
Chapter 18
Quantifying the Impacts of Uncertainty

Peter Dowd

Abstract This chapter reviews the general concepts of uncertainty and proba-
bilistic risk analysis with a focus on the sources of epistemic and aleatory uncer-
tainty in natural resource and environmental applications together with examples of
quantifying both types of uncertainty. The initial uncertainty in these applications
arises from the in-situ spatial variability of variables and the relatively sparse data
available to model this variability. Subsequent uncertainty arises from processes
applied either to extract the in-situ variables or to subject them to some form of flow
and/or transport. Various approaches to quantifying the impacts of these uncer-
tainties are reviewed and several practical mining and environmental examples are
given.

18.1 Introduction

This chapter provides an overview of the quantification of uncertainty with a focus
on mineral and energy resources and environmental applications drawing on the
work of the author and his co-authors over the past 30 years. Rarely in mining
applications do initial estimates reconcile with production—there is almost always
some reverse calibration or model revision to achieve an operationally acceptable
agreement. This feedback approach can be a useful means of model calibration but
the production ‘reality’ is an outcome conditional on the model and data used to
make the production decision and may be biased. The resort to post hoc empirical
calibration is due partly to insufficient data and partly to inadequate accounting for
all sources of uncertainty. This situation will worsen as, increasingly, mineral
resources will be extracted from deeper and/or lower grade deposits, which will
require new technologies and new types of indirect sampling. In applications such
as hydrocarbon extraction, the feedback reconciliation approach is essential because
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the in-situ variables can never be directly observed; Caers (2011) gives a com-
prehensive account of uncertainty quantification for these types of application.

The focus here is on geological applications in which the purpose is to extract
material, store material or monitor the flow of fluids or contaminants. In these
applications, uncertainty arises from two sources of variability: the in-situ vari-
ability of the geology and associated quantitative variables and the variability that is
generated by applying processes to the in-situ resource. The basic approach is to
combine data with a model to make predictions. Such predictions are meaningless
unless accompanied by quantitative measures of the uncertainty of the prediction.

The general focus, particularly in mining applications, has been on the uncer-
tainty arising from sparse data and not on uncertainty arising from the model, even
though the model is inferred, and its parameters are estimated, from the sparse data.
Variability arising from processes applied to the in-situ resource is either quantified
in an overly simplistic manner or is ignored. The additional aspect in these and
most spatial applications is that variability (and, therefore, uncertainty) is
scale-dependent and may be relevant on multiple scales depending on the
application.

18.2 Sources of In-Situ Uncertainty

In the field of uncertainty and probabilistic risk analysis two types of uncertainty are
identified: aleatory and epistemic uncertainty (or irreducible and reducible uncer-
tainty). In the generally accepted definitions (e.g., Bedford and Cooke 2001),
aleatory uncertainty arises from the inherent variability of a phenomenon and
cannot be reduced; epistemic uncertainty arises from incomplete knowledge of the
phenomenon and can be reduced by more data, analysis or research. As both types
of uncertainty are expressed in terms of probabilities, some authors question the
necessity to distinguish between them. Others (e.g. Hora 1996; Winkler 1996)
prefer sources of uncertainty rather than types, “the distinction between uncer-
tainties is a matter of choice of scale and is, therefore, mutable.” In the geostatistics
context, Matheron (1975, 1976, 1978), notes that the empirical basis of uncertainty
is the same in both cases and there is no objective criterion to distinguish them.
Journel (1994) gives guidelines for modelling uncertainty on which Srivastava
(1994) provides critical comment. However, as Winkler (1996) noted “uncertainty
is uncertainty but the distinctions are related to very important practical aspects of
modelling and obtaining information”. This is especially so in the applications
given here.

A fundamental difference between geological applications and many others is
that each occurrence (orebody, karst system) is unique and, apart from measurement
error, once a physical sample is taken at a location and the required variable is
measured directly from the sample, there is no longer any uncertainty about the
value of the variable at that location. The general geostatistical model includes
stationarity, which allows for repeated sampling of the same random variable at
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different locations. In principle (but not in practice), all locations in an orebody
could be sampled and aleatory uncertainty would be eliminated. Thus, in these
applications aleatory uncertainty is entirely a function of the amount and quality of
data. Epistemic uncertainty arises from the assumed or inferred geological model
(e.g., type, or style, of mineralisation). In mining applications, at least in terms of a
general model, there may be significant epistemic uncertainty during early stages of
proving a deposit when geological models are inferred from sparse data. Model
uncertainty may persist in later stages in terms of the specific characteristics or
parameters of the model.

