
Chapter 12
Shoreline Extrapolations

Jean Serra

Abstract A morphological approach for studying coast lines time variations is pro-

posed. It is based on interpolations and forecasts by means of weighted median

sets, which allow to average the shorelines at different times. After a first transla-

tion invariant method, two variants are proposed. The first one enhances the space

contrasts by multiplying the quench function, the other introduces homotopic con-

straints for preserving the topology of the shore (gulfs, islands).

Keywords Median sets ⋅ Binary interpolation ⋅ Hausdorff distances ⋅ Shoreline

Time forecasting

12.1 Three Problems, One Theoretical Tool

The following study holds on lagoon inlets movements. It extends and develops an

experimental study made by N.V. Thao and X. Chen about Thuan An Inlet Area

(Thao and Chen 2005). The predictions proposed by these authors were obtained by

averaging over the time the successive positions of a complex shoreline, including

lagoon inlets, which results in a prediction of the coast line. J. Chaussard showed, in

Chaussard (2006), that this prediction correctly fits with ulterior data from Google

Earth (see Fig. 12.1).

In Thao and Chen (2005), the authors used a popular way to estimate accretions

(Srivastava et al. 2005). Figure 12.2 depicts this semi-manual approach: the shore-

line has been discretized into segments which are shifted upwards according a given

accretion law (here the linear law y = ax + b, where x stands for the time). Indeed,

this is nothing but a sampled version of the dilation the shoreline by the disc of radius

ax + b. Such a circular dilation of a shoreline turns out to be the simplest expression

of its evolution under an accretion process, since it is uniform everywhere and does

not take the previous stages of the shoreline into account. As a matter of fact, the
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Fig. 12.1 Left: Lagoon Inlets forecast by N.V. Thao and X. Chen; right: Current Google earth

view of the same area

Fig. 12.2 Classical semi-manual technique of extrapolation

notion of a set extrapolation is not straightforward, and depends considerably on the

features one wishes to preserve or to emphasize.

1. If, by comparing the shorelines at years n and n − 1, there appear zones of ero-

sion
1

and zones of accretion, we may require a forecast of the shoreline, at year

n + 1, to pursue erosions and accretions, but always in the same zones as previ-

ously; moreover, we must be able to express several laws for this time evolution

(for example, in Thao and Chen 2005, a linear and a logarithmic laws are dis-

cussed);

2. if we know the movements of the shore during the last ten years, with one map

per year, we can average these ten sets independently of their dates and base the

extrapolation on this average only, or we can alternatively emphasize the more

recent maps, considering that the last one, or the last two ones, carry most of the

information;

1
The shoreline context, the two words of “erosion” and “accretion” refer to the two types of changes

depicted in Fig. 12.3. The word “erosion” also appears in the context of mathematical morphology,

for naming the operation ⊖ involved in Eq. 12.1. It is pure coincidence.



12 Shoreline Extrapolations 227

3. if the shore exhibits small gulfs, islands and lagoon lakes, we may require from

the extrapolation to preserve their homotopy, i.e. neither to create new islands

(new gulfs, new lakes) nor to suppress the existing ones.

The first two questions can be treated within the framework of the median set the-

ory, and the third one reduces to a small variant. Though median elements were thor-

oughly studied for interpolation problems, by M. Iwanowski in particular Iwanowski

and Serra (2000) no attention was paid to their potentialities for generating averages

and extrapolations. We believe nevertheless median sets turn out to be convenient

tools for shorelines forecast, which in addition extend directly to numerical func-

tions (however, we shall not treat the numerical extension here, and restrict ourself

to the binary approach).

What follows is an attempt in this direction. After a presentation of the median

set, that we adapt to shorelines in Sect. 12.2, we analyze in Sect. 12.3 a series of

derived notions, such as weighted median set, quench function and quench stripe,

and averages. The heart of the matter is treated in Sect. 12.4, where various laws are

proposed for the dynamics of the coast movements. A short section on homotopy

preservation precedes the conclusion. All images of coasts which are used below are

simulations, and have the same digital size of 512 × 320 pixels.

12.2 Median Set

In literature, median set appears as an interpolation algorithm in Casas (1996) and in

Meyer (1996), and was extended to partitions in Beucher (1998). Its formal definition

and its basic properties were given in Serra (1998). Since, the approach has been

developed by several authors (Angulo and Meyer 2009; Charpiat et al. 2006). In

what follows, the geographical space is modelled by the Euclidean plane, but the

approach applies as well to any metric space, including the digital ones. The model

of Euclidean median sets does not concern the lines of the shores, but the whole
landsets, whose the shorelines are the boundaries. These landsets, denoted below by

A1, A2, etc., are depicted for example in Fig. 12.3 left, whereas the only shorelines

boundaries, in another example, are depicted in Fig. 12.5 left. The basic results we

need to start with are the Definition 1 of a median set, and the two properties 2 and

3, drawn from Serra (1998).

