Chapter 10 M)
Mathematical Geosciences: Local et
Singularity Analysis of Nonlinear Earth
Processes and Extreme Geo-Events

Qiuming Cheng

Abstract In the first part of the chapter, the status of the discipline of mathematical
geosciences (MG) is reviewed and a new definition of MG as an interdisciplinary
field of science is suggested. Similar to other disciplines such as geochemistry and
geophysics, mathematical geosciences or geomathematics is the science of studying
mathematical properties and processes of the Earth (and other planets) with predic-
tion of its resources and changing environments. In the second part of the chapter,
original research results are presented. The new concepts of fractal density and local
singularity are introduced. In the context of fractal density and singularity a new
power-law model is proposed to associate differential stress with depth increments at
the phase transition zone in the Earth’s lithosphere. A case study is utilized to
demonstrate the application of local singularity analysis for modeling the clustering
frequency—depth distribution of earthquakes from the Pacific subduction zones.
Datasets of earthquakes with magnitudes of at least 3 were selected from the Ring of
Fire, subduction zones of Pacific plates. The results show that datasets from the
Pacific subduction zones except from northeastern zones depict a profound frequency
—depth cluster around the Moho. Further it is demonstrated that the clusters of
frequency—depth distributions of earthquakes in the colder and older southwestern
boundaries of the Pacific plates generally depict stronger singularity than those
obtained from the earthquakes in their hotter and younger eastern boundaries.

10.1 Introduction

When this handbook is published, the International Association for Mathematical
Geosciences (IAMG) is celebrating its 50th anniversary. Mathematical geosciences
as a scientific discipline has become mature after half a century of development
since the IJAMG was established in 1968 at the 23rd International Geological
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Congress (IGC) in Prague. It had grown from mathematical geology to mathe-
matical geosciences by the time its name was changed at the 32th IGC held in Oslo
in 2008. Not only has the subject been accepted widely within the geoscience
community but the association has also been recognized for its reputation and
significant influence on the earth sciences in general. IAMG has affiliations with
several major geoscience organizations including the International Union of Geo-
logical Sciences (IUGS), International Statistical Institute (ISI), and the Interna-
tional Union of Geodesy and Geophysics IUGG). Diverse earth science topics
have been published in IAMG conference proceedings and the IAMG journals
(Mathematical Geosciences, Computers & Geosciences and Natural Resources
Research). However, we have to realize that as a relatively young discipline, MG
still has not been very widely accepted and is often ignored by main stream geo-
scientists. While several definitions and terminologies were proposed to describe
mathematical geology, there have been few attempts to define mathematical geo-
sciences. For example, mathematical geosciences have often simply been referred
as applications of mathematical and statistical methods for the analysis of geo-
logical (earth science) data and the development of quantitative predictive models
(Howarth 2017). The mission of the IAMG as shown on the IAMG website was
defined as promoting the development and application of mathematics, statistics
and informatics in the geosciences. Whether MG should be defined as a formal
discipline of science or simply as applications of mathematics in the geosciences is
a fundamental question with critical impact on the development of the subject. In
this chapter, I will review the status of the discipline and suggests a new definition
for MG followed by examples to demonstrate what contributions of MG have been
made to earth science and what the current developments in the field are. For the
first part I will elaborate on MG on the basis of literature review and for the second
on my own research in nonlinear MG as an example of a new field of MG.

10.2 What Is Mathematical Geosciences
or Geomathematics?

One of the original definitions of mathematical geology was given by Vistelius
(1962) and used in the name of the association: International Association for
Mathematical Geology (IAMG) when it was first established in 1968. Geostatistics
is one of the successful fields of IAMG, which originally was developed by MG
scientists within the IAMG community. It has been used not only in the geosciences
but later in many other fields of science as well. Geostatistics focuses on application
of statistical methods in the earth sciences (e.g. Merriam 1970; McCammon 1975a,
b) and still appears to be used by many in that sense. The term geomathematics was
also used by several authors including Agterberg (1974) who used the term as the
title of his two books (Agterberg 1974, 2014). After the name of the association was
changed from mathematical geology to mathematical geosciences in 2008, the term



10 Mathematical Geosciences: Local Singularity Analysis ... 181

mathematical geosciences more often appears in the literature of the IAMG and also
in the titles of conferences, as well as in the name of its journal Mathematical
Geosciences. When the author of the current chapter served as president of IAMG
(2012-2016), dedication to IAMG was given by promoting the discipline of
mathematical geosciences. Several notes on this were published in the President’s
Forums in IAMG newsletters (Issues 76—79th). The distinction between mathe-
matical geology and mathematical geosciences is not simply in terminology but
also in the scope of the discipline. While mathematical geology refers to a branch of
geology, mathematical geosciences must be a subdiscipline of the geosciences
which includes geology as one of its subfields. Other relevant subjects covered in
the geosciences include but are not limited to geochemistry, geophysics, geobiol-
ogy, and hydrology. Mathematical geosciences should be a discipline parallel to
other subdisciplines in the geosciences such as geochemistry, geophysics and
geobiology rather than a branch of geology. In the author’s personal view this
distinction is critical for the development of the discipline. Under the concept of
mathematical geology, the subject is limited to the application of mathematics in
geology but as mathematical geosciences just like geochemistry and geophysics, it
serves the entire earth science. So, what should be the definition of mathematical
geosciences or geomathematics and what are the roles mathematical geosciences
should play in the family of geosciences? Here I will briefly elaborate on these
questions and introduce several major contributions of MG to earth science. In
order to provide a proper definition of mathematical geosciences, we should look at
the definitions of other relevant disciplines such as geochemistry, geophysics and
geobiology:

e Geophysics as a science of “the study of the earth’s physical properties and of
the physical processes acting upon, above, and within the earth.” (Collins
English Dictionary)

o Geochemistry as a science that deals with the chemical composition of and
chemical changes in the solid matter of the earth or a celestial body (Unab-
ridged dictionary).

e Biogeosciences as an interdisciplinary field of study integrating geoscience and
biological science: the study of the interaction of biological and geological
processes (Unabridged dictionary).

The definitions of the preceding relevant disciplines share the common concept
of an interdisciplinary geoscience field. A similar definition was proposed by the
author in 2014 with consultation of the IAMG Executive Committee Members and
published in the President’s Forum of IAMG newsletter (Issue No. 79).

o As an interdisciplinary field merging mathematics, computer science and geo-
sciences, MG is the science of studying mathematical properties and processes
of the Earth (and other planets) with prediction and assessment of its resources
and environments
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The ultimate question arising from this definition is what are the mathematical
properties and processes of the Earth, with prediction and assessment of its
resources and environments which have to be dealt with by mathematical geo-
science for integration with other geoscience subdisciplines. Similar to other
interdisciplinary fields including geochemistry and geophysics, mathematical sub-
jects such as geometry, calculus, functional analysis, morphology, probability and
mathematical statistics provide essential theory and methods for quantitative study
of the Earth ranging from geometry and dynamics of the Earth, uncertainties of
measurements, and observations for the prediction of Earth events.