In some natural resource applications, the variables that define the resource can
never be directly observed. For example, in hot dry rock (HDR) enhanced
geothermal systems, the variable of interest is the combination of natural and
stimulated fractures that form connected networks to extract heat. These fractures,
at depths of up to 4.5 km, can never be directly observed or measured; their
locations, extents and characteristics can only be inferred from micro-seismic
events generated by fracture movement, stimulation and propagation (e.g., Xu and
Dowd 2014). In these applications, the detailed model can never be known irre-
spective of the amount of data available. As mineral resources are extracted from
increasingly deeper deposits there will be a move from physical samples, from
which variables are directly measured, to sensed proxy variables and a move from
traditional mining methods to in-situ recovery. For indirectly sensed variables, the
aleatory uncertainty of the required variable (e.g., porosity) is largely due to the
quality of the relationship with the directly sensed proxy variable (e.g., acoustic
impedance), which could be classified as measurement, or interpretation, error.

Thus, although both sources of in-situ uncertainty in these applications are
functions of the amount of data, it is useful to distinguish between them in quan-
tifying uncertainty. Hereafter, epistemic uncertainty is used to mean conceptual or
descriptive geological models as well as quantitative parametric models that
describe spatial variability and in which parameter values are calculated or inferred
from data.

Although epistemic uncertainty is recognised, it is largely ignored in practice.
Once a model is assumed or inferred and/or its parameters are inferred or estimated
from the available data, all measures of uncertainty are based on the data; in most
applications, the model of spatial variability is implicitly assumed to be known with
certainty. In other fields, there has been a longstanding recognition of the impor-
tance of identifying and quantifying both sources of uncertainty and of propagating
them into a complete systems model (e.g., Bedford and Cooke 2001; Helton et al.
2004; Oberkampf et al. 2002, 2004). In natural resource applications, particularly
mining, the emphasis has largely been on aleatory uncertainty with implicit
acceptance that epistemic uncertainty is negligible. Geostatistical simulation is
widely used to quantify the effects of limited data on resource modelling and
estimation (aleatory uncertainty) but the model (e.g., variogram, spatial pattern) is
generally assumed to be perfectly known (no, or negligible, epistemic uncertainty).
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18.3 Transfer Uncertainty

A further complication in mineral and energy resources is that there are additional
significant sources of uncertainty in extraction and processing to produce a final
product. To borrow a petroleum industry term these might be called transfer, or
process, functions and the associated uncertainties, transfer or process uncertainty.
A general approach to integrating this source of uncertainty is to quantify all
sources of in-situ uncertainties and propagate them into simulated transfer processes
(e.g., blasting, selective loading, transport, mineral processing).

In resource extraction applications, it is useful to distinguish two broad types of
process (or transfer) uncertainty:

(1) The uncertainty associated with in-situ variables that is propagated into pro-
cesses applied to them. This might be termed passive in the sense that it does
not change spatial variability. An example is the impact of grade uncertainty on
mine design, which could be assessed by applying the same design process
(e.g., optimal open-pit) to a range of simulated realisations of grades.

(2) The uncertainty transferred, or propagated, to in-situ variables by applying
processes to them. This might be termed active as the process changes spatial
variability. Changes in spatial variability can be predicted by modelling the
process. An example is blasting a block of ground from which ore is selected.

18.4 Consequences of In-Situ Uncertainty

There are broadly two aspects of a geological model used in mineral resource
applications: the generic type (e.g., stratiform silver/lead/zinc orebody) and the
unique aspects that distinguish a specific orebody within the type (e.g., faulting,
folding, degree of spatial continuity and of regularity of orebody boundaries). In
general, for mineral deposits the first of these is known with near certainty at a
relatively early stage but the distinguishing aspects and the relevant scales on which
these aspects occur may not be known until much later. In these applications, the
two types of in-situ uncertainty are not independent. The sampling scale (e.g.,
drilling grid) is determined, or at least significantly informed by, the geological
model; the sampling scale determines the data, the spatial variability of which is the
aleatory uncertainty; the parameters of the model are estimated by the data.

The Stekenjokk mine in Sweden provides a striking example of the consequences
of epistemic uncertainty. Boliden Mineral AB mined this massive copper-zinc-silver
orebody from 1976 to 1988 and processed a total of 8 M tonnes of ore. Prior to mine
development the drilling grid was 20 m × 20 m and, in places, 20 m × 10 m.
Figure 18.1 is an idealised, but typical, vertical cross-section through the orebody
showing the drill-hole intersections with the ore. Drilling data were combined with
the assumed geological model to generate the estimated orebody boundaries.
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Figure 18.1 shows the complex, multi-directional folding of ore zones encountered
in mining. The practical consequences of these predictions were significant (Hoppe
1978):

• Inappropriate choice of mining methods and mining equipment.
• Increased ore dilution, mining costs, development and processing provisions.
• Complications of highly mechanised equipment purchased for a simpler mine.

In principle, the problem could have been resolved by more appropriate sam-
pling but the “appropriateness” of sampling was determined by the assumed geo-
logical model. In addition, sampling is constrained by cost (relative to the value of
the mined product) and the cost of a drilling grid capable of capturing the folding
may well have been prohibitive.

