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Abstract The drinking water contamination crisis in Flint, Michigan has attracted
national attention since extreme levels of lead were recorded following a switch in
water supply that resulted in water with high chloride and no corrosion inhibitor
flowing through the aging Flint water distribution system. Since Flint returned to its
original source of drinking water on October 16, 2015, the State has conducted
eleven bi-weekly sampling rounds, resulting in the collection of 4,120 water
samples at 819 “sentinel” sites. This chapter describes the first geostatistical anal-
ysis of these data and illustrates the multiple challenges associated with modeling
the space-time distribution of water lead levels across the city. Issues include
sampling bias and the large nugget effect and short range of spatial autocorrelation
displayed by the semivariogram. Temporal trends were modeled using linear
regression with service line material, house age, poverty level, and their interaction
with census tracts as independent variables. Residuals were then interpolated using
kriging with three types of non-separable space-time covariance models.
Cross-validation demonstrated the limited benefit of accounting for secondary
information in trend models and the poor quality of predictions at unsampled sites
caused by substantial fluctuations over a few hundred meters. The main benefit is to
fill gaps in sampled time series for which the generalized product-sum and
sum-metric models outperformed the metric model that ignores the greater variation
across space relative to time (zonal anisotropy). Future research should incorporate
the large database assembled through voluntary sampling as close to 20,000 data,
albeit collected under non-uniform conditions, are available at a much greater
sampling density.
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14.1 Introduction

The drinking water contamination crisis in Flint, Michigan has attracted national
attention since extreme levels of lead were recorded in local water supplies and the
percentage of children with elevated blood lead levels (BLL) increased in neigh-
borhoods with the highest water lead levels (WLL). Problems started when the City
of Flint, Michigan adopted the cost-saving decision of drawing and treating water
from the Flint River instead of relying on the Detroit Water and Sewerage
Department’s system (DWSD) for its public water supply. A few months later, in
December 2014, water samples showed elevated levels of trihaloethanes (THMs) a
disinfection byproduct of chlorine, as well as high levels of lead and copper.
A public health emergency was declared and residents were told to avoid drinking
the water until it was tested or approved water filters were installed. In July 2015,
public concerns were raised that lead and copper were being leached from corrosion
(chlorine-induced) in the underground lead service lines and home plumbing fix-
tures as a result of not using corrosion control treatment (CCT). In August and
September 2015, 16.6% of the 271 water samples collected by a Virginia Tech’s
team were found to exceed the EPA action level of 15 pg/L (ATSDR 2010). In
September and October 2015, elevated childhood blood lead levels were confirmed
and an emergency response was initiated (Hanna-Attisha et al. 2016), leading the
city to switch back to the DWSD water supply on October 16, 2015.

Starting in February 2016, samples were collected bi-weekly at more than 600
sentinel sites chosen by the EPA and MDEQ (Michigan Department of Environ-
mental Quality) across the city to determine the general health of the distribution
system and to track changes in lead concentrations over time (Flint Safe Drinking
Water Task Force 2016). After five rounds of sentinel sampling, a new sentinel
program called “Extended Sentinel Site Program” started in June 2016, targeting
specifically sites with high WLL during previous rounds or located in the
highest-risk areas. Six additional sampling rounds were conducted for this smaller
network including fewer than 200 sites. Overall these 11 sampling rounds resulted
in the collection of 4,120 data at 819 different sites over a 40-week time period.
This State-controlled monitoring program was supplemented by a voluntary or
homeowner-driven sampling whereby concerned citizens received a testing kit and
conducted sampling on their own (Goovaerts 2017a, b). Despite the larger size of
this database (18,760 samples collected over 53 weeks at 10,341 sites), its
heterogeneity and lack of systematic sampling across time prohibited its use in the
present space-time analysis.

Except for a few graphs and location maps, the database assembled by the City
of Flint and made available online has not undergone any rigorous statistical
treatment by State employees and only a few studies have been published so far.
Using a data-driven approach Abernethy et al. (2016) developed an ensemble of
predictive models (e.g., random forest, logistic regression, linear discriminant
analysis) to assess the risk of lead contamination in individual homes and neigh-
borhoods in Flint. They trained these models using a wide range of data sources,
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including residential water tests, historical records, and city infrastructure data.
Their analysis however ignored the spatial correlation among data and did not
include a temporal component. A time trend analysis was conducted by Goovaerts
(2017a) who used joinpoint regression to model time series of lead levels collected
by the state-controlled and voluntary sampling programs. This analysis carried out
at the city and ward levels still ignored the spatial correlation among data and did
not provide any tax parcel-based prediction. A space-time analysis of these data
should however provide important information to identify residences where high
levels of lead are expected. It would also support any assessment of past and current
lead exposures among the population at risk, particularly pregnant women and
children.