10.3 What Contributions Has MG Made
to the Geosciences?

There are many examples demonstrating that MG has made indispensable contri-
butions to the geosciences. For example, the mathematical model of the Earth’s
shape (e.g. Clark ellipsoid, and Hayford ellipsoid) which serves as the foundation of
geodesy, navigation systems (e.g. GPS), remote sensing technology (RS) and
geographical information systems (GIS), and the fast growing field of geomatics;
the mathematical model of mantle convection and models for plate motions
(McKenzie and Parker 1967) serve as foundation of plate tectonics, the most
notable development of earth science in the last century; mathematical symmetry
and symmetry operations as principles of crystallography and optical mineralogy
(e.g. in 1830, Hessel proved the existence of the 32 groups of crystal symmetry)
which constitute a foundation of solid earth science; the mathematical topological
model as foundation of geographical information systems (e.g. as basis of spatial
data modeling in ArcGIS), one of the most useful technologies in geoscience;
mathematical and statistical theories providing foundations for describing the
spatial distribution and correlation of elements, uncertainty and error bars in geo-
chemistry including isotope geochemistry and geochronology as are also used for
the geological time scale; mathematical modeling and uncertainty of prediction of
climate change, a pressing issue of the geosciences; probability theory and
stochastic models for prediction of energy and mineral resources, highly demanded
by many nations for economic and societal development; geo-complexity theory
such as fractals, multifractals, chaos and self-organized criticality for modeling and
predicting singular events and extreme phenomenal issues; and information
extraction (big data mining, machine learning, geo-intelligence) in the geosciences,
just to name a few.

As the International Association for Mathematical Geosciences, IAMG has
earned its reputation by promoting and fostering its members to make contributions
to science. Original and significant studies have been published in IAMG journals,
books and conference proceedings. However, a large amount of work is docu-
mented elsewhere in publications which cover almost every mathematical subject
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and aspects of geosciences ranging from statistical data analysis, geometrical
modeling, dynamics and processes simulation, to prediction and assessment of
Earth system. MG theories and methods have been applied not only in tackling
conventional solid earth issues such as assessment of mineral and energy resources,
but also in other fields including hydrology, climate change, water resources,
alternative energy resources and environmental issues. While the importance of MG
in the geosciences has been increasingly demonstrated, the discipline of MG has not
yet been fully recognized and, to some extent, buried in oblivion. There is hardly
any hiring of highly qualified personal (HQP) in academic institutions or industry
with as job title Mathematical Geoscientist or Geomathematician. As a matter of
fact, most of our IAMG members are employed with job titles such as geologists,
geophysicists, geochemists, geodesists, computer scientists, mathematicians and
geoinformatical specialists instead of MG or GM. University students who are
talented in mathematics and geosciences wanting to pursue mathematical geo-
science have to enroll in geophysics or other fields simply because MG does not
exist as such in university programs, at least in most of the programs in developed
nations. There are very few interdisciplinary university programs except actuarial
science, mathematical physics and mathematics for business, which have mathe-
matics as integral part of their subject. A common misconception is that learning
mathematics either can only result in kinds of two jobs: pure mathematician or
mathematics teacher, or as a prerequisite for other careers in engineering, science or
business. This might be one of the reasons there are not so many students wanting
to pursue mathematics related subjects in their choice of career. Thus, MG faces
significant challenges when promoting MG as a discipline and for facilitating
training and education of future generations. This presents the bottleneck for the
TAMG to grow further and to become a more successful and influential association.

The International Year of Mathematics of Planet Earth (MPE) celebrated in 2013
generated a much needed publicity of mathematics in geoscience. Mathematical
courses are offered in all schools from primary to high school to university. Earth
science is also a common choice of topic in essays by students. Integration of math
and earth subjects must provide proper and interesting topics for students’ math or
science projects. The mathematical and geoinformatical techniques learned by
students early on are already powerful tools for exploring the Earth. An excellent
example is the work headlined in the media with publication by a high school
student Alice R. Zhai who has analyzed 73 tropical cyclones that made landfall in
US and used multivariate regression to examine the dependence of hurricane
economic loss on maximum wind speed and storm size. This study (Zhai and Jiang
2014) not only proposes a new model by which hurricane damage might be pre-
dicted but also provides new evidence showing the area-density power law property
of extreme events which, as is to be introduced in the remainder of this chapter, has
deep origins in nonlinear dynamics.

The development of modern information technology enables everyone to easily
retrieve big data to support their studies via internet and web services in a cloud
environment. To access and process huge amounts of data is no longer only for paid
professionals. More and more specialized software packages and multi-media
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teaching and training materials or online courses available in the public domain
with Twitter, Facebook and You Tube, provide new ways for self-learning. Online
communication, discussion and consultation through the internet in and out of the
classroom have become common for students. It should encourage middle school,
high school and university students to develop their curiosity in, passion for, and
dedication to mathematical geosciences.

10.4 Frontiers of Earth Science and Opportunities of MG

TAMG has been rapidly expanding its scope from traditional geostatistics or statis-
tical geology to more comprehensive interdisciplinary sciences for mathematically
studying properties and processes of the Earth with prediction and assessment of its
resources and environments. What are the current trends of MG and how are they
associated with the Earth Science frontiers? It is impossible to create an accurate list
of frontiers for MG. Of course, there exist several previous publications by IAMG
members that have discussed past, current and future trends for the IAMG (Agterberg
2003). Here I will just share some thoughts based on my personal observations of
several recent events and activities. Several international organizations have devel-
oped and published white papers illustrating prospective review on trends of scien-
tific research within their organizations and strategic plans for the next 5-10 years;
for example, the International Council for Science Union (ICSU) published its
strategic research agenda for Future Earth 2025 Vision (http://www.futureearth.org/
sites/default/files/future-earth_10-year-vision_web.pdf); the International Union of
Geological Sciences (IUGS) is jointly with UNESCO offering the International
Geological Correlation Program (IGCP) in addition to various other big science
programs and new initiatives such as the Resourcing Future Generations (RFG), an
international collaborative program (http://iugs.org/uploads/RFG.pdf); the US
National Science Foundation (NSF) has published a strategic plan for 2014-2018
(https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf14043); the Ameri-
can Geophysics Union (AGU) produced a scientific trends report (https://about.agu.
org/trends-earth-space-science/); the American Natural Science Foundation pub-
lished its strategic plan for tectonics (https://docgo.net/national-science-foundation-
nsf-strategic-plan-fy-2006-2011-nsf-06-48); a white paper resulting from NSF
sponsored workshops on “mathematics in geosciences” was published by a group of
geoscientists in 2012 (https://cpb-us-el.wpmucdn.com/sites.northwestern.edu/dist/
8/1676/files/2017/10/agenda-xwphux.pdf), just to name a few. Relevant publications
resulting from international conferences such as the International Geological Con-
gress (IGCs), AGU, EGU, GSA as well as special articles in several journals such as
Nature and Science have also been concerned with these issues. The following
summary of key topics can be extracted from the preceding sources of information to
reflect current trends and frontiers of the earth sciences. These key topics include but
are not limited to data science, data analysis, big data and geo-intelligence,
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computation, inter-/multi-/cross-/transdisciplinary science, integrated models,
uncertainty relative to observations and predictions, properties and dynamics of the
planet, climate change, disruptive processes such as earthquakes and storms, and
special studies of the Arctic, Antarctic and Tibet Plateau. The fundamental issues are
for understanding Earth and environmental systems and their interactions with
human activities, and for developing reliable monitoring systems, models, and
information technologies for predictions and early warnings of large-scale and rapid
change. The current challenges facing earth scientists are understanding and mod-
eling the geo-complexity of the Earth and environmental systems with their inter-
actions, chaotic nature and predictability of geo-processes, Earth singularity and
human mitigation and adaptation to extreme events, plus observation and monitoring
multiple-scale mixing nonlinear processes. Although most organizations neither
recognize nor explicitly mention this, the majority of these frontiers are fundamen-
tally related to MG. A long period of incremental advances of new mathematical
theories and models in conjunction with modern technologies for solving these earth
science problems may lead to creative leaps of innovation. MG has huge challenges
and responsibilities facing the earth science frontiers. MG scientists are indeed at the
frontier of earth science tackling fundamental problems of the Earth as can be evi-
denced by the recent advancements reflected in the topics of plenary presentations at
IAMG conferences and in the best papers published in IAMG journals; for example,
on multi-point geostatistics—a new field of spatial-temporal modeling (Mariethoz
and Caers 2014); compositional data analysis—a new way to explore the composites
of the Earth (Pawlowsky-Glahn et al. 2015); singularity analysis and singularity
physics—new theory and methods of studying geodynamics and geo-complexity
(Cheng 2007, 2017a; Agterberg 2017); big data visual analytics for exploratory data
analysis; semantic web technology for geoinformation; uncertainty in ecosystem
mapping by remote sensing; integrating structural geological data into inverse
modeling frameworks; stationary and isotropic vector random fields on spheres; and
mathematical morphology modeling, just to name a few.