Geological models are only as good as the quality and interpretation of the data
and the appropriateness of the scale on which the data are collected. Stekenjokk is
an extreme (but not unique) example of epistemic uncertainty that could only be

Wave length 14m
Amplitude     20m
True ore thickness 5m

Ore intersec on in drill hole

Ore boundaries projected from 
surface drill holes

Actual ore folding

20m
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Dh Dh Dh Dh Dh 

14m

Fig. 18.1 Interpolation of ore continuity from surface drilling data prior to mine development;
adapted from Hoppe (1978)
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reduced to an acceptable level by more data. However, this observation is some-
what circular: the geological model depends on the amount of data/information
available but the data type and collection are informed by the assumed model.

18.4.1 Scale and Variability Example: Hilton Orebodies
Australia

This example is from a study of a complex group of three silver/lead/zinc orebodies
at what, at the time, was known as the Hilton mine in north-western Queensland,
Australia. The full study is given in Dowd and Scott (1984) with a later study in
Dowd et al. (1989).

The Hilton orebodies are 22 km north of Mt Isa, one of the world’s largest
stratiform base metal deposits. The Hilton orebodies have a similar diagenesis to the
Mt Isa orebodies with mineralisation occurring in the same dolomitic shale. The
study was undertaken at the pre-feasibility stage and all original drilling, sampling
and interpretation were influenced by 50 year’s mining experience at Mt Isa.
Although the Mt Isa and Hilton styles of mineralisation are similar, the Hilton
orebodies are structurally more complex and less continuous.

Two test areas were extensively drilled to provide detailed information for a
geostatistical study to determine optimal drilling densities for mine planning pur-
poses. The holes were drilled from access drives as fans on cross-sections spaced 10
and 20 m apart. One such cross-section is shown in Fig. 18.2 in which the holes
intersect the main 2 orebody footwall lens (2 O/B FW) at approximately 5 m
centres. The dark blue outlines in Fig. 18.2 are the orebody boundaries estimated
from the drill-hole data on the cross-section and on the cross-sections on either side.
In the feasibility stage cost would prohibit such a drilling density over the entire
orebody. Given the density of the drilling these estimated boundaries could be
regarded as reality on all practical scales.

The effects of other drilling densities were assessed by removing drill data to
create new datasets; e.g., removing every second drill-hole on a cross-section yields
a 10 m spacing. Datasets for 5, 10, 20 and 40 m drill spacing were used in the
study. Orebody boundaries were estimated for each drilling density and the results
were given to mining engineers to design stopes. As an example, the estimated
orebody boundaries for 20 m drill spacing is shown in Fig. 18.3. As expected, these
boundaries are much smoother (less variable, more continuous) than the “reality”
represented by the boundaries estimated from the 5 m spacing dataset. The vari-
ability of the boundaries is critical in the choice of mining method: the variability of
boundaries and their exact delineation are less critical if a bulk mining method is
adopted than if more selective methods are used. The original mining method was
cut and fill followed later by sub-level open stoping and bench mining.

Figure 18.4 shows the 5 m interpolation overlaid on the 20 m interpolation.
Taking the 5 m interpolated boundaries as reality, all visible light blue areas
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represent ore dilution arising from planning and extraction based on the 20 m
interpolated boundaries.

Figure 18.5 shows the 20 m interpolation overlaid on the 5 m interpolation.
Again, taking the 5 m boundaries as reality, all visible dark blue areas represent the
ore loss arising from planning and extraction based on the 20 m interpolated

Fig. 18.2 Cross-sectional interpretation based on 5 m drill spacing

1 O/B 2 O/B H/W 2 O/B F/W 3 O/B

Fig. 18.3 Cross-sectional interpretation based on 20 m drill spacing
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boundaries. Of course, the perfect selection and the adherence to estimated
boundaries during production implied by this exercise are not entirely realistic.
However, the impact on the choice of mining method, on the predicted grades and
tonnages, and on economic outcomes is real.