Hausdorff distance 𝜌 concerns the class K ′
of the noncompact sets of Rn

(here

of R2
). It is the mapping 𝜌 ∶ K ′ ×K ′ → R+

𝜌(X, Y) = inf{𝜆 ∶ X ⊆ Y ⊕ 𝜆B ;Y ⊆ X ⊕ 𝜆B} (12.1)

where B designates the unit disc centered at the origin, and where ⊕ and ⊖ designate

Minkowski addition (or dilation) and substraction (or erosion) respectively.
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Consider now an ordered pair of closed sets {X, Y}, with X ⊆ Y , and such that

the numerical value 𝜌(X, Y), as given by Eq. (12.1), is finite. Their median element

is defined as follows:

Definition 1 The median element between the two ordered sets X,Y∈ K ′
, with

X ⊆ Y , is the compact set M(X, Y), comprised between X and Y and whose boundary

points are equidistant from X and Yc
.

In other words, the boundary 𝜕M of M is nothing but the skeleton by zone of influ-

ence, or skiz, between X and Yc
.

Proposition 1 The median set between X and Y is obtained by taking the union

M(X, Y) = ∪{(X ⊕ 𝜆B) ∩ (Y ⊖ 𝜆B) 𝜆 ≥ 0} (12.2)

where the 𝜆 can be limited to the values smaller or equal to

𝜇 = inf{𝜆 ∶ 𝜆 ≥ 0, X ⊕ 𝜆B ⊇ Y ⊖ 𝜆B} (12.3)

and where the equality is reached for at least one point of 𝜕M.

Proof A point m at a distance ≤ 𝜆 from X and ≥ 𝜆 from Yc
belongs to set (X ⊕ 𝜆B) ∩

(Y ⊖ 𝜆B), hence to set of Eq. (12.1). Conversely, as every point m ∈ M belongs to at

least one term of the union, there exists a 𝜆 ≥ 0 with d(m, X) ≤ 𝜆 and d(m, Yc) ≥ 𝜆,

which results in Eq. (12.1). As for Eq. (12.2), we observe that for 𝜆 large enough

we have (X ⊕ 𝜆B) ∪ (Yc ⊕ 𝜆B) = R2
because set Y is bounded. These 𝜆 bring no

contribution to set M(X, Y), since X ⊕ 𝜆B ⊇ Y ⊖ 𝜆B. Finally, for 𝜆 = 𝜇, we obtain

a point of the boundary 𝜕M because X and Y are closed, which achieves the proof.

Here is now an instructive property which shows how both Hausdorff distances by

dilation and by erosion
2

are involved in the median M(X, Y) (Serra 1998).

Proposition 2 Given X, Y ∈ K ′(Rn), the median element M(X,Y) is at Hausdorff
dilation distance 𝜇 from X and from the closing X ∙ 𝜇B = (X ⊕ 𝜇B)⊖ 𝜇B, and at
Hausdorff erosion distance 𝜇 from Y and from the opening Yo𝜇B = (Y ⊖ 𝜇B)⊕ 𝜇B.

2
Hausdorff distance 𝜎 for erosion, introduced in by the relation

𝜎(X, Y) = inf{𝜆 ∶ X ⊖ B𝜆 ⊆ Y ; Y ⊖ B𝜆 ⊆ X}

concerns the subclass A of K ′(E) of the regular compact sets, i.e. such that Xo = X. It is indeed a

distance on A ×A . If 𝜎(X, Y) = 0, then we have

Y ⊇
⋃

𝜆>0
X ⊖ B𝜆 = Xo ⇒ Y ⊇ Xo = X X, Y ∈ A

and similarly X ⊇ Y , henceX = Y (the other two axioms are proved as for distance 𝜌) (Serra 1998).
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Fig. 12.3 Left: two simulated shore images A1 and A2. The older is supposed to be A1 (the white

one).The zones of accretion from A1 to A2 are in light grey, those of erosion in dark grey; right: the

boundary of the median set M between A1 and A2

The Hausdorff distance applies to non empty compact sets. But clearly, the landsets

under study are not empty, and the above assumption that 𝜌(X,Y) < ∞ comes back

to say that all involved distances are bounded.