10.5 Fractal Density and Singularity Analysis
of Nonlinear Geo-Processes and Extreme Geo-Events

For the past several decades nonlinear theory and geocomplexity marked an era of
new geoscience that deals with nonlinear processes and extreme phenomena which
occurred in the evolution of earth systems. Irregular geometry was not popularized
in the past until the term “fractal” was coined by Mandelbrot in the 1970s. Fractal
geometry rapidly became a new field of mathematics dealing with roughness and
irregularity of geometries. For example, fractals have been used for modeling
complex and self-similar patterns generated by nonlinear processes (Mandelbrot
1972; Feder 1988). The concept of fractals and fractal dimension was further
extended to multifractals involving self-similar measures defined on support which
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can be fractal itself (Mandelbrot 1972; Meakin 1987; Schertzer and Lovejoy 1987).
Multifractal measures have been further extended to fractal density in local sin-
gularity analysis (Cheng 1999a, 2001). In the following sections the concept of
fractal density will be introduced and followed by discussion and application of
new methods for fractal differential operation and fractal integration (Cheng 2017a).

10.5.1 Fractal Density

Since the principle of density was discovered by the Greek scientist Archimedes
approximately 2000 years ago, the well-known physical concept of density has
become a fundamental property of mass or energy with a variety of applications.
The density, or volumetric mass density, of a substance is its mass per unit volume.
Density thus is a scale-independent property of material or energy treated as rep-
resenting a fundamental physical parameter and variable in many physical models
with applications in nearly all fields of study, ranging from physics to engineering,
economics and the social sciences. Density often is characterized as unit of mass
over volume (e.g., g/cm’, kg/m®) or energy over volume (J/cm®, w/L*). For
example, the density of pure gold is 19.32 g/cm3, which is approximately 19 times
as much as for an equal volume of water. The density of quartz is 2.65 g/cm®, which
is much less than the density of gold. Therefore, the density of gold-mineralized
quartz veins in hydrothermal mineral deposits is variable depending upon the
concentration and distribution of gold in the quartz veins. Similarly, continental
crust, which consists mostly of granitic rock, has a density of about 2.7 g/cm® and
the Earth’s mantle of ultramafic rock has a density of about 3.3 g/cm’. The density
of seawater varies with temperature and salinity of the water. Although the density
of seawater varies at different points in the ocean, a good estimate of its density at
the ocean’s surface is 1025 kg/m> or 1.025 g/cm’. Density of air is a temperature
and pressure dependent parameter. For given temperature and pressure the density
of air is independent of the volume of air. For a pure substance the density is
independent of the volume of substance. However, for a heterogeneous substance
density usually assumes different values depending upon purity and packaging. For
example, rocks consisting of minerals with different densities have variable den-
sities depending upon the proportions of the minerals. For a quartz vein with pure
Si0, the density of the vein should be equal to the density of quartz, 2.65 g/cm’.
However, if the quartz vein involves gold mineralization, then the density of the
quartz will be different from that of pure quartz relating to how the gold is dis-
tributed in the vein. At a location of higher concentration where a cluster of gold
occurs in the quartz vein, the density of the vein is higher than that of pure quartz.
From a fractal point of view, the structure of these types of gold distribution can be
very irregular and then has to be described by using a non-integer or fractal
dimension. Accordingly, the value of “volume” of the substance is lost. Instead the
size of fractal is measurable only if it is measured in fractal dimensional space or as
Hausdorff measure (Cheng 2017a). This means the ratio of mass over volume does
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not converge; and the density does not exist according to the ordinary density
definition. In the following section it will be demonstrated that the concept of
ordinary density of substance is only valid for substances with regular or ordinary
structure. For substances packaged in a fractal manner, a new form of density is
needed and the concept of ordinary density has to be generalized to a new form
capable for quantifying the density of complex objects. It will also be demonstrated
that the end products for many types of singular processes possess fractal mass
density or energy density. The concepts of fractal density and local singularity
analysis have been utilized in several dynamic models involving extreme processes
(Cheng 2012, 2016, 2017b; Cheng and Agterberg 2009; Cheng and Sun 2017).

10.5.2 Density-Scale Power-Law Model and Singularity

According to the concept of ordinary density, the mass density of an object (p) can
be calculated by the following equation:

p=—2, (10.1)

where m(v) represents the mass contained in a volume (v) and p is the average
density of an object. If the object is homogenous then the density calculated in
Eq. (10.1) becomes independent of volume. The unit of the density is determined
by the ratio of the mass and volume; for example, g/cm®. However, if the object has
heterogeneous properties, the density may vary from place to place and the average
density in Eq. (10.1) varies with different size of v, then a localized density must be
calculated using the derivative of the mass over volume:

d
"0) _ i
v v=>0 Vv

m(v)

p= (10.2)

The density in Eq. (10.2) exists only if the limit converges when the volume
becomes infinitesimal. If the limit does not converge, then the density doesn’t exist.
As a generalization of Eq. (10.2), the following new Eq. (10.3) was introduced

(Cheng 1999b, 2001) in which there exists a parameter a (with positive value) so
that the limit converges:

po = lim ™) (10.3)

v—>0 V3

The value of p, can be considered as a generalized density because the ordinary
density defined in Eq. (10.2) becomes a special case of Eq. (10.3) when a = 3, the
normal dimension of volume. This new density was named fractal density since it is
defined as mass or energy per unit of “fractal set” (Cheng 1999b, 2001). The fractal
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density defined in Eq. (10.3) has as unit the ratio of mass to a fractal set of o
dimensions; for example, g/cm® or kg/m*. Similarly, the units of fractal energy
density can be J/cm® or w/L*. Combining Egs. (10.2) and (10.3) yields the fol-
lowing relationship between ordinary density and fractal density:

p(v)=pey~ I, (10.4)

The notation of fractal density used in Eqgs. (10.3) and (10.4) can be replaced by
the following general model associating the fractal density with the ratio of mass
and scale (e—linear size of an E-dimensional set):

ple)=pae” . (10.5)

This power-law relation between the ordinary density and scale is determined by
two parameters: the fractal density p, which is independent of scale and the
exponent—singularity index o (fractal dimension), or Aa = E — «; the latter is also
known as the co-dimension of fractal density. The singularity index (Aa) measures
the deviation of the fractal dimension from the dimension of normal density. These
two parameters (p, and Aa) can be estimated from observed data by measuring the
intercept and slope of a straight line on the log-log plot of m against € (Cheng
1999b, 2007).