1 O/B 2O/B H/W 2 O/B F/W 3 O/B

Fig. 18.4 Overlay of 5 m interpolation on 20 m interpolation

1 O/B 2 O/B H/W 2 O/B F/W 3 O/B

Fig. 18.5 Overlay of 20 m interpolation on 5 m interpolation. Based on 20 m model, all visible
dark blue areas represent ore loss
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The outputs from the stope design exercise are summarised in Fig. 18.6 for 5, 10
and 20 m drill spacing. Orebodies 1 and 2 H/W (hanging wall) are mined in a single
stope and orebodies 2F/W and 3 are mined in separate stopes. Grades were esti-
mated by kriging and are in metal equivalents of lead (weighted sum of lead, zinc
and silver grades); intervals are ±2σK where σK is the square root of the kriging
variance and is used as an index of uncertainty rather than a confidence interval.
Taking the 5 m designs as actual boundaries, the stope designs based on 10 and
20 m drilling show the effects of decreasing amounts of data on planned tonnage
and average grade.
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Fig. 18.6 Stope designs with contained tonnages and grades for 5, 10 and 20 m drill spacing for
orebodies 1 and 2 HW (left); 2 FW (centre) and 3 (right)
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The stope designs are based on the data and interpretations from the respective
drilling densities but the grades and tonnages are estimated using all data (5 m drill
spacing). Assuming the data from the 5 m drill spacing gives the closest possible
quantification of reality on all practical scales then the grade and tonnage of the 10
and 20 m stope designs estimated from all data can be regarded as sufficiently close
to the real tonnage and grade that could be recovered from the designs.

The effects of data density on grades and tonnages are summarised in
Table 18.1. As an example, using the 20 m drill spacing data to design stope 2 (the
high-grade orebody 2 footwall) would increase tonnage by 21.4% and reduce grade
by 9.6%. There would an increase in metal tonnage of 9.7% but this would at the
cost of mining, hauling and processing the additional ore tonnage.

Whilst the effects of data on a specific type of mining are of interest, the more
important issue is the effect of the assumed geological model on the choice of
mining method. The initial geological model was influenced by the knowledge
accumulated over a long period of mining in the neighbouring Mt Isa orebodies.
The detailed analysis described here enabled the effects of the greater complexity
and less continuity of the Hilton orebodies to be systematically quantified, thereby
significantly reducing the impact of epistemic uncertainty and contributing to the
selection of the most appropriate mining method and mine design.

18.5 Quantifying Epistemic Uncertainty

In the Hilton example, geological model uncertainty was addressed at the signifi-
cant cost of more samples—effectively eliminating the epistemic uncertainty on the
operational scale through more data and analysis. With the hindsight of the addi-
tional data and analysis, and on the assumption that the test volume is sufficiently
representative of the remainder of the orebodies, the epistemic uncertainty associ-
ated with various drilling grids could be quantified. This would allow assessment of
the value of additional information against the cost of collecting it and/or the
operational cost of not collecting it. Stekenjokk is an example of the practical
consequences of proceeding with an unacceptable level of epistemic uncertainty.

Table 18.1 Differences in tonnes and grades of stopes compared with 5 m designs

Stope Drill spacing
(m)

Change in ore
tonnes (%)

Change in grade
(%)

Change in metal
tonnes (%)

1 10 −10.2 +4.2 −6.4
20 −3.0 +3.6 −0.5

2 10 +14.5 −5.9 +7.8
20 +21.4 −9.6 +9.7

3 10 −15.9 +5.0 −11.8
20 −18.5 +5.5 −14.0
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There is an extensive literature on using Bayesian probability to quantify epis-
temic uncertainty particularly to combine sources of uncertainty (e.g., Winkler
1981; Sankararaman and Mahadevan 2011) and to incorporate expert knowledge
and informed guesses in the form of subjective probabilities. It can be argued that
subjective probabilities are used implicitly throughout geostatistical analysis,
modelling, estimation and simulation irrespective of the amount of data. Expert
knowledge/judgment guides variogram calculation and interpretation, choice of
training images, domaining, sample differentiation, choice of estimation or simu-
lation method and validity of outputs. There is, however, a distinction between the
explicit subjective probability of informed guesses and possible geological models
and the implicit subjectivity in inferring model parameters from quantitative data.

In the remainder of this chapter, a distinction is made between model uncertainty
and uncertainty of the parameters of a specific model. Many authors do this
although in some cases the former may be a case of the latter e.g., it might be
argued (with some difficulty) that Stekenjokk was a matter of incorrect structural
parameters (degree of folding). A more convincing argument could be made for the
Hilton case—the initial assumed model was a Mt Isa type stratiform orebody and
the final agreed version was a more complex and less continuous version of the
latter.

In addition to Bayesian approaches, others include evidence theory: Shafer
(1976) and Dempster (1968); fuzzy sets: (Zadeh 1965); and possibility theory:
Zadeh (1978) and Dubois and Prade (2001). These and other approaches are
extensively used to quantify uncertainty in risk analysis and a good coverage of
probabilistic risk analysis is given in Bedford and Cooke (2001).

Over the past 30 years, all these approaches have been used to incorporate
model uncertainty in geostatistical estimation and simulation and the following list
is intended as representative rather than exhaustive. Omre (1987) used Bayesian
kriging to include qualified guesses when few data are available; the weight
assigned to the guess increases as the amount of data decreases.