12.3 Median and Average for Non Ordered Sets

Non ordered sets In general, two successive shores A1 and A2 are not ordered, i.e.

their change comprises both erosions and accretion areas. If so, the previous results

do not apply to two A1 and A2 directly, but to their intersection X = A1 ∩ A2 and their

union Y = A1 ∪ A2 which are ordered since X ⊆ Y . Equation (12.1) of the median

element becomes

M(A1, A2) =
⋃

𝜆≥0
[A1 ∩ A2)⊕ 𝜆B] ∩ [(A1 ∪ A2)⊖ 𝜆B] (12.4)

Figures 12.3 depicts an example of median set M. One observes that 𝜕M goes

through all points where the two coastlines intersect. The property is general, since

these points belong to both A1 ∩ A2 and A1 ∪ A2.

Weightedmedian Set M is said to be median because each point of 𝜕M is equidistant

from X and Yc
, which is a consequence of the same weight given to dilation and

erosion in Eq. (12.2). By changing this weight, i.e. by replacing M by

M𝛼(X, Y) =
⋃

𝜆

{(X ⊕ 𝛼𝜆B) ∩ (Y ⊖ (1 − 𝛼)𝜆B)} (12.5)

for a 𝛼 ∈ [0, 1], we generate another interpolation, and by making 𝛼 vary, a series of

progressive interpolations from X to Y (Huttenlocher 1995), all the closer to set Y
since 𝛼 is high. One will notice that when the two shores A1 and A2 are not nested

in each other, then one takes for the two operands of Eq. (12.5) X = A1 ∩ A2 and
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Y = A1 ∪ A2. This provides interpolators such as those of Fig. 12.4. Unfortunately,

these interpolators are closer to the highest or to the lowest line, no matter these

lines are portions of 𝜕A1 or of 𝜕A2. For correcting this drawback, one must take the

interpolator M𝛼 in the zones where A1 is larger than A2 (for example), and M1−𝛼 in

the other ones. Denoting by N(A1, A2) the correct weighted interpolator, we now

have

N𝛼(A1, A2) = M1−𝛼(A1, A2) when A1∖A2 ≠ ∅ (12.6)

= M𝛼(A1, A2)when A2∖A1 ≠ ∅

Figure 12.5 depicts such corrected interpolators.

The physical equation of the phenomenon Physically speaking, the accretion/

erosion process evolves at each instant from the stage it has reached before. It takes

some M𝛼(X, Y), with 𝛼 ∈ [0, 1], as starting point and moves to M𝛽[M𝛼

(X, Y), Y], for some value 𝛽 ∈ [0, 1]. The weighted medians M𝛼 do model this evolu-

tion because they form a semi-group. By calculating firstly the set M𝛼(X, Y) median

between X and Y , and then the set M𝛽[M𝛼(X, Y), Y] between M𝛼(X, Y) and Y , we

obtain indeed the same result as by calculating directly M𝛾 (X, Y) for the weight

𝛾 = 𝛼 + (1 − 𝛼)𝛽 = 𝛼 + 𝛽 − 𝛼𝛽, i.e.

Fig. 12.4 Raw weighted median lines

Fig. 12.5 Left: two shores A1 and A2, of boundaries 𝜕A1 and 𝜕A2, and their median line of boundary

𝜕M0.5; right: the same, plus two additional weighted median lines according to Eq. (12.5)
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M𝛽[M𝛼(X, Y), Y] = M𝛼+𝛽−𝛼𝛽(X, Y) (12.7)

For example, in Fig. 12.5 right, the three median sets correspond to 𝛼 = 0.75, 0.5,

and 0.25, and the weighted median M0.75 is also the median element between M0.5
and A1 ∪ A2.

Proposition 3 Given X, Y ∈ K ′(Rn), the family {M𝛼(X, Y), 0 ≤ 𝛼 ≤ 1} of median
elements form an additive semi-group for the addition 𝛼 ⊗ 𝛽 = 𝛼 + 𝛽 − 𝛼𝛽.

Proof Clearly, 𝛼 ⊗ 𝛽 ∈ [0, 1], thus Eq. (12.7) defines a commutative semi-group.
The operation 𝛼 ⊗ 𝛽 is also associative, since

𝛾 ⊗ (𝛼 + 𝛽 − 𝛼𝛽) = 𝛾 + 𝛼 + 𝛽 − 𝛼𝛽 − 𝛾𝛼 − 𝛾𝛽 + 𝛾𝛼𝛽

is symmetrical in 𝛼, 𝛽, 𝛾, therefore 𝛼 ⊗ 𝛽 is an algebraic addition.