10.5.3 Multifractal Density

If fractals refer to geometry with irregular shapes and self-similar geometrical
properties, multifractals refer to self-similar measures defined on support which can
be fractal (Mandelbrot 1983). Multifractals are defined as spatially intertwined
fractals with variable fractal dimensions (e.g., Mandelbrot 1972; Cheng 1997).
According to the distribution of measures (similar to the mother functions of sets)
the support can be grouped into subsets which can be fractal with specific fractal
dimension. Accordingly, there are two types of multifractal measures: continuous
and discrete multifractals, the former refers to multifractals corresponding to an
infinite number of intertwined fractals with continuous fractal dimension spectrum,
whereas the latter refers to the limit number of intertwined fractals with discrete
fractal dimensions (Cheng 1997). Multifractal measures are self-similar measures
with multiple scale singularities which can be characterized by the H6lder exponent
(Mandelbrot 1989). In the multifractal paradigm the measure defined on a support
can be expressed as

(ule)y e, (10.6)
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where p(e) represents the measure defined on a set of linear scale €, « stands for
“‘proportional to’” when cell size € approaches to zero, and « is the singularity index
also known the Hélder exponent (Mandelbrot 1989). This power law exists usually
in a statistical sense and is represented as expectation <>. According to the dis-
tribution of « values, the entire support can be classified into subsets or fractals each
with different singularity and accordingly different fractal dimensions. This is why
it has been termed “multifractal”. The distribution of singularity « in the mapped
area can be described by the fractal dimension spectrum function f{a). The values of
singularity and multifractal spectra can be estimated by several methods including
box-counting and gliding-box based moment methods, and the wavelet method
(Cheng 1999b). Singularity property has been commonly observed in geochemical
and geophysical quantities (Cheng et al. 1994; Cheng 1999b, 2007). Since the
common moment-based multifractal models are implemented according to partition
functions of measures with additive property, most literature about multifractals
focuses on the power law relations of multifractal measures and self-similarity of
multifractal measures and few have neither emphasized the physical meaning nor
the property of density of the multifractal measure. A density—area fractal model
was proposed (Cheng et al. 1994) to associate the concentration with area of
multifractal measure as

A(2C)xC7, (10.7)

where the area (A) is a function of element concentration above the threshold C.
The model has also been applied to characterize other types of “concentration” such
as density of faults per area (Agterberg et al. 1996), density of mineral deposits per
area (Cheng and Agterberg 1996), stream density per drainage area (Cheng et al.
2001), and digital number of remote sensing images (Cheng and Li 2002), just to
name a few. Further utilizing the idea of C-A model locally, the following power
law relation was introduced to associate the density of multifractal measures with
scale (Cheng 1999b)

ple,x) =c(x)e™ E-aW], (10.8)

where E is the Euclidean dimension of the support (e.g., E = 1 for line, 2 for area
and 3 for volume), x indicates the location, and c(x) and a(x) are constants with
respect to scale € but varying with location. The values of a(x) and c(x) can be
estimated from the values p(¢, x) calculated for different sizes € around the location x
by means of least squares using log-log paper. Both values can be mapped
for visualization and interpretation. For convenience without loss of generality, in
the rest of the paper the notation of x will be dropped from the formulation and the
equation is assumed to hold locally. The singularity index a and constant ¢ have the
following properties (Cheng 1999b): if a = E, then p(¢) = constant, independent of
vicinity (scale) size €; if & > E then p(e) is a decreasing function of € which implies
the convex property of p(¢); and o < E then p(¢) is an increasing function of € which
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implies the concave property of p(¢). Thus, the ordinary density obeys a power-law
relationship with scale which has the following properties (Cheng 1999b, 2007):

0, if a>E,
lim p=1{ oo, if a<E, (10.9)
e0 ¢, if a=E.

In accordance with these properties, ordinary density becomes volume depen-
dent when a # E and it tends to either zero or infinity when the scale € becomes
infinitesimal. The constant ¢ in Eq. (10.8) can be expressed in the following form:

T E—a_ 1:
c= Fh_r}})p(s)e = 811_% prl (10.10)
The constant ¢ indeed is a convergent value of the ratio of measure (i) over scale
(e) with fractal dimension. This quantity is usually termed scaling factor but it can
be termed as a fractal density or Hausdorff density in analogy to the mass density
which corresponds to ratio of measure over ordinary geometry with integer
dimension (Cheng 2015). Therefore, while a unit of ordinary density is g/m®, the
unit of fractal density becomes g/m*.

10.5.4 Fractal Density Structure and Clustering
Distribution

The terminology of fractal density has been explained in several papers with dif-
ferent emphases, but the meanings of the concepts used are variable. For example,
the term “fractal density” has been used to refer the number of fractals per area (Hou
and Wu 1989) which does not mean the same as the concept introduced in the
current paper. Tatekawa and Maeda (2001) analyzed time evolution of fractal
density perturbations in the Einstein-de Sitter universe, in which the emphasis is on
how the perturbation evolves and what kind of nonlinear structure will come out.
Similarly, Federrath et al. (2009) has used fractal density structure in supersonic
isothermal turbulence when referring to density structure. Gromov et al. (2001)
used fractal density to describe fractal galaxy distribution. Carpinteri et al. (2009)
used the term to describe the mean fractal density of microcrack barycenters. Pope
and Mackenzie (1988) introduced the concept of fractal density for describing the
morphology of fractal growth model in the evolution of gels from solution. They
define the fractal density p which follows the relation

3-D
F=£=(L°> : (10.11)
Po r
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where D is the fractal dimension of fractal growth, the F is the relative fractal
density at radius r (r > 1p), with ry and pg being the core radius and core density,
respectively. The core acts mathematically as a reference point for calculating the
decrease in density as the fractal increases in size. A similar clustering fractal
growth density function was used to describe tumor growth in fractal space-time
with temporal density (Paramanathan and Uthayakumar 2011).

From the preceding publications we can see that in earlier studies by other
authors the term of fractal density was introduced mainly for description of mor-
phology and patterns of fractals and fractal growth modeling. The current research
introduces the fractal density as a generalization of ordinary density of substance or
energy to represent a fundamental new parameter or variable involved in dynamic
systems.