Geostatistical techniques have been routinely used to analyze and map the
spatial variability of soil and sediment lead concentrations (Goovaerts et al. 1997;
Cattle et al. 2002; Solt et al. 2015), yet their application to lead in drinking water is
far less common and mainly concerns groundwater quality (Siddique et al. 2012).
A recent study (Wang et al. 2014) applied geographic information systems
(GIS) and a hydraulic model of distribution systems to test the influences of pipe
material, pipe age, water age, and other water quality parameters on lead/copper
leaching in Raleigh (NC). In Symanski et al. (2004), mixed effect models were used
to assess spatial fluctuations, temporal variability, and errors due to sampling and
analysis for levels of disinfection by-products in water samples collected in
households within the same distribution system. To the author’s knowledge, the
present study is however the first application of geostatistics to lead in drinking
water within a distribution system.

This chapter describes a new methodology to predict lead level in tap water,
accounting for WLL measurements collected in neighboring houses, housing
characteristics (e.g., age of the house or presence of lead pipes), and temporal trends
(e.g., decline since return to pre-crisis source of drinking water). Linear regression
was used to model temporal trends at sentinel sites, accounting for the composition
of service line (SL), construction year, poverty level, and census tracts as covari-
ates. Cross-validation analysis allowed one to assess the benefit of this approach
and compare the results obtained using three different types of space-time covari-
ance models. Both the cases of predicting unsampled times at monitored locations
(i.e., filling gaps in time series) and making predictions at unsampled locations were
investigated.

14.2 Materials and Methods
14.2.1 Datasets

4,150 WLL measurements recorded over the period 2/20/2016-11/20/2016 were
downloaded from http://www.michigan.gov/flintwater (residential testing results).
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Table 14.1 Datasets available for the space-time analysis: 4,120 water lead levels measured over
11 sampling rounds. Statistics include the number of data available, the sampling period, the
percentage of WLL above 15 pg/L, the mean of logtransformed concentrations, and the
composition of service line that was recorded for each sentinel site (three main categories besides
plastic, unknown, and other)

Sampling | Data | Sampling %WLL > | Mean Composition of SL
round () period 15 pg/L Logio (ng/ |Lead |Galvanized Copper
D)

Round S1 | 610 |2/16/2016-2/ |9.51 0.487 5.90 |20.66 68.20
29/2016

Round S2 | 606 |2/24/2016-3/ |8.42 0.465 891 |19.97 67.00
13/2016

Round S3 | 654 | 3/15/2016-3/ |8.26 0.480 11.62 | 19.57 63.91
24/2016

Round S4 | 644 | 3/29/2016-4/ |7.14 0.457 13.66 | 17.39 64.29
5/2016

Round S5 | 622 | 4/13/2016-4/ |6.43 0.427 14.31 | 15.27 65.43
15/2016

Round X1 | 170 |5/23/2016-6/ |7.06 0.604 4588 | 9.41 4471
7/2016

Round X2 | 178 | 6/14/2016-6/ |8.99 0.638 4944 | 7.87 42.70
30/2016

Round X3 | 167 | 7/19/2016-7/ |6.59 0.557 46.11 | 8.38 45.51
22/2016

Round X4 | 162 | 8/18/2016-8/ |9.88 0.579 45.06 | 9.26 45.68
22/2016

Round X5 | 158 | 9/19/2016-9/ |6.33 0.522 45.57 | 9.49 44.94
27/2016

Round X6 | 149 11/17/2016—- | 6.71 0.532 45.64 | 9.40 44.97
11/23/2016

Data were then allocated to an individual tax parcel unit on the basis of their postal
address. Data with incomplete address (two samples) or duplicates (e.g., samples
taken from two different faucets on the same day in the same house) were discarded,
leading to a total of 4,120 samples collected at 819 different sites; see Table 14.1.
Because of their strongly positively skewed distribution (concentrations range from
0 to 5,986 pg/L) and large proportion of zero values (34.6%), data were trans-
formed using the following formula Log,,(z+ 1).