Quench function and quench stripe As a matter of fact, the median operator pro-

vides two outputs, since we have on the one hand the (weighted or not) median set M,

whose contour 𝜕M is the dark middle line in Fig. 12.5 left, or Fig. 12.6 left, and the

quench function q, defined on 𝜕M and which gives at each the radius of the minimum

disc hitting the two contours 𝜕A1 and 𝜕A2.

q(z) = inf{r ∶ Bz(r) ∩ 𝜕A1 ≠ ∅ and Bz(r) ∩ 𝜕A2 ≠ ∅} (12.8)

A few of such discs, for the two inputs A1 and A2 of Fig. 12.3 left, are depicted in

Fig. 12.6 left, and their union for the whole quench function gives the quench stripe
w, i.e. the dark grey stripe W around the black line 𝜕M in Fig. 12.6 right, with

W = ∪{Bz(q(z)), z ∈ M(A1, A2)} (12.9)

Note hat this dark grey stripe does not reach the edges of input sets A1 and A2, but

an open version of their union, and a closed version of their intersection.

Fig. 12.6 Left: a few maximum discs centered on the median line; right: the dark grey stripe is

the union of all maximum discs, or “quench stripe”
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Fig. 12.7 Left: four shores; right in dark, their median line

Averages The structure of Eq. (12.7) suggests a technique for extending the median

element to more than two input sets. Starting for example from the triplet {A1, A2, A3},

we can calculate M0.5(A1, A2) in a first stage, and then M0.33[M0.5(A1, A2), A3]. The

resulting median element averages the three inputs, in a median sense. Figure 12.7

depicts an example of such an average for the four inputs {A1, ..A4} shown in

Fig. 12.7 left (two of them are the sets involved in Fig. 12.5 left). The initial stage

consists in calculating M0.5(A1, A2) and M0.5(A3, A4), and the final one in calculating

M0.5[M0.5(A1, A2), M0.5(A3, A4)], a set whose contour is drawn in black in Fig. 12.7

right. This final result is independent of the choice of the sets in the initial stage, and

we could start as well from M0.5(A1, A3) and M0.5(A2, A4).
The averages obtained this way blur the structural features of the shores. Imagine

for example that A2, An are shifted versions of A1 in the horizontal direction. As n
increases, the median average contour tends towards an horizontal line: all features,

gulfs, capes, etc. are lost. We meet here the same trouble as in interpolating moving

objects, with translation and rotation. In case of shore movements, the translations

are probably less intense, but the problem still remains. Remark also that this draw-

back is the counterpart of the advantage of preserving accretion and erosion zones.

12.4 Extrapolations via the Quench Function

In this section and the next one, we focus on the extrapolation of two shores at most,

A1 and A2 say. If we dispose of a chronological sequence of the coast movements, A1
and A2 stand for the last two observations, A2 being the more recent. The principle

of the extrapolation consists in two possible changes:

1. that of the quench function according to a given law, which models the dynamics

of the movement, and which results in a new quench stripe W;

2. that of the respective importances of A1 and A2. If we take the median M0.5(A1, A2),
then both shores are given the same weight, but if we consider that A2, more

recent, is two times more significant than A1, then we can take N0.66(A1, A2).
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Fig. 12.8 Two extrapolations of the shoreline of Fig. 12.3; both are centered on 𝜕M0.5(A1, A2); the

quench function is multiplied by 2 in the left image and by 3 in the right one

Fig. 12.8 depicts two extrapolations where the median element equals M0.5(A1, A2),
hence where the two input shores are given the same importance, but where the

quench stripe W of Eq. (12.9) is replaced by

W = ∪{Bz(kq(z)), z ∈ M0.5(A1, A2)}

The radius of the disc centered at each point of M0.5(A1, A2) is quench value multi-

plied by factor k, with k = 2 for Fig. 12.8 left and k = 3 for Fig. 12.8 right. We see

that, as k increases, both accretion and erosion zones are developed. We can also

notice that the shape of the cape provokes a bizarre inflation in Fig. 12.8 right.

This swelling may be due to the great distance from the median line to extremity

of the cape, as shown in Fig. 12.6 right, so that we can try to avoid it by making

the median line closer to contour 𝜕A2 which delineates the cape. Replace then the

median set M0.5(A1, A2) by N𝛼(A1, A2), in the sense of Eq. (12.6), with 𝛼 = 0.75, so

that the quench stripe becomes

W = ∪{Bz(kq(z)), z ∈ N0.75(A1, A2)}.