Fuzzy kriging has been proposed as a means of including aleatory uncertainty (in
the sense of inaccurate or imprecise measurements) and epistemic uncertainty
(imprecise variogram parameters) in estimation. Uncertain data will, of course, lead
to an uncertain variogram but certain (accurate, error-free) data will not necessarily
lead to a certain variogram. Diamond (1989) proposed fuzzy kriging to deal with
uncertain or imprecise data. Bardossy et al. (1988, 1990a, b) proposed fuzzy kriging
for dealing with both sources of uncertainty but the computational cost hindered its
use. More recently, Loquin and Dubois (2010a, b) have developed these approaches
in computationally feasible forms. Bandemar and Gebhardt (2000) combine fuzzy
kriging with Bayesian incorporation of prior knowledge. Bardossy and Fodor
(2004) provide a comprehensive coverage of the use fuzzy set theory to quantify
geological uncertainty and consequent risk.

Srivastava (2005) used probabilistic modelling of ore lenses to account for
uncertainty in the boundaries of geological domains that constrain grade occur-
rence. Dowd (1986, 1994) and Dowd et al. (1989) used deterministic and proba-
bilistic methods for the same purpose in estimating and simulating grades.
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Verly et al. (2008) quantified geological model uncertainty in a porphyry copper
deposit by simulating the four principal characteristics of porphyry models: faults
defining fault blocks; faulted rock types within fault blocks; un-faulted intrusive
and breccia bodies and alteration and copper grade shells.

Maximum likelihood estimation of spatial model parameters has been widely
reported in geostatistical applications: Mardia and Marshall (1984), Kitanidis and
Lane (1985), Zimmerman (1989), Dietrich and Osborne (1991) among others.
Pardo-Igúzquiza and Dowd (1997a, b, c, 2003, 2013), Dowd and Pardo-Igúzquiza
(2002) and Pardo-Igúzquiza et al. (2013) used maximum likelihood estimates of
variogram parameters and associated uncertainties to incorporate the effects of
model uncertainty in simulation and estimation.

For categorical variables, such as geological shapes and surfaces, multiple point
statistics simulation provides a means of specifying possible geological scenarios in
the form of alternative training images. Caers (2011) uses different training images
to introduce geological model uncertainty into the simulation of oil reservoirs. Park
et al. (2013) use history matching to quantify the uncertainty of facies models in the
form of alternative training images. Hermans et al. (2014) choose among several
geological scenarios in the form of possible training images using geophysical data
and Bayes rule to compute the conditional probabilities of the alternative training
images given the geophysical data.

With a few notable exceptions, in most mining applications the geological
(model) uncertainty from the feasibility stage onwards can be limited to uncertainty
in model parameters rather than uncertainty about the general model (e.g., strati-
form, vein, disseminated). However, for cases where fundamental (and a priori,
unverifiable) assumptions are/must be made about the general model, as in oil and
gas applications or applications in which physical processes give rise to the vari-
ables (e.g., HDR fracture occurrence and propagation), it is essential to test the
sensitivity of these assumptions by reconciling the consistency of outputs (e.g., heat
production from a geothermal reservoir) with predicted responses to inputs (e.g.,
fluid flow through fracture networks). The fundamental difference between these
cases and mining applications is that ultimately the latter can be directly observed.

On the assumption that the most important characteristics of the underlying
model can be captured in several parameters of a broad model, the uncertainty in the
parameter estimates can be quantified by generating a set of parameter values using
an appropriate set of rules; simulating the spatial random variable(s) using these
parameter values; and repeating this process a sufficiently large number of times.
Methods for sampling parameter values include Maximum Likelihood, Bootstrap
methods (Olea et al. 2015), Bayesian analysis (Kitanidis 1986) and, in multiple point
statistics simulations, Bayesian selection of alternative templates or training images
(Park et al. 2013; Hermans et al. 2014) and clustering combined with system
responses (Caers 2011).

The following two examples illustrate the use of maximum likelihood in model
selection and parameter inference and the propagation of the associated uncer-
tainties into geostatistical simulation for environmental and mining applications.
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18.5.1 Example: Transmissivity Uncertainty

This example is taken from Dowd and Pardo-Igúzquiza (2002). The data are from
Gotway (1994) and comprise 41 transmissivity measurements in the Culebra
Dolomite formation in New Mexico. The original application was for nuclear waste
site assessment, where uncertainty in the groundwater travel time of a particle is
assessed through its probability density function, which is estimated by running
groundwater flow and transport programs with different transmissivity field inputs.
These inputs are generated by conditional simulations of transmissivity.

The data are the logarithms of transmissivity in m2 s−1 and the data locations are
shown in Fig. 18.7 together with a histogram of the log-transmissivity data.

Maximum Likelihood was used to estimate the parameters of an exponential
covariance model of the residuals for drift orders 0, 1 and 2. Although drift is a
deterministic component of the universal model, in practice the coefficients are
estimated from the available data and are thus random variables with the means and
standard errors given in Table 18.2 for the optimal (determined by the Akaike
information criterion) drift model of order 1: drift (x, y) = β0 + β1 x + β2 y. The
estimated covariance parameters for k = 1 are given in Table 18.3 and the vari-
ogram is shown in Fig. 18.8.