10.6 Fractal Integral and Fractal Differential Operations
of Nonlinear Functions

As mentioned in Eq. (10.2) for heterogenetic matter or substances, the derivative of
mass over scale can be used for defining localized density of substance. Accord-
ingly, the mass or volume of a heterogenetic substance can be calculated using
integration. Obviously, integration and differentiation are two fundamental opera-
tions in calculus and used for many mathematical and physical subjects. The tra-
ditional integral and differential operations are defined on the basis of additive
property of Lebesgue measure. When the measure no longer possesses additive
property, then the classical integral and differential may not exist. Therefore, the
ordinary integral and differential operations are not applicable to fractal density with
singularity. The author has proposed the following fractal integral and differential
(Cheng 2017a)

I _ AW ) =f(x)

' = = = 10.12
fa(xo) dx@ Ax—»O(Ax)a o0 (X—X())a ’ (0 )

where Af(x) and Ax represent the increments of a function f{(x) for an increment
of x. The convergence of the limit in Eq. (10.12) can be defined as the a-fractal
derivative of the function f(x). Similarly, we can define the fractal integral of the
function f(x) as follows

/ F)de= Jim 3 () (A", (10.13)

where f(x;) is the magnitude of the function f{x) over the small range [x;, x; + Ax].
If the limit of Eq. (10.13) converges, then it can be named the a-fractal integral of
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the function f(x). It must be kept in mind that the fractal derivative defined in this
paper is different from the fractional derivative (fractional order) known in the
literature as f©’(x), where v can be a non-integer order. The fractional derivative
assumes that the normal integer order derivative f(")(x) does exist. The fractal
derivative is based on fractal dimension of the measure whereas the fractional
derivative is based on fractional order of derivative defined on normal measure. As
an example, let us take a power-law function to demonstrate the fractal derivative.
Assume a power law function, f{x) = c(x — Xo)b, with ordinary derivative of the
function f(x) = cb(x — x0)°~', which does not exist at x = xo if 0 < b < 1. The

integral of the function then is [f(x)dx =c/(b+1)(x —x0)®*"!, which does not
converge if b < —1 at x = Xq. According to Eq. (10.12), the fractal derivative at
X = Xg exists and f,/(xX) = ¢, if « = b, or f,/(x) =0, if « < b and f,/X) = oo if
a>b.

A new concept of Hausdorff derivative underlying the Hausdorff dimension of
metric space/time was proposed by Chen (2006) who introduced the systematic
mathematical operation of Hausdorff derivative with applications to derive a linear
anomalous transport—diffusion equation underlying an anomalous diffusion process.
The Hausdorff derivative operation proposed by Chen (2006) is expressed as
follows

f(x) =f(x0) _ o (%) (10.14)

X x-x x¥—xf ox

This formalism was termed the Hausdorff derivative of a function f(x) with
respect to fractal measure x*.

It has to be pointed out that the fractal derivation defined in Eq. (10.12) is
different from that defined in Eq. (10.14) considering that, in general, if xo # 0,
then

(AxY) = (x —x0)“ # Ax* =x" —x{. (10.15)

The two sides in Eq. (10.15) become equal only if x, = 0. Otherwise, according
to Taylor expansion, we can obtain Ax® =x% —x§ = axg~ TAx+ o(Ax), so substi-
tution into Eq. (10.14) gives

PO _ i

J(x) =f(x0) 1 of(x)
ox x->xg X% —

X0
_ , 10.16
X3 ax¢=! ox ( )

which implies that the derivative of f{x) defined in Eq. (10.14) is indeed corre-

sponding to the ordinary derivative except for the factor ﬁ Reconsidering the
0

example used previously with fix) = c(x — Xo)b, the derivative of Eq. (10.14) at
X = Xo does not exist if b < 1.
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10.7 Earth Dynamic Processes and Extreme Events

In the remainder of this chapter I demonstrate that fractal density (Aa # 0)
characterizes anomalous mass accumulation or energy release caused by extreme
geo-processes, which occurred in the Earth’s lithosphere originated from cascade
earth dynamics (plumes, mantle convection and plate tectonics) and self-organized
criticality involved in phase transitions (avalanches of slab breakoffs, faults, and
volcanic eruptions).

Mantle convection at high Rayleigh number generates thermal plumes episod-
ically which upon arrival in the crust could cause major flood basalt events, igneous
provinces as well as spreading of continents and mid ocean ridges (Richards et al.
1989; White and McKenzie 1989). On a larger scale, Wilson cycles (Wilson 1966)
corresponding to the periodic fragmentation and reformation of supercontinents
could be linked to temporal variability in plate tectonics. Numerous studies have
revealed that mantle convections can induce exchange of mass between upper and
lower mantle across the endothermic phase transition zone at about 660 km. The
cold downwelling material penetrates into the lower layer and, simultaneously, the
hot upwelling fluid is pushed into the upper layer. The exchange of mass between
the upper and lower mantle layers can occur in short bursts (often described with
superlatives such as “catastrophic”, overturn, “avalanche” subduction, or “super-
plumes”) (Zhong and Gurnis 1994). The quick injection of lower mantle hot fluid
into the upper mantle can cause not only mantle heterogeneity but also anomalous
thermal distribution near the surface (Le Bars and Davaille 2004). This has been
considered to be the first order cause of vigorous magmatism. Deep subductions of
continental crust into the deep earth interior and rebounded back to the surface of
the Earth have been ascertained by the discoveries of regional metamorphic coesite
(Chopin 1984; Smith 1984), and subsequently by unusual ultrahigh pressure
(UHP) terranes (Hacker and Gerya 2013).

Within the lithosphere there are various types of “catastrophic” events occurring
during plate subduction. Formation of magmatic arc can be caused by subduction in
which the subducting or subducted oceanic crust material releases volatiles (e.g.
H,0 and CO,) which cause partial melting of the mantle and form magma at depth
under the overriding plate. Earthquakes occur at certain depths at the edges of three
types of plate boundaries: convergent (subductions and collisions), divergent, and
transformative.

10.7.1 Phase Transition

From mathematical and physical points of view, the mechanisms that have been
proved to exist correspond to the generation of power-law distributions including
but not limited to phase transition (PT), self-organized criticality (SOC) and mul-
tiplicative cascade processes (MCP) (Newman 2005; Lovejoy et al. 2009). I will
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elaborate on each of these mechanisms in relation to mantle convections, plumes
and lithosphere rheology induced tectonic events. The phase of a thermodynamic
system and the state of matter in a normal system have uniform physical properties.
Common phases include liquid phase, solid phase and vapor phase of chemical
components which exist under certain pressure and temperature (P-T) conditions.
Materials in different phases have their distinct properties such as liquid usually
having higher density and smaller specific volume in comparison with gas. How-
ever, in phase transition conditions, multiple phases coexist within the same system
such as liquid and vapor in magma and hydrothermal systems under proper P-T
conditions. At a critical condition (critical point on phase diagram) liquid and vapor
become indistinguishable and beyond this point the fluid and gas become so-called
supercritical fluid, representing a special phase of matter which can effuse through
solids like a gas, and dissolve materials like a liquid (McMillan and Stanley 2010).
The critical point for water occurs at temperature (374 °C) and pressure (22 MPa).
It has been found that the critical point is so peculiar that close to it, small changes
in pressure or temperature result in large changes in density and other density
related properties such as viscosity, relative permittivity, heat capacity and solu-
bility. The special critical point phenomena can be expressed by the following
empirical power law functions (Sengers and Levelt Sengers 1968, 1986):