The resulting changes are depicted in Fig. 12.9, left for k = 3, and right for k = 4.

By comparing Figs. 12.8 right and 12.9 left where the quench function is multiplied

by the same value k = 3, we see that the cape inflates less, but in compensation the

erosion zone vanished. The erosion can reappear by taking k = 4 (Fig. 12.9 right),

but again the cape inflates as strongly as in the previous extrapolation of Fig. 12.8

right.

In fact, transforming a quench function according to pure magnification is prob-

ably too poor. One can easily imagine more sophisticated laws such as the two fol-

lowing ones:

1. the median line is slightly moved toward the second contour, by taking N0.66
(A1, A2), and the quench stripe W is obtained by dilating each point z of the

median line by the disc of radius 2q(z) and by the segment L𝛼(2q(z)) of length

2q(z) in the main direction 𝛼 of the cape, which gives
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Fig. 12.9 Two other extrapolations of the shoreline of Fig. 12.3; both are centered on

𝜕N0.75(A1, A2); the quench function is multiplied by 3 in the left image and by 4 in the right one

Fig. 12.10 Two extrapolations of the shoreline of Fig. 12.3, by emphazising the new capes in the

left image, and by introducing an east-west trend in the right one

W = ∪{[Bz(2q(z)⊕ L𝛼(2q(z))], z ∈ N0.66(A1, A2)}

and which is depicted in Fig. 12.10 left. The accretion around the cape turns out

to be now more realistic, but the erosion zone has disappeared.

2. The median set N0.66(A1, A2) is left unchanged, and a supplementary trend in the

horizontal direction is introduced by a dilating points z by the horizontal segment

L0(3q(z)). For avoiding too fast changes, the parameters of the two other dila-

tions are divided by 2. The shifting effect of the trend operation appears clearly

in Fig. 12.10 right, where the accretion forms a deposit at the east of the cape.

Similarly, the directional effect of the erosion holds for west oriented regions.

Unlike the previous models, which all are invariant under rotation of the map,

these last two laws, which model marine currents, depend on the North direction

(see Fig. 12.10).



12 Shoreline Extrapolations 235

12.5 Accretion and Homotopy

It may happen that, for some reasons, one wishes to preserve the homotopy of the

shore, which excludes the creation, or the suppression, of lakes and islands. Now,

by dilating enough the shore of Fig. 12.10, we risk to close the gulf on the left and

to generate in internal island. An easy way to protect the gulf as such consists in

replacing the dilation w.r.t. the unit disc by a cycle of elementary homotopic thick-

enings in the eight directions of the square grid, or the six ones in the hexagonal

case (Serra 1982). The circular dilation of size n becomes the series of n thickening

cycles. One can see in Figure ll, left and right, the results of two thickenings of sizes

25 and 33 respectively (for a 512 × 320 digital image). The gulf is preserved by a

narrow channel, which could be enlarged by modifying the homotopy preservation

algorithm. This conceptually simple method is not the only possible one. In Vidal

et al. (2005) the authors propose a median set based interpolation that preserves par-

ticles by marking them by a homotopic thinning, and translating them during the

interpolation process.

12.6 Conclusion

Our purpose was to demonstrate the physical sense of the median set approach and

its flexibility. In the first section, we indicated three features to be respected by inter-

polations. According to the first one, an accretion (resp. erosion) zone must continue

to evolve by accretion (resp. erosion). This basic modality is fulfilled by all models

of Sect. 12.4. The laws proposed in this section are far from being the only possible

ones. In particular, each of the six examples of the section is given a same law for

accretion and erosion, which is not at all an obligation. The second feature holds

for the role of the past. In the approach of Sect. 12.4, this past reduces to the last

two stages: they suffice to determine the starting shoreline, the “gradient”, and the

location of accretion/erosion (Fig. 12.11).

Fig. 12.11 Two extrapolations of the shoreline of Fig. 12.3 by homotopic thickenings of sizes 25

(left) and 33 (right)
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The third feature was the subject of Sect. 12.5, where a thickening is substituted

for the dilation in the extrapolator, in order to preserve homotopy. Indeed, all extrap-

olation equations, from sections two to four, can be rewritten by replacing the unit

disc erosion and dilation by unit cycles of thinnings and thickenings, and the lin-

ear dilations by unidirectional thickenings. It would result in a series of algorithms

where increasingness is lost (non direct extension to numerical functions) but where

topological features are preserved.

Finally, as the weighted median of Eq. (12.4) is an increasing function of its two

operands, it extends to numerical functions by means of their subgraphs, and allows

to process colour images (Daya Sagar 2007).
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