In this case, as there is no nugget variance, the range and sill are estimated
independently. The correlation between range and sill is thus zero and any com-
bination of values of the two parameters inside their respective intervals is inside
the 95% confidence region as shown in Fig. 18.9a. The drift coefficients are also
independent of the sill and the range. As the estimated drift coefficients are cor-
related, not every combination of the three parameter values is equally reliable, i.e.
values inside the 95% confidence interval of the parameters taken together may not
be inside the 95% confidence interval for each individual parameter. The confidence
interval is an ellipsoid. Figure 18.9b shows the 95% confidence region for (β1, β2)
when the third coefficient the model is set to the estimated value given in
Table 18.3.
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Fig. 18.7 Data locations (distances in km) and histogram of log transmissivity data
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The effects of model uncertainty on simulation outputs are illustrated by gen-
erating six simulations for each pair of values A, B, C, D and E in Fig. 18.9; each
set of simulations was started with the same random number seed. The simulations
are shown in Fig. 18.10. The differences between corresponding simulations (e.g.,
first simulation in each of A, B, C, D and E) for the five sets of parameters reflect
the model uncertainty, which could be quantified further by simulating flow and
transport through the simulated transmissivity realisations.

18.5.2 Example: Coal Resource Risk Assessment

One of the most significant contributors to the total risk in the evaluation of
coal-mining projects is the uncertainty of the resource tonnage and quality char-
acteristics, often called the resource risk. This example is from the As Pontes
deposit in Galicia, Spain (Pardo-Igúzquiza et al. 2013). The most significant vari-
able in the assessment of resource uncertainty is the thickness of the coal seam.
Figure 18.11 shows the data locations at which seam thickness is measured together
with the estimated variogram values and the manually fitted (isotropic) variogram
model.

Table 18.2 Maximum
likelihood estimates of drift
coefficients

Parameter Estimate Stand. error

β0 −1.6062 0.8653
β1 −0.2245 0.0426
β2 −0.0141 0.0323

Table 18.3 ML estimates of
range and sill: exponential
covariance

Sill Stand. error Range Stand. error

1.28 0.284 1.99 0.667
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Fig. 18.8 Semi-variogram of
the residuals for k = 1 and
maximum likelihood model
fitted: sill 1.28, range 1.99 km
(effective range ∼6 km)

362 P. Dowd



Range

1

2

3

1 2

Si
ll

A

ED

CB

0.05

0.00

-0.05

-0.10

3 4
-0.40 -0.30 -0.20 -0.10 

2

1

(a) (b)

Fig. 18.9 a (left) 95% confidence region for sill and range; b (right) confidence region for drift
parameters β1 and β2 with β0 = −1.6062

-10.2 -2.8

Log T10

(a) (b)

(c)

(e)

(d)

Fig. 18.10 Outputs from six simulations using the variance and range parameters denoted by the
mean values A and the extreme values B, C, D and E in Fig. 18.9
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Spherical model variograms for seam thickness:

• Manual fitting: a=4128m,C0 = 3m2 andC=25m2.
• MaximumLikelihood: a=4460m,C0 = 4m2 and C=23m2.

Although the maximum likelihood estimates of the parameters are very similar
to those estimated by visual fitting, maximum likelihood has the advantage of
providing estimates of the uncertainty of the parameters. For illustrative purposes,
resources were computed as tonnage from panels with thickness above a threshold
defined by the 25th percentile of the sample data and equal to a thickness of 8.65 m.
The kriged resource volume is 1.97 × 108 m3.

Sequential Gaussian simulation was used to generate realisations of the thickness
of the seam. To quantify the uncertainty in the estimated resource, a total of 870
simulations were generated using the ‘certain’ variogram (maximum likelihood

Fig. 18.11 (Left) drill-hole locations and boundary of the study area. (Right) Variogram and
manually fitted model for seam thickness

Fig. 18.12 Conditionally
simulated realisation of coal
seam thickness
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parameters) and the total resource was calculated for each simulation. The his-
togram of the 870 simulated resources quantifies the uncertainty of the estimated
resources. An example simulation is shown in Fig. 18.12.

The parameter space {r0, a, σ
2} comprising respectively the nugget/variance

ratio, range and variance, is used to quantify the uncertainty in the model. The
parameter values were divided into discrete steps of 0.05 for r0 in the interval [0, 1];
700 m for a in the interval [1,000, 15,000] and 0.1 for σ2 in the interval [0.6, 2.6].
There are 268 models of triplets r0, a, σ2

� �
that lie inside the 75% confidence

region. As these models are not equally probable, the probabilities are normalised
so that they sum to 1.0 and each model is included as many times as indicated by its
normalised probability (i.e., probability sampling in which, for example, a model
with a normalised probability of 0.35 comprises 35% of the total simulated triplets).
A total of 870 simulations were used.