Ap=c(AP)'?,  Ap=c(AT)'?, (10.17)

where Ap, AP, and AT represent the changes of density, pressure and temperature,
respectively along the coexistence curve. These power-law relations hold for small
changes of temperature or pressure from the condition at the critical point of the
system. Although the two functions of Eq. (10.17) show continuity at zero incre-
ment with Ap =0, AP =0, and AT = 0, the first order derivatives of density
versus either temperature or pressure (change rate of density difference) do not exist
or show singularity at AP = 0 and AT = 0 as shown in the following forms

A A
P =caT— 12 —g =cAP™23 (10.18)

These properties describe the phenomena of property change such as fractal
density (density jump) at the phase transition zone. In addition, the ratio of incre-
ments of temperature and pressure depict power-law relations % =cAP~ '3, Such
power-law relation implies that the Clapeyron slope could become infinity or a
singularity when approaching the coexistence curve. Clapeyron slope and density
jump are critical parameters in numerical simulation of mantle convection; for
example, Korenaga (2004) developed a numerical model to simulate mantle mixing
and continental breakup magmatism by assigning a Clapeyron slope of —2 MPa/K
and a density jump of 10% for the endothermic phase transition at 660 km depth. The
episodicity of convection induced by the endothermic phase changes strongly
depends on plate length, rheology, and Clapeyron slope (Zhong and Gurnis 1994).
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Ogawa and Yanagisawa (2014) have developed models with small Clapeyron
slope —0.2 to —1 MPa/K for simulating convections from punctuated layered con-
vection to whole-mantle convection in modeling mantle evolution on Venus due to
magmatism and phase transitions. Their models indicate that the earlier stage layered
mantle convection is punctuated by repeated bursts of hot material from the deep
mantle to the surface. Other phenomena of phase transition may occur at the
boundary of deeply subducted slabs. Due to subduction of oceanic lithosphere
underneath the continental lithosphere, solid phase lithosphere can be partially
melted to facilitate formation of magma. During the progress of subduction, H,O and
other volatile components contained in the rocks are progressively released from the
slab at different depths. Fluids or melts released at greater depths will be in super-
critical fluid phase which hydrates the mantle and causes partial mantle melting. This
eventually leads to deeply rooted magma which provides the source for magmatic
and volcanic arcs located above the subduction zones. Partial melting in lower crust
and mantle also causes strain rate change of the lithosphere which facilitates for-
mation of intermediate and deep earthquakes (Dimanov et al. 2000). The processes of
fluid release and migration are complex and, to a large extent, their details still remain
unknown. Due to the great depth of subduction the fluid released may be in super-
critical condition with, as mentioned earlier, fractal density with strong solvent
strength facilitating the hydration and metasomatism of mantle rocks. When the
pressure and temperature are reduced to around the critical point, the system goes
through a great reduction of gradient of density, accordingly increasing the specific
volume which further enlarges porous space and fractures rocks thus in turn facili-
tating the formation of magma and earthquakes through positive feedback processes.

10.7.2  Self-organized Criticality

The phenomena associated with continuous phase transitions are called critical
phenomena, and these are often related to so-called self-organized criticality (SOC).
SOC is commonly illustrated conceptually with avalanches resulting from piles of
sand which generate a power-law number-size distribution of avalanche magnitudes
(Bak et al. 1987). At the criticality point in a SOC phenomenon a small continuous
input to the system can cause sudden and discontinuous outputs or avalanches. For
example, a fault occurs in broken brittle rock strata when an extra stress is added to
change the system at the criticality point. The size and number of faults generated
may follow a power law distribution with a small number of large faults and a large
number of small faults. SOC is similar to critical point phase transition since both
processes involve anomalous state change caused by a minor continuous input pulse
at the critical condition point. Numerous studies have also pointed out the effect of
the 660-km endothermic phase transition on convection. This could actually gen-
erate the periodic occurrence of abrupt changes in convective mode (660-km
layered/whole mantle), consecutive with the sudden flushing of oceanic plates
previously accumulated above the transition zone (e.g., Le Bars and Davaille 2004).
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Many numerical simulations have demonstrated multiple scale and sizeable whole
mantle convection, and sublithospheric convection can bring up dense fertile mantle
materials from the lower mantle to the upper mantle (Korenaga 2004). Cold
downwellings are temporarily stopped by the 660 km endothermic phase change but
sink rapidly into the lower mantle (Tackley et al. 1993). The intermittence of lay-
ering reflects accumulation and release of negative buoyancy above the endothermic
phase boundary (Machetel and Weber 1991; Tackley et al. 1993). The exchange of
mass between upper and lower layers can occur in short bursts (Zhong and Gurnis
1994). Although these types of avalanching behaviors are not as easy to test as those
of sand piles, one might reasonably assume that these types of processes with SOC
nature can generate end products with power law distributions. As a matter of fact,
SOC phenomena have been commonly considered to describe extreme geo-events in
plate tectonics. Such examples may include but are not limited to earthquakes
(Gutenberg and Richter 1944; Turcotte 1997), volcanic eruption durations (Cannavo
and Nunnari 2016), plate sizes (Sornette and Pisarenko 2003), slab breakoff (Condie
1998), areal size of magmatism (Pelletier 1999), mineral deposits (Agterberg 1995;
Cheng 1999b; Maier and Groves 2011), heat flow over mid-ocean ridges (Cheng
2016), episodic evolution of supercontinents and crustal growth (Cheng 2017b), and
energy—probability of earthquakes (Cheng and Sun 2017). Other examples can be
found in the book authored by Sornette (2004). The processes involved in response
to the preceding extreme events create end products which can be described by
frequency—size or frequency—time power law relations. Based on the above rea-
soning, we may expect lithospheric root detachments and slab breakoffs that
occurred during subduction are of difference sizes which follow power-law distri-
butions. Some of these small-sized events may not be noticeable on the surface due
to small impact on the global system, but the large detachments and slab breakofts
can cause significant impact on syn- to post-collisional magmatism and metamor-
phism. The size—frequency distribution of these types of events can be modelled by
the following general power-law relation

N(>A)=cA™", (10.19)

where A represents the size of event and N(>A) the cumulative number of events
with size greater than the threshold A. This power-law function involves two con-
stant values: ¢ and b. For example, the well-known Gutenberg-Richter power-law
distribution relates the number of large earthquakes to their sizes (Gutenberg and
Richter 1944; Turcotte 1997). The exponent, b-value, has been commonly used for
predictive purposes. The exponential b-value was found to be internally related to
singularity in terms of fractal probability density (Cheng and Sun 2017) with

E(<P)=E,P7, (10.20)
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where E(<P) represents the minimum energy released by large earthquakes, with
occurrence probability less than P. This equation indicates that the minimum energy
released by large earthquakes follows a power-law relation (f = %b) for probability
of earthquake occurrence with energy greater than E. This model implies that the
smaller the probability (P) of a large earthquake, the larger its energy release (E).