Sentinel sites were initially selected from a pool of 1,951 volunteer sites iden-
tified during door-to-door water distribution; in particular it included all 156 sites
with lead or lead combination service lines according to City records. Other sites
were added according to several criteria: (i) spatial distribution to ensure coverage
of all nine City wards, (ii) measurements of high blood levels (Hanna-Attisha et al.
2016), and (iii) environmental justice considerations (e.g. presence of houses with
lead-based paint, minority population, and lower socio-economic households). This
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Table 14.2 Statistics computed for time series of different lengths: number of sentinel sites,
percentage of WLL above 15 pg/L, the mean of logtransformed concentrations, and the
composition of service line

Length Sites %WLL > 15 pg/L Mean Log;o Composition of SL
(ng/L) Lead Galvanized Copper

1 80 7.50 0.413 6.25 22.50 66.25
2 33 6.06 0.475 12.12 18.18 63.64
3 36 6.48 0.433 2222 25.00 46.30
4 95 4.74 0.411 5.26 18.95 70.53
5 409 3.52 0.358 2.93 17.85 73.59
6 41 8.54 0.530 21.95 4.88 73.17
7 19 9.77 0.651 89.47 5.26 5.26
8 10 11.25 0.705 68.75 7.50 23.75
9 23 11.59 0.693 84.54 4.35 11.11
10 32 18.75 0.750 38.75 15.63 45.63
11 41 19.82 0.793 33.92 20.26 45.81

initial set evolved between sampling rounds as some residents stopped participat-
ing, while others asked to be included in the network (Goovaerts 2017b), which
explains the fluctuation in the number of sampled sites during the first five rounds
S1-S5: 607-621 (Table 14.1). Fewer sites (149-178) were then part of the
“Extended Sentinel Site Program”. Table 14.2 indicates that only 41 sites were
sampled in all 11 rounds, while 80% of time series included five observations or
less.

Each house selected to be part of the sentinel network was visited by a licensed
plumber who classified the material of the service line coming into the home (i.e.,
customer-side service line) into six categories: lead, galvanized, copper, plastic,
other, and unknown. Galvanized refers to iron pipe with a protective “galvanized”
surface coating composed of zinc, lead, and cadmium, and therefore can be a
long-term source of lead (Clark et al. 2015). The term “unknown” was used
whenever the SL material could not be confirmed because, for example, the line
was behind a wall or way back in a crawl space.

City records were the only source of service line data available for the majority
of 56,039 tax parcels which were not part of the sentinel sampling program. These
records are however inaccurate and lead to the over-identification of lead SLs,
likely because old records were not updated as these lines were being replaced
(Goovaerts 2017¢c). The same author found that construction year was a good
predictor of service line material: galvanized lines were mostly found in pre-1934
houses, while the frequency of lead service lines (LSLs) peaked for houses built
around World War II. This information was combined with field inspection data
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and city records to predict by indicator kriging the likelihood that a home has lead
or galvanized SL (Goovaerts 2017c).

Besides service lines, lead in drinking water mainly comes from lead-based
solder and lead-containing plumbing fixtures (Lee et al. 1989; Cartier et al. 2011).
Plumbing material is usually related to the installation year of a plumbing system,
which can be approximated by the year of construction. For example, most faucets
purchased prior to 1997 were made of brass or chrome-plated brass containing up to
8 percent lead (Rabin 2008). Construction year was retrieved from the 2016
Parcels GIS layer. The attribute “Year_built” was missing for 20,372 parcels and
was estimated by ordinary kriging (Goovaerts 1997) with a mean absolute error of
prediction of 6.43 years. Based on its relationship to water lead levels (Goovaerts
2017a), construction year was discretized into three classes: pre-1940, 1940-1959,
and post-1959.

Poor workmanship as well as lack of regular maintenance can also lead to more
corrosion and leaching, and the presence of lead particulates, such as disintegrating
brass or detaching pieces of old solder (Wang et al. 2014). Socio-economic status
was here assessed using 2015 ACS (American Community Survey) 5-year esti-
mates of the percentage of the block group population living in households where
the income is less than or equal to twice the federal “poverty level”.

There are many other variables known to influence lead in drinking water. For
example, longer water age (i.e., water travel time between the treatment plant and
home plumbing system) can decrease the effectiveness of corrosion control;
increasing leaching and water lead levels (US EPA 2002; Wang et al. 2014). This
information was however unavailable for this study.