Histograms of the total resources for the 870 simulations, with and without the
uncertainty of the variogram model parameters, are given in Fig. 18.13. There is no
significant difference in mean resource values for the certain and uncertain values.

The 95% confidence interval for the total resource assuming the variogram is
known with certainty is [1.88 × 108, 2.19 × 108] m3 and [1.90 × 108, 2.23 ×
108] m3, when the uncertainty of the variogram model is included. The latter is
slightly higher than the same interval calculated under the assumption that the
variogram is known with certainty. However, the probability that the total resource
will be greater than 2.0 × 108 m3, is 0.59 when the uncertainty of the variogram
parameters is ignored and 0.75 when the uncertainty of the variogram parameters is
propagated into the simulated realisations. In other words, whilst there is no sig-
nificant difference in the mean resource for the two sets of simulations, the dif-
ference in the two distributions (because of different variances) is sufficient to
generate significantly different resource estimates above selected cut-offs.

Fig. 18.13 Histograms of total resources calculated by geostatistical simulation assuming the
variogram model parameters are known with certainty (solid line) and including the uncertainty of
the semi-variogram model parameters (dashed line)
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In this case, the differences in the total volume of resources, with and without
quantification of semi-variogram uncertainty, are small but the consequence of
selecting from the distribution of possible resources is significant. This illustrates a
general principle: the estimated total resource and the mean simulated resource,
with and without semi-variogram uncertainty, may not differ significantly but the
distributions of the two simulations will differ because of the different variances.
Similarly, selecting panel values above a threshold from the set of estimated panel
thicknesses or from a set of simulated panel thicknesses will yield different results.

In general, the outcome from the simulations with and without semi-variogram
uncertainty depends on the deposit and the amount of data available. Evaluation of
model uncertainty is critical in resource risk assessment even if it is ultimately
found that there is no practical difference between resource estimates obtained by
ignoring or including semi-variogram uncertainty. This example also has important
implications for compliance with resource and reserve reporting codes, most of
which use terms such as, or equivalent to, the amount of error [associated with an
estimate], the level of accuracy [of an estimate], the level of confidence [in a reserve
statement], and levels of geological confidence (words in italics are quoted from
JORC 2012). Whilst all reporting codes currently use these terms qualitatively they
all have specific quantitative meanings in statistics, probability and risk assessment
and are increasingly being referred to explicitly in reporting codes.

18.6 Quantifying the Effects of Transfer Uncertainty

An example of passive transfer uncertainty is the variation in open-pit size and
shape as a function of grade uncertainty as shown in Fig. 18.14 taken from a study
of a small gold orebody (Dowd 1995, 1997). The impacts of these types of
uncertainty can be quantified by standard applications of geostatistical simulation.
Dimitrakopoulos and co-workers have made significant contributions to the inte-
gration of in-situ grade and geological uncertainty into optimization algorithms
(e.g., Dimitrakopoulos et al. 2002; Goodfellow and Dimitrakopoulos 2013).

More challenging is the impact of propagating in-situ uncertainty through the
mining (extraction) process. The critical component of most metalliferous open-pit
mining operations is ore selection, i.e. the minimisation of ore loss and ore dilution
during extraction. In general, extraction comprises drilling, blasting and loading, all
of which are planned and designed on uncertain models of local geology and grade.
The conversion of the in-situ block model resource to a realistically recoverable
reserve may, in many instances, be the most significant source of uncertainty in
reserve estimation. The usual assessment of recoverable reserves, for example, is
limited to a simple volumetric exercise in which ore recovery is assessed as a
function of applying a range of selection volumes to a simulated orebody or an even
simpler volume-based adjustment of the variance of estimated block values. These
simplistic approaches ignore the practicalities of the mining, selection and loading
processes—blast design, behaviour and performance; equipment type, size and
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operation; ore displacement during blasting and loading; and ability to identify ore
zones within a blast muck pile. In many applications, the uncertainties introduced
by these technical processes are at least as significant as those that derive from the
in-situ spatial characteristics of grades and geology.

An approach to quantifying transfer process uncertainty for blasting and loading
comprises:

• generation of an in-situ model of the orebody comprising the grade, geology,
geomechanical properties and grade control variables within small volumes
determined by the smallest selectable volume within a blast muck-pile;

• definition of a blast volume comprising a large number of in-situ model vol-
umes, and subjecting it to a blast simulator, which effectively moves each
component model volume to its final resting place in the blast muck-pile; and

• application of simulated selective loading processes to the simulated blast
muck-pile to determine the selectivity that can be achieved by various sizes of
loader and types of loading and to quantify ore dilution and ore loss.