10.7.3 Multiplicative Cascade Processes

Multiplicative cascade processes (MCP) are iterative multiplicative processes across
multiple scales, which involve positive or negative feedback to generate extreme
values that follow multifractal power-law distributions (power-law distributions with
multiple exponents) with self-similarities and singularities (Meakin 1987; Scherzter
and Lovejoy 1987; Agterberg 2007; Cheng 2014). Examples of MCP are common in
the study of geocomplexity such as formation of clouds, severe weather and storms
(Scherzter and Lovejoy 1987; Malamud et al. 1996; Turcotte 1997; Veneziano and
Furcolo 2002), to just name a few. In terms of mantle convection, the convection
processes can be viewed as multiplicative cascade processes that create hetero-
geneity of the mantle by recycling the materials from upper crust to mantle. On a
large scale, Wilson cycle cascade evolution involves the opening and closing of an
individual oceanic basin, plate drift, plate subduction and plate collision, involving
the recycling of lithosphere material and causing extreme events at the interface of
phase transition zones or zones around plate boundaries. Depending on the prop-
erties of subduction and other factors, plate subduction may cause slab deformation,
erosion and breakoff, deep subduction, and collision of continents. These events are
responsible for formation of extreme events such as magmatism and earthquakes.
During such processes changes of pressure and temperature as well as water content
often provides a positive feedback effect on causes of melting or partial melting of
lithosphere and the generation of magma reservoirs and seismicity. In the context of
multiplicative cascade processes, the mass and energy distribution resulting from
these processes often are proved to have self-similarity and singularity which can be
modelled by multifractal distributions (Meakin 1987; Schertzer and Lovejoy 1987;
Cheng and Agterberg 2009).

The aforementioned mechanisms (PT, SOC and MCP) can coexist in the evo-
lution of earth dynamics systems which cause cascade effects for anomalous dif-
fusion and strain rate originating earthquakes or magmatism creating flare up
formation of magmatic activity or cluster frequency-depth distribution of earth-
quakes. Based on possible mechanisms (PT, SOC and MCP) corresponding to
power-law distributions, the fractal density (power-law density) and the singularity
analysis method can be used to characterize the causational relations between
extreme events such as magmatic activities and earthquakes and the aforementioned
nonlinear mechanisms. In the following section a case study of earthquakes will be
used to demonstrate the effect of phase transition on formation and distribution of
earthquakes that occur along Pacific plate subduction zones.
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10.8 Fractal Density of Lithosphere Rheology in Phase
Transition Zones and Association with Earthquakes

10.8.1 Rheology Constitutive Equation

In the study of earth tectonics, rheology is an important concept describing rock
properties with respect to flow behavior which can be characterized through the
following empirical constitutive equation associating stress and strain rate (e.g.,
Dimanov et al. 1998).

Q+PV

E=Ad"d™"f e T (10.21)

where & represents the strain rate, c—the stress, n—the stress exponent; d represents
the grain size, m is the grain-size exponent, fy,o—the water fugacity, and r—the
fugacity exponent, Q—the activation energy, P—the pressure, V—the activation
volume, T—the absolute temperature, while R is the molar gas constant, and A—a
material constant. The constitutive Eq. (10.21) is often utilized in the literature for
describing rheology of ductile crust and since it is so well-known it often is provided
without citation and reference. Several authors have investigated this equation by
various methods such as by physical experiments (Pharr and Ashby 1983; Dimanov
et al. 1998). The parameters involved in the equation can be estimated using a
log-linear model except for the last combined term

Q+PV
RT

log(&) =logA +nlog(c) —mlog(d) + rlog(fu,0) — (10.22)

Effects of some of the parameters have been summarized by several authors
(e.g., Biirgmann and Dresen 2008). For example, diffusion-controlled deformation
is linear in stress with n = 1. Different inverse dependencies on grain size have
been predicted for lattice diffusion— and grain boundary diffusion—controlled creep
with m = 2 and m = 3, respectively. Creep of fine-grained materials involves grain
boundary sliding, which may be controlled by grain boundary diffusion (n = 1) or
by dislocation motion (n = 2). For climb-controlled dislocation creep, deformation
is commonly assumed to be grainsize insensitive (m = 0) with a stress exponent of
n = 3-6 (e.g., Biirgmann and Dresen 2008). Materials for which strain rate is
proportional to stress raised to a power n > 1 are referred to as having a power-law
theology, whose effective viscosity (u=0/éxc'™") decreases when stress
increases. The significant effects of melt distribution on the rheology of rocks have
been reported by many authors (e.g., Dimanov et al. 1998, 2000). In general, the
strain rate is proportional to the water fugacity. The general bivariate relations
between the strain rate and other factors considered in the equation are valid and
can be applied to characterize the general associations of factors considered in the
system (Wang 2016; Dimanov et al. 2000). However, the equation is valid for
normal media that generally do not possess singularity for non-zero values of the
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factors. It is neither possible to use this equation to describe the singular behaviors
of constitutive equation in phase transition nor to directly use it to delineate zones
of phase transition. Variable depth-frequency distribution of crustal earthquakes and
lithological compositions are often integrated to characterize crust deformation in
relation to variations of tectonic styles (Mouthereau and Petit 2003). In the fol-
lowing section my attempt is to derive a proper equation to characterize the rhe-
ology in phase transition zones.

10.8.2 Rheology and Phase Transition

In order to explain the phase transition zones in the lithosphere associating the effect
of phase transition with origin of seismicity and magmatism, one needs to link the
rheology to depth of lithosphere. It has been generally accepted that in the brittle
crust, frictional strength increases linearly with depth. Phase transitions separate
regions into groups of rocks dominated by quartz, feldspar and olivine, respec-
tively; and these regions are characterized by brittle or plastic properties of litho-
sphere (e.g., Jackson 2002; Biirgmann and Dresen 2008). It was suggested by
Sibson (1974) that brittle strength in the crust can be approximated by the Sibson’s
formulation in which the coefficients of friction and cohesion for pre-fractured rocks
are equal to internal friction and cohesion for intact samples:

c=01—03=ppgz(1-1), (10.23)

where 6 =0 — o3 represents differential stress, z is depth, p is average density of
the overburden, g is acceleration of gravity, p is a coefficient which depends on the
type of faulting, and A represents the pore fluid ratio. Under hydrostatic pressure, A
is 0.36, and it is 0 and 0.7 for dry and wet conditions, respectively (Mouthereau and
Petit 2003). In order to discuss the behavior of rheology around phase transition, let
us define depth at the center of the phase transition zone as z,, which will serve as
reference of coordinate for further comparison. Let us also denote a small distance
increment (in depth) around the phase transition zone as Az = abs(z — zp), and the
corresponding increment of differential stress around the phase transition zone as
Ac=abs{(c| —03)(z) — (61 —03)(2z9)}. When Az is very small around the phase
transition center z,, then we can derive the following approximation assuming
changes of depth z, § and A are neglectable:

Acx Ap, (10.24)

According to the phase transition property of density and temperature or pressure
similar to Eq. (10.17) we can assume the mass density of lithosphere around the
phase transition center to be
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Ap x (AT)". (10.25)

Further assuming that the temperature and depth increments are linearly asso-
ciated when the depth increment is very small, we obtain

Ap o (AT)?  (Az)”, (10.26)

Therefore, the derivative of Eq. (10.26) satisfies

T x(Az)P 7! 10.2
AZc><( 2)77, (10.27)

This result implies that change rate (%Z) of density with depth follows a
power-law relation with the increment of depth (Az). If the exponent b is less than
1, the change rate approaches infinity when Az — 0, which implies that the change
rate of differential stress, according to Egs. (10.27) and (10.24), can become infi-
nitely large. Assuming the other factors to be negligibly small in Eq. (10.21) when
Az is very small, we obtain

— (A7)’ (10.28)

If the exponent b is less than 1, then the change of strain rate per increment of
depth approaches infinity when Az — 0. It must be reminded that the derivation of
the new Eqgs. (10.24-10.28) is based on several assumptions involving first order
approximations of factors which may need further theoretical justification (detailed
discussion will be published elsewhere). Nevertheless, the results obtained here
might be the first power-law model providing possible quantitative description of
the singularities of differential stress at the phase transition as indicated in the
schematic diagram (Fig. 10.1).