14.2.2 Space-Time Kriging and Covariance Models

Let z(uy;t) denote the water lead level recorded on time ¢ at sentinel site o geo-
referenced by the geographical coordinates u, = (X4,y,) of the corresponding tax
parcel centroid. Prediction of z-value at unsampled time 7y and location uy was
conducted using the following kriging estimator:

to+Ar n(r)

Z(ugsto)= Y Y AwXz(ugit) (14.1)

t=ty—Ata=1

n(t) is the number of observations recorded at time ¢, within the time window 2At,
that were retained for estimation. The weights A, are solution of the following
space-time (ST) kriging system:
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to+At n(t) ) ) ,

> ZA,,tC(u,,—u/;;t—t)+//t=C(uo—u/;;t0—t) ﬂ:l,---,n(t)
t=ty—Ata=1
to+At  n(t) ,

Y Y Am=1 £ =ty — At, -, tg + At

t=tg—Ata=1

(14.2)

The parameter u is a Lagrange multiplier accounting for the constraint on the
weights. The term C (ua —upgt— t') is the ST covariance between any two obser-
vations recorded at locations u, and ug at times ¢ and ¢, respectively. Euclidian
distances were used here since most lead in drinking water comes from premise
plumbing materials and service lines instead of being transported through water
mains (Del Toral et al. 2013; EET Inc. 2015).

One challenge associated with the application of ST kriging is the choice of a ST
covariance model within the ever growing class of models (Montero et al. 2015).
The following three non-separable ST covariance models were compared in the
present study:

e The generalized product-sum model (De Iaco et al. 2002):
C(h,7)=kiCs(h) + kCi(7) + k3C5(h)Cy(7) (14.3)

where ki, kp, and k; are non-negative (strictly positive for k3) coefficients
estimated from the sills of the spatial, temporal, and spatio-temporal semivar-
iograms (De Cesare et al. 2002).

e The metric model (Dimitrakopoulos and Luo 1994):

s ) s

where a normalized space-time distance measure is created by rescaling the
spatial and temporal lags, & and 7, by the ranges of the spatial and temporal
semivariograms, a; and a, (case of geometric anisotropy).

e The sum-metric model (Heuvelink and Griffith 2010):

C(h,7)=Cy(h) + Cy(7) + Cy (ﬁ>2+ (1)2 (14.5)

s

This model combines characteristics of the two previous models: (i) sum of
spatial and temporal covariances allowing for the presence of zonal anisotropies
(i.e., semivariogram sills are not the same in all directions), and (ii) a metric ST
model for the residual variability (geometric anisotropy).
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Two other classes of non-separable ST covariance models, Cressie-Huang model
(Cressie and Huang 1999) and Gneiting models (Gneiting 2002), were not con-
sidered because: (1) the fitting of these models needs a complex iterative parameter
optimization technique (De laco 2010), whereas the three selected models can be
fitted using straightforward techniques similar to those already used for spatial-only
and temporal-only semivariograms, and (2) recent studies (Guo et al. 2015) indicate
that these two more complex models provide similar fits to experimental ST
semivariograms and comparable prediction accuracy as the product-sum model,
confirming previous findings (De Iaco 2010).

The main difficulty in the practical implementation of the product-sum and
sum-metric models is the inference of the sill of the ST semivariogram model,
C:(0), which is most often estimated visually from the 3D plot of the experimental
ST semivariogram 9 (h,7) (e.g., De Cesare et al. 2002; Heuvelink and Griffith
2010). In order to make the fitting procedure more user-friendly, the space-time sill
C,(0) was here computed as the following weighted average of experimental
space-time semivariogram values:

1 oA
= 42 S %: Y wp, Fe(hot) i P (hT) > ge (14.6)
h T ,T T

where the weight wy, ; is the number of data pairs falling into the class of spatial and
temporal lags (&, 7). Only the classes where the ST semivariogram values exceed a
critical sill g., defined as the maximum of the spatial and temporal sills, were used.

Cy(0)

14.2.3 Accounting for Secondary Information

Lead service lines are widely considered the main source of lead in drinking water
(Lee et al. 1989; Clark et al. 2015). Another culprit is lead fixtures and pipes present
within old houses (premises plumbing), and poverty can compound the problems
through the lack of maintenance. Goovaerts (2017a) also found that temporal trends
can vary greatly across the city. This secondary information was here incorporated
in the definition of a stochastic trend model M (u;?), leading to the following
decomposition of the space-time random function (RF) (Kyriakidis and Journel
1999):

Z(u;t) =M (ust) + R(u; 1) (14.7)

where M(u;1) is a nonstationary spatiotemporal RF modeling the space-time dis-
tribution of the mean process, with E[M (u;t)]=m(u; ) and R(u;1) is a zero mean
stationary spatiotemporal RF modeling space-time fluctuations around M (u;1).
The trend component at each sentinel site u, was fitted using a linear model
including six fixed factors: presence/absence of LSL, presence/absence of galva-
nized service line (GSL), time since first sample was collected (TIME), poverty
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level (POV), house age (AGE), and census tract (CT). The model takes the fol-
lowing form:

M(u; t) = LSL() X TIME + CT () x TIME + LSL(u) X CT (1)
+ GSL(u) X CT(u) + AGE(u) X CT (u) (14.8)
+ POV (u) X CT (u)

This model naturally handles uneven spacing of repeated measurements within
each time series, as well as their correlation which was modeled using a spherical
variance-covariance structure. Once the trend model was fitted, regression residuals
were interpolated using space-time simple kriging and the ST covariance models
introduced in Sect. 14.2.2.

