecting 10 of the 100
realizations used to prepare the maps in Figs. 19.8 and 19.10. The data for the
hypothetical drill holes were taken from the values at the collocated nodes in these
selected 10 realizations, thus obtaining 10 datasets consisting partly of the 48 actual
data in Fig. 19.11b plus the artificial data obtained by “drilling” the realizations.

Fig. 19.10 Anderson coal bed thickness according to 100 sequential Gaussian simulations:
a expected value of thickness; b standard error

Fig. 19.9 Example of the numerical approximation to the random variable modeling uncertainty
in the value of thickness at a site not yet drilled
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Fig. 19.11 Sequential Gaussian simulation standard error for the same configuration on Fig. 19.2
for several average spacings: a 6 mi; b 3 mi; c 1.5 mi; d 3/4 mi; e 3/8 mi
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Finally, each dataset was used to generate 100 realizations, for a total of 1,000
realizations per configuration. As mentioned for Fig. 19.10b, despite the regularity
of the drill hole pattern, the fluctuations in standard error are no longer completely
determined by the drilling pattern.

Figure 19.12 is the summary equivalent to that in Fig. 19.7. Considering the
completely different methodologies behind both sets of curves, the results are quite
similar, particularly the curves for the mean standard error, which are almost
identical. The more extreme standard errors of the sequential Gaussian simulation
are larger than those for ordinary kriging in the case of the 95th percentile and the
maximum value. The remaining question is: Which approach produces the most
realistic forecasts of uncertainty?

19.6 Validation

Figure 19.13 provides an answer to the question above in terms of percentiles.
A percentile is a number that separates a set of values into two groups, one below
and the other one above the percentile. The percentage of values below gives the
name to the percentile. For example, in Fig. 19.9, the value 46.22 ft separates the
100 values of thickness into two classes, those below and those equal to or above
46.22 ft. It turns out that only 5 of the 100 values are below 46.22 ft. Hence, 46.22
ft is the 5th percentile of that dataset. Accepting only integer values of percentages,
there are 99 percentiles in any dataset. The quality of a model of uncertainty can be
validated by checking the proportion of true values that are actually below the
percentiles of the prediction random variables collocated with data not used in the

Fig. 19.12 Sequential
Gaussian simulation
sensitivity to spacing of mean
standard error, its 95th
percentile, and the maximum
standard error based on the
configurations in Fig. 19.11
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Fig. 19.13 Validation of the uncertainty predictions made for the 3 mi spacing samples:
a ordinary kriging; b sequential Gaussian simulation

modeling. One of the reasons for selecting the Anderson coal thickness for the
study is that there are much more data than the 48 values used to generate the
realizations, a generous set of 2,136 additional values to be precise. This larger
number of values has been used for checking the accuracy of the percentiles, not
only the 5th percentile, but all 99 percentiles. In the graphs, the actual percentage
shows, on average, the proportion of times the true value was below the percentile
of a random variable at the location of a censored measurement. For example, in
Fig. 19.13a, 641 times out of 2,136 (i.e., 30%) the true value was indeed below the
35th percentile. Ideally, all dots should lie along the main diagonal. The clear
winner is sequential Gaussian simulation.

19.7 Conclusions

Distance methods, kriging and stochastic simulation rank, in that order, in terms of
increasing detail and precision of the information that they are able to provide
concerning the uncertainty associated to any spatial resource assessment.

The resource classification provided by distance methods is completely inde-
pendent of the geology of the deposit and the method applied to calculate the
mineral resources. The magnitude of the resource per class has no associated
quantitative measure of the deviation that could be expected between the calculated
resource and the actual amount in place.

The geostatistical methods of kriging and stochastic simulation base the mod-
eling on the concept of random variable used in statistics, which allows the same
type of probabilistic forecasting used in other forms of risk assessments. Censored
data were used for validating the accuracy of the probabilistic predictions that can
be made using the geostatistical methods. The results were entirely satisfactory,
particularly in the case of stochastic simulation.
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Appendix

See Table 19.1.

Table 19.1 Thickness data. ID = identification number; Thick. = thickness; ft = feet

ID Easting (ft) Northing (ft) Thick. (ft) ID Easting (ft) Northing (ft) Thick. (ft)

2 431,326 1,316,298 49.0 39 399,741 1,236,607 77.0
3 398,753 1,316,124 32.0 40 432,107 1,236,582 70.5
4 352,156 1,316,015 37.0 41 384,280 1,236,527 58.0
5 365,531 1.315,818 49.0 42 415,737 1,236,459 78.0
7 382,816 1,314,601 55.0 44 352,743 1,221,026 10.0
9 430,850 1,301,568 48.0 45 368,483 1,220,742 26.0
10 398,805 1,301,506 57.0 46 431,473 1,220,645 59.0
11 352,234 1,299,533 37.0 47 399,596 1,220,598 92.0
12 366,769 1,300,871 50.0 48 415,871 1,220,477 86.0
13 414,876 1,300,240 56.0 49 384,411 1,220,477 32.0
14 382,892 1,299,775 58.0 51 367,180 1,206,180 17.0
16 416,097 1,284,247 60.0 52 399,353 1,205,960 99.0
17 430,593 1,284,243 47.0 53 417,304 1,204,922 76.0
18 400,291 1,284,132 87.0 54 384,456 1,204,470 28.0
19 384,138 1,283,859 53.0 55 432,027 1,203,507 52.0
20 368,123 1,283,849 56.0 56 351,466 1,203,245 11.0
21 351,956 1,283,728 36.0 123 356,115 1,295,788 35.0
23 366,138 1,268,773 55.0 145 360,095 1,291,759 38.0
24 383,559 1,268,661 60.0 166 362,980 1,289,047 42.0
25 431,915 1,268,363 70.0 216 371,863 1,277,272 50.0
26 415,962 1,268,347 75.0 234 377,019 1,272,660 57.0
27 399,884 1,268,270 63.0 282 387,755 1,264,534 60.0
28 352,933 1,268,254 34.0 299 391,477 1,261,727 70.0
30 352,738 1,253,951 21.0 318 395,814 1,257,798 58.0
31 384,499 1,253,969 62.0 380 403,832 1,248,290 75.0
32 400,076 1,252,554 79.0 406 407,848 1,243,143 81.0
33 415,868 1,256,420 57.0 427 411,790 1,240,470 84.0
34 368,579 1,250,159 44.0 470 419,690 1,232,449 92.0
35 430,979 1,251,072 81.5 497 422,447 1,228,465 90.0
37 352,979 1,237 155 30.0 512 427,604 1,224,598 46.0
38 368,493 1,236,862 37.0 1001 415,000 1,316,000 45.0
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