The in-situ model, representing perfect knowledge at all relevant scales, is
obtained by geostatistical simulation. An in-situ model that represents the reality of
knowing only the data and information that are available from specific grade control
drilling and sampling grids can be obtained by sampling the geostatistically sim-
ulated model on a specified grid. The volumes comprising the in-situ model are then
populated by estimates based only on the data corresponding to the specified

Fig. 18.14 Optimal open pits generated from 100 simulations of a small gold orebody. Top:
maximum volume; centre: median volume; bottom: minimum volume
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grade-control drilling and sampling grids. Different drilling and sampling grids can
be used to generate different models, each reflecting the levels of data and infor-
mation available. Selectivity can then be assessed as a function of the drilling and
sampling grids as well as the size and type of loader. Performance is assessed
against the ideal selectivity that can be achieved on the perfect knowledge model,
comprising the simulated values of each component volume. Applying costs, prices
and financial criteria enables an optimal selection of the grade control drilling grid,
size of loader, type of loading and even blast design.

The following case study (Dowd and Dare-Bryan 2004) is based on the Minas de
Rio Tinto SAL open-pit copper mine at Rio Tinto, southern Spain, which is typical
of a low-grade operation in the later stages of its life. Ore/waste delineation for
selective mining is difficult because the head grades are near the economic cut-off
grade and there are no clear geological controls on the mineralisation.

Sequential Gaussian simulation, with the blast-hole grades as conditioning data,
was used to generate realisations of each mining bench on a block grid of 0.5 m ×
0.5 m × 0.5 m, the grid determined based on blast and selection criteria.

0.00             % Cu 2.00

(a) (b)

(c) (d)

Fig. 18.15 a simulated copper grades in a bench: three horizontal sections; b four vertical
sections; c blast profile resulting from simulated blast applied to simulated grades; d predicted
composition of blast profile from simulated blast applied to in-situ grades estimated from samples
taken from blast-holes on 8 m spacing
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The first aspect of predicting recovery is the in-situ heterogeneity of the ore and
the extent to which it forms contiguous ‘parcels’ of a size relative to the selection
size (capacity and size of loading equipment). The second aspect is the hetero-
geneity of the ore after it has been subjected to blasting (i.e., the in-situ geological
spatial variability and the post-transfer in-situ blast-pile spatial variability).

Figure 18.15 shows horizontal and vertical cross-sections through a simulated
bench of dimensions 80 m × 40 m × 12 m (height) simulated copper grades on
horizontal planes at the top and bottom of a 12 m bench height and a 6 m
mid-plane. The vertical cross-sections of the bench are extremities (0 and 80 m) and
intermediate planes at 28 m intervals.

Figure 18.16 shows the assumed contiguous parcels of ore in the blast pile based
on estimated in-situ grade values together with the actual (simulated) parcels of ore.
A comparison of the two sets of ore volumes in Fig. 18.16 would quantify ore loss
and ore dilution. Blast movement sensors, inserted in drill holes and detected in the
blast-pile, are widely used to identify post-blast ore parcels. In such cases, this
process would quantify the uncertainty associated with the initial placement of
sensors based on estimated in-situ ore locations and a grade continuity model.

Among other examples, Goodfellow and Dimitrakopoulos (2017) describe an
approach that integrates sources of uncertainties arising from the combined pro-
duction of several mines. The in-situ orebody uncertainties are integrated with
process uncertainties from extraction to processing to marketing as the basis of
modelling and stochastically optimising the value chain of a mining complex.

18.7 Conclusion

There is a growing requirement for integrated frameworks for uncertainty quan-
tification in all geologically based applications. Quantified uncertainty and geo-
statistical methods are increasingly being referenced explicitly in mineral resource
and reserve codes. This does not require rewriting the reporting codes but it does

Fig. 18.16 (Left) selected ore volumes based on estimates (Right) actual ore volumes
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mean that there is a need to establish a general accepted framework for the quan-
tification of all sources of uncertainty.

Quantified risk assessments for environmental applications are now required in
many jurisdictions for applications such as waste burial and the treatment, storage
and disposal of radioactive material. These assessments are required to cover time
periods that range from around 200 years for household wastes to thousands of
years for the underground storage or disposal of radioactive wastes.

The management of groundwater resources, especially karst systems in envi-
ronmentally vulnerable coastal areas, requires the integration of flow, extraction,
seawater intrusion, contamination from agriculture and other activities.

In these and all such applications the identification and quantification of all
sources of uncertainty is critical to ensuring reliable estimation, planning, design
and, for resource extraction, production and to managing associated risks. As
summarised here, many methods and approaches have been developed by many
authors but most are limited to aleatory uncertainty.

The work summarised here provides examples of methods that have been suc-
cessfully applied to identify and quantify all sources of uncertainty in mineral
resource and environmental applications. They provide a contribution to the need,
and the increasing requirement, to develop integrated frameworks for uncertainty
quantification in all geologically based applications.
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