14.2.4 Cross-Validation

The accuracy of the predictive models created by the different approaches (e.g.,
three types of ST covariance models, univariate vs incorporation of secondary
information) was assessed by cross-validation whereby each observation or time
series (i.e., all data collected at the same site) was removed at a time and
re-estimated using data collected at neighboring sentinel sites. The following per-
formance criteria were then computed from » kriging estimates:

e the mean error (ME) of prediction as:

1T n@)

Y X (¢ (uair) — 2(uai 1)) (14.9)

e the mean absolute error (MAE) of prediction as:

MAE = — 2 Z |2 (a3 1) = 2(uas )| (14.10)

Ni=1a=1

e the mean square standardized residual (MSSR) as:

2
mssr=1¥ 2( < (a3 1) = 2t 1)) (14.11)
Ni=1a=1 K(uust)

where 6% (u,; 1) is the kriging variance.

A mean error close to zero indicates a lack of bias, while the mean absolute error
should be as small as possible. If the actual estimation error is equal, on average, to
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the error predicted by the model, the MSSR statistic should be about one (Wack-
ernagel 1998, p. 91).

One application of the predictive models is to prioritize any further sampling or
intervention by ranking tax parcels from highly hazardous to less hazardous on the
basis of kriging estimates. The ability of this ranking to identify successfully sites
where WLL is greater or equal to the EPA action level of 15 pg/L was assessed
using Receiver Operating Characteristics (ROC) curves which plot the probability
of false positive versus the probability of detection (Swets 1988; Fawcett 2006;
Goovaerts et al. 2016). The accuracy of the classification was quantified using the
relative area under the ROC curve (AUC statistic), which ranges from 0 (worst
case) to 1 (best case). The AUC is equivalent to the probability that the classifier
will rank a randomly chosen positive instance (e.g., z. > 15 pg/L) higher than a
randomly chosen negative instance (e.g., z. < 15 pg/L).

14.3 Results and Discussion

14.3.1 Spatial Distribution

Figure 14.1a shows the location of all 819 sentinel sites within the nine wards in the
city of Flint. Site-specific statistics such as number of observations and average log
concentrations recorded for each time series, as well as composition of service line
(GSL vs. LSL), were aggregated at the census tract level for better visualization.
Geographical clusters of sentinel sites can be distinguished in several census tracts
(e.g. border of wards 2 and 6, wards 7 and 9) which tend to be the tracts with the
largest WLLs (Fig. 14.1c) and percentages of sampled LSLs (Fig. 14.1d). There is
also a clear spatial trend with fewer lead service lines (e.g., none in Ward 1) and
shorter time series (Fig. 14.1b) sampled in the Northern part of the city. Ward 5
includes the oldest neighborhood where GSLs are prevalent (Fig. 14.1e), while
LSLs appear as small clusters, in particular in wards 6, 7 and 9 (Goovaerts 2017c¢).

14.3.2 Temporal Trend Modeling

Temporal trends for the three major types of service line were visualized by
aggregating observations within non-overlapping 14-day windows, which corre-
sponds to the average time interval between sampling rounds during the first phase
(Round S) of the sentinel monitoring program (Table 14.1). Except for LSLs water
lead levels do not appear to have declined over the 40-week sampling period;
actually they seem to have slightly increased for GSLs (Fig. 14.2a). These results
are however a direct artifact of the sampling strategy whereby 80% of sentinel sites
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(a) Sentinel sites

Fig. 14.1 a Location of sentinel sites in each of the nine wards, and several census tract-level
statistics: b percentages of time series (TS) including more than five observations, ¢ average water
lead levels, d percentage of sites with lead service lines, e percentage of sites with galvanized
service lines. Shaded polygons indicate census tracts that do not include any sentinel site (missing
values)

were not sampled beyond week 16, while sampling continued at sites where the risk
of exceeding the EPA action level of 15 pg/L was the greatest (Table 14.2).
After elimination of all sites where fewer than six observations were collected,
the averaged time series display the expected decline (Fig. 14.2b). The impact is
minimal for LSLs since most of these sites are considered at risk and were sampled
during both the initial and extended sentinel sampling programs (Rounds S and X).