10.8.3 Frequency—Depth Fractal Density Distribution
and Singularity Analysis of Earthquakes

In order to demonstrate the effect of differential stress caused by phase transition on
formation and distribution of earthquakes, several datasets of earthquakes with
magnitudes three or above were selected for several small regions along the Ring of
Fire, the Pacific plate boundaries. Data were downloaded from the USGS website
under the section of USGS Earthquake Hazards Program (https://earthquake.usgs.
gov/earthquakes/map/). The locations of the 30 small areas selected from Aleutian
Islands, Kuril Islands, Mariana, Tonga Trench, Mexico, northern Chile and southern
Chile are shown in Fig. 10.2. Several hundreds to thousands of earthquakes are
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Fig. 10.1 Strength envelopes of differential stress versus depth for a general lithospheric
condition to illustrate the potential effects of phase transition. The equations are about increment
rate of differential stress around the depth of phase transition zone. Notations and discussions
about the equations are given in the text

selected in each area. These areas were chosen within a short range from the plate
boundaries to ensure they contain enough large earthquakes which occurred along
subduction zones with similar properties.

The main purpose of the case study here is to validate whether earthquakes that
occurred in the subduction zones possess clustering with fractal density; therefore, we
choose earthquakes in the depth around the Moho ranging from 30 to 100 km.
Considering the issue of depth of shallow earthquakes being set a “normal” depth of
33 km or default depths of 5 or 10 km when depths are poorly constrained by available
seismic data, we only analyze the earthquakes with occurring depth ranging 34 to 100
km. The numbers of earthquakes in each dataset were grouped on the basis of 10-km
depth frequency bins. A profound peak of frequency distributions can be observed
around 33 km in all datasets except for western California. To reduce the effect of the
“default peak” at depth 33 km, further analysis of the frequency data will be based on
earthquakes with depth from 34 km downward. As an example, the frequency—depth
distribution of 1263 earthquakes with magnitude greater or equal to 3 and depths
between 34 to 100 km from the Tonga region are shown in Fig. 10.3a with the data
grouped in a bin of 10 km (frequency—depth distributions for other datasets are not
shown here). This graph shows a profound frequency peak at 34-44 km. By eye
examination one can see the frequency around the peak within 60 km (from 34 to 94
km) decaying rapidly from the location of the peak at 34 km downward. To validate
the fractal density of frequency clustering distribution, the following local
number-depth density of earthquakes around the peak z, was constructed
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Fig. 10.2 Study areas located along the Pacific plate boundaries. Data containing earthquakes
with magnitudes M > 3, and their depths were downloaded from the USGS website. The yellow
dots represent the location of study area and the size of the dot represent level of singularity
calculated using the model introduced in the current paper

total number of earthquakes in depthrange zo + Az
Az h

p(Az) = cAz7?, (10.29)

where Az is the window size from z,, ¢ and b are two parameters to be estimated
using the local singularity analysis method (LSA) with windows of multiple sizes:
Az = 10, 20, ..., 60 km. The results are calculated for all 30 datasets. Several
selected examples are shown in Fig. 10.3b-h. There is no significant peak at 33 km
in the datasets from the areas of western California. The decay curves in Fig. 10.3
are least squares fittings to the data with power-law functions. The results estimated
from the six datasets give b = 0.90 (E13), 0.44 (E7), 0.27 (E2), 0.49 (N2), 0.55
(N5), 0.69 (W4) and 0.74 (W11) respectively. Coefficients of determination for the
least squares fittings to all six datasets are high with R* > 0.98 (student
t-value > 14), indicating statistically significant power-law models fitted to the
data.

The results obtained by local singularity analysis of all 30 datasets (except El,
E3, E8) demonstrate that the frequency—depth distributions for large earthquakes
(M > 3) are not uniformly distributed but show clustering which can be modelled
by using the local fractal density model of Eq. (10.29). The datasets E1, E3 and E8
show linear decay instead of power-law decay. Moreover, the results (shown as
yellow dots in Fig. 10.2) demonstrate that the frequency—depth density distribu-
tions of earthquakes from the southwestern boundaries of the Pacific plates depict
stronger singularities than those of earthquakes from the southeastern boundaries of
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Fig. 10.3 Distribution of frequency density of earthquakes with magnitudes equal to or greater
than 3 from around Moho at 34 km downward. a Frequency—depth distribution of earthquakes
from Tonga region; b—h Distribution of decay of frequency density of earthquakes (#/km) with
depths from around peak at 34 km downward; Power-law functions were fitted to the observed
data by least squares
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the Pacific Plates except the earthquakes in conjugation regions of three plate
boundaries (e.g., N4, N5, W4, W5, W9-W11, E4, E13, E14) that depict stronger
singularity. This finding might be significant for understanding the different
mechanisms causing earthquakes between the eastern and western Pacific plate
boundaries. As reported in the literature, the western boundaries of the Pacific plates
are generally colder and older in comparison with the eastern boundaries (Kong
et al. 2016; Okazakl and Hirth 2016). Low slab temperatures resulting from faster
subduction cause deeper earthquakes (Wei et al. 2017). Omori et al. (2004) have
studied association of the distribution of dehydration events with earthquakes and
found non-linear correlation between maximum depth of earthquake and temper-
ature of the slab, with lack of deep earthquakes in young subduction-zones. Their
work showed that deeper earthquakes (> 300 km) are mostly located in the selected
areas along the western subduction zones of Pacific plates whereas fewer deep
earthquakes occurred at the eastern boundaries of Pacific plates. The results of the
current research may provide supplementary information about singularity of
frequency-depth distribution of shallow earthquakes around Moho in the subduc-
tions zones of the Pacific plates. The local singularity analysis may provide a new
tool for characterization and distinguishing between earthquakes from a fractal and
self-similarity point of view. Further work will extend the analysis to cover more
areas and other depths of earthquakes. Other sizes of earthquakes will also be
considered.

10.9 Discussion and Conclusions

In the first part of the chapter, the purpose of including suggestions about mathe-
matical geosciences or geomathematics as a discipline and introduction to examples
of significant contributions of mathematical geoscience scientists to science was to
appeal to the public and geoscientists to appreciate the indispensable role that MG
can play in the family of geosciences. In the second part of the chapter, the fractal
density model was introduced and used for characterizing the power-law rheology
of phase transition, and singularity analysis of earthquakes from subduction zones
of Pacific plates was demonstrated to be a new and promising nonlinear MG
method for modeling extreme and “avalanche” geo-events. Examples of application
of singularity analysis not only include earthquakes as introduced in the current
chapter but also other types of extreme events such as magmatic flare ups (Cheng
2017a), mid ocean ridge anomalous heat flow (Cheng 2016), flooding caused by
tropic storms (Cheng 2008), and mineral deposits as well as ore-caused anomalies
in surface media (Cheng 2007). Further comprehensive analysis of earthquakes
from other regions and clustering depths will be published in separate papers.
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