266 P. Goovaerts

(a) 1.50 _Water Lead Levels (all sites)

1.10
g Lead
. Copper

0.90 Galvanized

Log(WLL+1)

Time since 2/16/2016 (weeks)

(b)1.30 _Water Lead Levels (sites with n>5)

1.10 —
. Lead
= B Copper
090 Galvanized
_J B
=3 g
m —
9 0.70 i
eso4 ¥ =L
0.30 S L L e . A 1

0 10 20 30 40
Time since 2/16/2016 (weeks)

Fig. 14.2 Time series of observed (solid line) and predicted by regression (dashed line) water lead
levels computed on average for the three major types of service line: lead, galvanized, and copper.
Results (log transformed concentrations) are calculated from: a all sites, and b subset of sites
where at least six observations were recorded

The selection bias is stronger for copper and galvanized lines, which explains the
larger water lead levels recorded during the first 16 weeks relative to LSLs.

This sampling bias complicated greatly the modeling of temporal trends by
regression. Indeed using all the data would underestimate the weekly rate of decline
of water lead levels, whereas subsetting the dataset (e.g., using only time series
including more than five data points as in Fig. 14.2b) will result in overestimating
the concentrations at a majority of sites. In addition, the time series length cannot be
used as covariate in the model to allow its application at unmonitored locations.
Two modeling strategies were considered in this chapter. First, because of its
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relationship with time series length (Fig. 14.1) census tract was used as covariate in
the regression model (Eq. 14.8). The second more complicated approach was to
allow the intercept to fluctuate among sentinel sites, even when located within the
same tract; i.e., use a mixed model where the intercept is modeled as a random
effect. The trade-off cost for this added flexibility was the need to estimate the
intercept at unmonitored locations, which was accomplished using ordinary kriging.
Despite providing a better fit than the first alternative, the mixed model did not lead
to more accurate kriging estimates, hence only the first option is discussed hereafter.

All six interaction terms in the trend model (Eq. 14.8) were highly significant
(o« = 0.01). The correlation between predicted and observed WLL is however rather
weak (r = 0.47), which illustrates the challenge of predicting spatial and temporal
variations in lead for drinking water (Bailey and Russell 1981; Del Toral et al.
2013). While the output of the regression model provides a reasonable fit to the
SL-specific time series computed using all the data (Fig. 14.2a), it underestimates
water lead levels for LSL and GSL when using only time series including more than
five data points (Fig. 14.2b).

14.3.3 Variography

Semivariograms helped quantifying the scale and magnitude of the space-time
variability displayed by the maps and time series of Figs. 14.1 and 14.2. The spatial
semivariogram (Fig. 14.3a) shows three nested scales of spatial variability: (1) a
long range (2.35 km) caused by the neighborhood effect since houses in the same
neighborhood tend to be built at the same time (i.e., similar plumbing system) and
have similar water age, (2) a short range (200 m) corresponding to variability
between adjacent houses, and (3) a nugget effect or discontinuity at the origin which
represents the variability among samples taken within the same tax parcel (i.e.
different apartments and/or measurement error for samples taken within the same
residence). The substantial short-range variability (71% of total sill) likely reflects
the heterogeneity in housing conditions (e.g., renovated houses) as well as the lack
of uniformity of sampling conducted by homeowners since even with simple
instructions it is difficult to ensure strict adherence to any sampling protocol (Del
Toral et al. 2013). This interpretation is confirmed by the similar short-range
variability displayed by the semivariogram of regression residuals (Fig. 14.3a,
lower blue curve) since the regression model (Eq. 14.8) does not account for
sampling characteristics. It is noteworthy that the longer range of 2.35 km is still
fairly small relative to the size of the city (see legend of Fig. 14.1a), while the
average separation distance between each sentinel site and the closest neighbor
(293 m) exceeds the shortest range (200 m) that encapsulates 71% of the total
spatial variability.

The temporal semivariogram (Fig. 14.3b) also displays three nested scales of
variability although the longer range structure (110 days) represents here 53% of
the total variability. Another difference with the spatial case is the overlap of
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(a) Spatial semivariogram (b) Temporal semivariogram
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«Fig. 14.3 Experimental semivariograms with the model fitted that were used to form the three
types of ST covariance models (Eqs. 14.3-14.5) a spatial semivariogram (lower curve is for
residuals), b temporal semivariogram, ¢ metric semivariogram for WLLs, d metric semivariogram
for regression residuals, e metric residual semivariogram (sum-metric model) for WLLs, f metric
residual semivariogram for regression residuals

temporal semivariograms for WLLs and regression residuals, illustrating the
inability of the trend model (Eq. 14.8) to capture purely temporal changes. This
result is in agreement with the small magnitude of changes displayed by the time
series of predicted values in Fig. 14.2 (dashed line). Comparison of the total sills of
spatial and temporal semivariograms (Fig. 14.3a—b) indicates that the variability
observed across space is greater than the temporal variability. Such zonal aniso-
tropy is in conflict with the assumption underlying the metric ST covariance model
(Eq. 14.4).

Figure 14.3c—d show the semivariograms computed using a normalized
space-time distance (metric model). Because the spatial and temporal lags were
rescaled using different constants for the WLL and residual semivariograms, these
two curves are plotted separately. The vertical axis is however comparable and
illustrates the smaller variability of residuals (i.e., lower sill for the semivariogram
of Fig. 14.3d). Once again, both semivariograms display substantial short-range
variability. The last two semivariograms (Fig. 14.3e-f) represent the metric
space-time model that captures the residual variability in the sum-metric model
(Eq. 14.5).

14.3.4 Cross-Validation Analysis

The semivariogram models of Fig. 14.3 were used to conduct a cross-validation
analysis whereby one observation (LOO approach) or one time series (LTO
approach) was removed at a time and re-estimated using data collected at neigh-
boring sentinel sites. Based on a sensitivity analysis using ST ordinary kriging and
MAE criterion, 48 observations with a maximum of three data points per site were
retained for the estimation by univariate and residual ST kriging. Results obtained
for predictions by the time trend model were also included as reference in
Table 14.3.

The first three rows in Table 14.3 indicate that all algorithms give unbiased
predictions (ME close to zero). As expected, the best prediction scores (i.e., lower
MAE and higher AUC) are obtained when using data from the same time series
(LOO approach) instead of relying solely on non-colocated data (LTO approach).
Except for MSSR the product-sum model performs best, with the sum-metric model
being a close second. The metric model underperforms the other two models
because the combination of both spatial and temporal dimensions through a nor-
malized space-time distance leads one to underestimate the correlation among
observations of the same time series. In other words, the assumption underlying the
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Table 14.3 Results of cross-validation analysis conducted by leaving one observation out
(LOO) or one time series out (LTO) at a time. The four performance criteria described in
Sect. 14.2.4 were computed for three types of space-time covariance models (generalized
product-sum, metric, and sum-metric) and three space-time interpolation algorithms (ST ordinary
kriging, trend model fitted by linear regression with and without interpolation by ST residual
kriging)

Algorithm Performance criteria
Product-sum Metric model Sum-metric model
model
LOO LTO  |Loo  |[LTO  |LOO LTO
Mean error of prediction (ME)
ST ordinary kriging —0.001 0.009 0.003 0.007 —0.001 0.008
ST residual kriging 0.0 0.008 0.003 0.005 0.001 0.008
Trend model® 0.0
Mean absolute error of prediction (MAE)
ST ordinary kriging 0.257 0.375 0.336 0.384 0.263 0.378
ST residual kriging 0.251 0.337 0.318 0.346 0.254 0.343
Trend model® 0.331
Mean square standardized residual (MSSR)
ST ordinary kriging 1.326 0.954 1.026 1.208 1.190 1.111
ST residual kriging 1.119 0.912 0.957 1.086 1.015 1.086
Trend model® 74.9
Area under the ROC curve for 15 pg/L (AUC)
ST ordinary kriging 0.832 0.615 0.743 0.598 0.829 0.613
ST residual kriging 0.839 0.707 0.768 0.692 0.836 0.697
Trend model® 0.713

value for trend model is the same for all six combinations

metric model is incompatible with the zonal anisotropy detected on Fig. 14.3.
Accounting for secondary information through residual kriging slightly improves
the prediction relative to ST ordinary kriging; both kriging algorithms outperformed
the trend model.

These results however apply only to the narrow situation where exposure to lead
in drinking water is reconstructed at the sole sentinel sites. For prediction at sites
where no data was collected, LTO results indicate that differences between ST
covariance models are much smaller as purely temporal correlations are not used in
the kriging system. Nevertheless, the product-sum model still performs best.
The LTO approach also emphasizes the benefit of using trend models that account
for secondary information (i.e., larger differences between residual kriging and
ordinary kriging). Yet, prediction performances actually deteriorate when kriged
residuals are added to the trend model: the sole trend model gives better prediction
than residual kriging. It is however noteworthy that the trend model was not
cross-validated, hence the observation being predicted was used to create the
model.



14 Flint Drinking Water Crisis: A First Attempt ... 271

(a) 03:0_Mean Absolute Error (MAE)

E Residual kriging

Prediction error (Log10)

Trend model

E T

T T TrrrrreTTY rerrrrrT rrprrYrTTYTYT ™ T N
0 100 200 300 400 500 600 700 800 900 1000

Distance to closest sentinel site (m)

(b)o.zzs_Area Under the ROC Curve (AUC)

Trend model

Proportion
s
@
I L

Residual kriging

0.705

0 100 200 300 400 500 600 700 800 900 1000
Distance to closest sentinel site (m)

(c) 100_Non-empty search windows

80_]
] Sampled sites
o ] ot
= 1 o’
(7] . o
g 40_] -
[+ ] ..o’.
20_ o Tax parcels
. '_.0'
0 - 1 1 1

0 1 llli(‘.l E(I)O 360 4-60 560 S(I)O ?tlll) 80O 900 1000
Distance to closest sentinel site (m)
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Because of the substantial short-scale spatial variability retaining increasingly
distant data is expected to add more and more noise to the kriging estimate. This
was investigated by changing the search strategy and selecting only sentinel sites
located within a given distance of the site being predicted. If no data was located
within the search radius, the kriged residual was zero and the residual kriging
estimate was simply the value of the trend model. Figure 14.4 shows results of this
sensitivity analysis conducted for the product-sum model over distances ranging
from 50 m to 1 km. For the mean error of prediction the little benefit of residual
kriging vanishes as soon as data beyond 100 m are used in the estimation
(Fig. 14.4a), while this distance is 200 m for the area under the ROC curve
(Fig. 14.4b). Figure 14.4c indicates that 42% of sentinel sites have another sentinel
site within 100 m, while this percentage is only 4.6% for tax parcels (Fig. 14.4c). In
other words, there is little benefit in applying geostatistics to model the space-time
distribution of WLL over the 56,039 tax parcels in Flint using the data collected at
sentinel sites.

14.4 Conclusions

This chapter presented the first application of space-time geostatistics to lead levels
recorded in drinking water of a public distribution system. The methodology was
illustrated using 4,120 water samples that were collected at 819 “sentinel” sites over
a 40-week period in the city of Flint. Despite a sizable database assembled by the
State of Michigan, the geostatistical analysis was hampered by a temporal sampling
bias and the existence of substantial variability over a few hundred meters. Unlike
other countries such as Canada or France, sampling is not conducted by a trained
technician in the US. Instead, homeowners are expected to collect water samples
after a minimum of 6 h. of stagnation (e.g., overnight stagnation) following specific
instructions (US EPA 2016), which can cause substantial variability among
households. Other sources of fluctuation include heterogeneity in the plumbing
system (e.g., renovation, installation of a new meter), location of sampled faucets
(e.g., bathroom vs. kitchen), or water temperature (e.g., lead solubility increases
with water temperature), to name a few.

In the present case-study, space-time kriging proved beneficial only in the sit-
uation where observations had been collected at the site being predicted; i.e., to fill
the gaps in time series. The generalized product-sum and sum-metric space-time
covariance models then outperformed the metric model that ignores the greater
variation across space relative to time (zonal anisotropy). Sentinel sites represent
however only 1.5% of tax parcels in the city of Flint. At unsampled sites the kriging
prediction was no better than the temporal trend estimated by linear regression and
it turned out to become less accurate if no data was collected within 100 meters.
Although the regression model included site-specific characteristics, such as con-
struction year and composition of service lines, it was unable to explain the
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short-range variability, leaving 78% of the total variance unaccounted for
(R? = 22%).

In the future, several approaches will be investigated to tackle the impact of
short-range variability on prediction. First, the data analyzed in this chapter rep-
resent less than 20% of the water samples available for the city of Flint. The
majority of samples were collected by voluntary sampling whereby concerned
citizens received a testing kit and conducted sampling on their own (Goovaerts
2017a, b). Despite the lack of periodic sampling in time and existence of temporal
bias (e.g., houses with low lead levels were less likely to be tested again) the greater
spatial coverage (i.e., more than 18% of tax parcels sampled) will reduce sub-
stantially the average distance between a tax parcel and the closest observation.
However, spatial heterogeneity will likely still be present over short distances,
leading one to question our ability to make prediction at the tax parcel level. More
appropriate spatial supports for prediction could be census block groups which are
statistical divisions of census tracts and are generally defined to contain between
600 and 3,000 people. The city of Flint includes 132 block groups and 40 census
tracts. Such spatial aggregation or upscaling would be a way to (filter
between-household fluctuations which appears to be mainly noise. As more US
cities are facing similar drinking water crisis, reliable techniques for sampling and
modeling spatial and temporal changes in water lead levels will be sorely needed.
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